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SCOPE AND CONTENTS

This thesis addresses itself to what is considered to be one of
the most general theoretical problems associated with the art of
engineering design. A unified treatment is presented of production
yield evaluation, worst-case design and yield optimization. The
formulation is suited to nonlinear programming methods of solution.

Viewed in its entirety the approach integrates the following
concepts: design centering, assignment of component tolerances,
post-production tuning, yield estimation for realistic distributions and
modeling of response functions. Many of the ideas can also be used
separately depending on the type of design evaluation required, the
number of degrees of freedom involved and the availability and
properties of suitable simulation programs.

The thesis presents an analytical approach to yield and yield
sensitivity evaluation. Basic to the approach is the discretization of
the distributions by use of orthotopic cells to which suitable uniform
distributions are applied. Multidimensional polynomials provide
approximations to actual functions, which may be expensive to compute.
Algorithms for updating and evaluating these polynomials are developed
to permit efficient use of gradient optimization methods.

Industrially oriented design examples are furnished to Jjustify
the theory. A telephone channel (lossy) bandpass filter is considered

with relative insertion loss specifications to illustrate the analysis
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of yield. The cascade connection of nonideal, inhomogeneous sections of
rectangular waveguides is considered from the worst-case design point of
view. A current switch emitter follower involving transistors, a diode
and a transmission 1line provides a challenging example for yield

optimization including parameter correlations.
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CHAPTER 1

INTRODUCTION

The practical problem of optimally designing circuits in the face

of statisticél uncertainty on the parameters is the subject of this
thesis. The estimation of the percentage of manufactured circuits which

meet specifications, called production yield, has always been imbortant

but, increasingly mandatory for modern circuit design, is the associated

optimization problem called design centering. This is the process of
defining a set of nominal parameter values to optimize the economics of
the circuit in terms of maximum tolerances, or yield, or minimum éost.
Particularly, for mass-produced designs (such as integrated circuits,
telephone channel filters, etc.), large savings are possible if
permissible tolerances can be relatively large.

Many variations of the problem may occur. Given the circuit
specifications find, for example, a design that (1) maximizes the
worst-case tolerances, or (2) maximizes the production yield w.r.t. an
assumed probability distribution function of the parameters around
nominal values, or (3) minimizes the overall production cost given
relations between cost of the components and their tolerances. In
general, tight tolerances imply high production cost but high yield,
while large tolerances lower the production cost at the expense of low
yield.

The practical question of tuning is closely related to design
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centering. A design may require tuning as a post-manufacturing process
in order to meet specifications.

Unlike conventional minimax or constrained optimization where
interest is in a single point in the parameter space, due to parameter
spreads in the tolerance problem we have certain regions of interest.
These are typically the regions where possible worst cases can occur or
where constraints may even be violated. Detection of these critical
regions is a difficult problem. See Tromp (1977) . For high yield,

however, a worst-case design (a design which meets the specifications in

the worst case) should provide a good indication of these regions and
is, therefore, felt to be worthwhile investigating as a preliminary
exercise to statistical design. Fig. 1.1 shows a possible sequence of
problems in computer-aided design which fall into the present context
(Bandler and Abdel-Malek 1977b). The problems increase in complexity as
one proceeds down the graph.

The nominal approximation is the most well-known and widely used

design technique. By least squares or any other suitable measure a best

nominal (single design) may be obtained. If the specificatons cannot be
met by this single solution, it is impossible to seek better or more
realistic designs. An improved approximation, e.g., a minimax or a
Chebyshev solution can be found if tolerances are not involved. If
explicit assignment of tolerances is not required one could carry out a
sensitivity minimization. This involves an objective function which
usually includes first-order sensitivities at the nominal design.

Many complications may arise 1if one Jjumps straight into a cost

minimization without having sufficient information about the problem.
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Fig. 1.1 Typical sequence of problems in modern computer-aided design

shown in approximate order of increasing complexity.



Thus, it is felt that proceeding down the graph shown in Fig. 1.1 is
safer if the increase in problem complexity per step is not too great.
Due to the mass of calculations involved in statistical and
worst-case evaluations, the use of mnmultidimensional approximations
appears as an economical necessity. Approximation of design constraints
using truncated Taylor series expansions (Pinel and Roberts 1972,

Karafin 1974) or guadratic interpolation (Bandler, Abdel-Malek, Johns

and Rizk 1976) or by simplicial approximation(Director and Hachtel 1976)
to the constraint region boundary are described in the literature. As a
result, estimation of production yield, tolerance assignment, design
centering and other uncertainties can be handled at low computational
cost. .

The work presented in this thesis provides a new approach for
design centering, optimal tolerancing, post-production tuning and yield
determination as part of modern computer-aided design. Nonlinear
programming, which has proved to be successful (Bandler, Liu and Tromp
1976), is the approach used. Low-order multidimensional approximations
of responses, as functions of design parameters, are employed. They
facilitate cheap function evaluations required for solving the nonlinear
program, the wuse of any available simulation program, whether it
provides sensitivity information or not, as well as the development of a
new analytical technique for evaluating production yield.

To provide insight into the tolerance-tuning problem, Chapter 2
presents a brief review of some different approaches to the problem.

Definitions and concepts as well as geometric interpretations are given.

Production yield is introduced into the original nonlinear programming



formulation of Bandler and Liu (1974b).

A tolerance problem equivalent to the tolerance-tuning problem is
constructed in Chapter 3. This equivalence allows us to treat only
tolerances in the ensuing chapters. Geometric interpretation and a
simple example are given.

Chapter U4 presents a new analytical approach which not only
provides a value of yield but also facilitates the evaluation of yield

sensitivities. The approach 1is general enough to be applied in

conjunction with any statistical distribution and not necessarily for
electrical circuits (Abdel-Malek and Bandler 1977). The availability of
yield sensitivities permits the use of efficient gradient techniques in
solving the nonlinear program (Bandler and Abdel-Malek 1977a).

Chapter 5 deals with a multidimensional approximation procedure

suitable for the tolerance problem. Quadratic polynomials are used
since they are simple functions which have curvature and being
polynomials are cheaply evaluated along with their derivatives. It is
shown how to obtain the approximations with minimal effort and to
evaluate them efficiently. Theorems dealing with preserving certain
properties of the original functions in the approximation are stated and
proved.

The ideas presented in Chapters 4 and 5 are implemented in the
algorithms given in Chapter 6. Algorithms for worst-case design as well
as design for yield less than 100% are described (Bandler and
Abdel-Malek 1977a). Simple lumped and distributed circuit examples
illustrating the algorithms are given.

Chapter 7 is devoted to practical implementation of the approach



and the algorithms presented. Yield determination for a telephone
channel bandpass filter (Butler 1971, Karafin 1971 and 1974, Pinel and
Roberts 1972, Bandler and Liu 1974a) applying different statistical
distributions is described. The worst-case designs of two-section and
three-section nonideal inhomogeneous waveguide transformers (Bandler
1969) are given. A nonlinear current switch emitter follower (CSEF)
circuit containing a transmission line (Ho 1971) is considered for
worst-case design as well as design for yield less than 100%.
The formulation of the state equations required for the .analysis
of the CSEF is given'in Appendix A.
Original contributions claimed for this thesis are:
(1) A formulation of the design problem embodying centering,
tolerancing, tuning and yield.
(2) The construction of the tolerance problem equivalent to the
tolerance-tuning problem.
(3) An approach for updated multidimensional approximations suitable
for the tolerance problem.
(4) Based upon the approximations, analytical expressions for yield
and yield sensitivities.
(5) Sufficient conditions for preserving one-dimensional convexity
and parameter symmetry in the quadratic polynomial approximation.
(6) An efficient algorithm for evaluating the quadratic approximation
at the vertices of the tolerance orthotope.
(7 Algorithms, which employ the approximations, for worst-case

design as well as designs for yield less than 100%.



CHAPTER 2
DESIGN CENTERING AND STATISTICAL ANALYSIS:

A REVIEW

2.1 Introduction

Several approaches for design centering and for statistical
circuit analysis have been suggested in the literature. Emphasis will
be placed here on some of the more ingenious methods. Relevant
definitions of  concepts such as constraint region, tolerance region,
tuning region and manufacturing yield are given. The idea of
one-dimensional convexity is presented.

A method dealing with pairwise parameter interaction (Butler
1971) is described. The simplicial approximation of Director and
Hachtel (1976) and the nonlinear programming approach (Bandler 1972,
Pinel and Roberts 1972) are given. | |

Techniques for statistical analysis using Monte Carlo methods,

space regionalization and analytical evaluation are described.

2.2 Fundamental Concepts and Definitions
A design is described by a nominal parameter vector ¢0, a

tolerance vector ¢ and a tuning vector t, where



O- - - -
¢ €9 t
0
P € t
¢Oé , € 4 . " té . (2.1)
| % ek | | Bk |

and k is the number of designable parameters. The tolerance vector €
may be used to define the extremes of the tolerance region or the
standard deviation, etc. The tuning vector t, defines the size of the
tuning range. See Bandler, Liu and Tromp (1976). It is assumed that
the parameters can be varied continuously. Some of these vector
elements may be set to zero or held constant.

An outcome,{«gO y € g} of a design {20, € }} implies a point in

the parameter space given by

o= 60 + E 4, (2.2)
where
€9 1 My
€2 Ho
E 4 .. (2.3)
ekJ 3%

and where U is a prandom vector distributed according to a _joint

probability distribution function (PDF). The PDF might extend as far as

(-», ), however, for all practical cases it is possible to consider a

tolerance r'egion,Re such that



[ F(9) do; doy ... d4 =1, (2.1)
R

€

where F(¢) is the PDF.
For the sake of simplicity as well as the implications of
independent design parameters, there 1is no loss of generality to

consider Re to be an orthotope defined by
r A {6 ] ¢= © + Eu, peR1, (2.5)

where

R, é‘{g | -1 <w <1, i=1,2, ..., k} . (2.6)

. . 0 .
This orthotope is centered at ¢ and has edges of length Zei’ i=1, 2,
ceey Ko The extreme points of R€ are called yvertices and the set of

vertices is defined by (Bandler, Liu and Tromp 1976)

Ry 2ol oo = 4’('1) soegng, woe (=11}, 0 =1, 2, o, kb (2.7)

The number of these vertices is 2K and the following enumeration scheme

used by Bandler (1974) will be considered. For a vertex

¢ = 0+ E W, W ¢ (o1, 1} (2.8)

we have

) 2i-1, (2.9)

"3
n
-
+
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The tuning region is defined by (Bandler and Liu 1974b)

Rt(B) é {Q I Q = Qo + E N + r.E pr P € Rp} 9 (2~10)
where
. - -
1 °
t P
T 4 2 . , ) 4 .2 (2.11)
i tk | | °k |

and Rp may be defined, for example, by

A
Rp:{gl-1$pi_<_-1,i=1,2, cevy kb (2.12)

or in the case of one-way tuning or irreversible trimming,

Rpﬁ{g | 1< 9 €0, i=1,2, ..., Kk} (2.13)
or
A
Rp”{g|0_<.0151,i=1,2, ' I (2.14)

The constraint region (or feasible region) itself is given by
B ro | gi(o ; (2.15)
Rc - {~ gi(~) ZO, 1= 1, 2, ooy mc} ] ¢

where D, is the number of constraints g;. The tolerance, tuning and
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constraint regions are illustrated in Fig. 2.1.

2.3 Production Yield

The production or manufacturing yield is simply defined by
A
Y = N/M, (2.16)

where M is the total number of outcomes and N is the number of outcomes
which satisfy the specifications. Similarly we define the potential

yield by

A
Y = .
D Np/M , (2.17)

where Np is the number of outcomes which meet the specification, after
tuning if necessary. Hence, the relative frequency of outcomes which
require tuning is

Yth -Y . (2.18)

2.4 One-dimensional Convexity
A region R is said to be one-dimensionally convex (Bandler 1972)
if for any direction defined by the unit vector e:, j = 1, 2, ..., k,
a b

and for any two points ¢“, ¢ € R, where

~ .

¢ = ¢ *ce€y, cisa scalar, (2.19)

then



tolerance
region Rg

-

|
|
| ¢
|
|
|

Fig. 2.1 Illustration of regions Ré, R8 and Rt (Bandler, Liu

and Tromp 1976).
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o= ¢2 + 2(e° - ¢3) € R for all 0 <A < 1. (2.20)
One-dimensional convexity is illustrated in Fig. 2.2.

The region R is said to be convex if (2.19) is not assumed. See
Mangasarian (1969).

If all vertices of the tolerance orthotope are within a
one-dimensionally convex constraint region, then the whole tolerance
orthotope lies inside the constraint region. For a proof, see Bandler

(1972).
2.5 Design Centering

2.5.1 Centering via Large-change Sensitivities and Performance Contours

Large-change sensitivities together with performance contours,
were used by Butler (1971). A scalar continuous function of design
parameters which reflects the goodness of a design is chosen as a
performance criterion. A nominal design which satisfies this
performance criterion is assumed to exist. The concept of large-change
sensitivities is that of finding changes in function values due to
significant deviations in designable parameters. This concept is used
to draw contours of the performance criterion changing parameters in a
pairwise manner for each contour. The design center is obtained by
inspection, i.e., by choosing a nominal value which is well centered for

all contours. As an example of a performance criterion, we might use



O
[A)

14

4

N NNN SN RN R AR RN

=¢1

Fig. 2.2

Illustrations of convex, one-dimensionally convex

and nonconvex regions (Liu 1975).
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J = min g,(9) , (2.21)
1<igm,

where g, i=1, 2, ..., mg, are the m, design constraints defining the

feasible region. The method is illustrated in Fig. 2.3 for the case of

three parameters.

2.5.2 Simplicial Approximation
The simplicial approximation approach of Director and Hachtel

(1976) involves linear programming as well as one-dimensional search
techniques. Their approach is to inscribe a hypersphere inside the
constraint region. During the process of enlarging this hypersphere a
polytope which approximates the boundary of the constraint region is
constructed.

The procedure is illustrated in Fig. 2.U4. The algorithm
initially searches for points on the constraint boundary in both
positive and negative directions for each parameter from a feasible
point (a point within the constraint region). The convex hull described
by these boundary points provides the initial polytope approximating the
boundary of the constrant region. This polytope will be an interior
approximation only if the constraint region is convex. Using linear
programming a hypersphere is to be inflated inside this polytope in a
k-dimensional space. The tangent hyperplanes are determined. These
hyperplanes, faces of the polytope, are simplices (Coxeter 1963) in a
space of k-1 dimensions. The largest simplex, i.e., the one which
contains the largest hypersphere, is to be broken and replaced by k

simplices. This is performed by adding a new vertex to the polytope



min g;=0
I

‘#0
2
Fig. 2.3 Performance contours for pairwise changes in

parameters. Reducing ¢$ will result in a

better centered nominal design.
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constraint
region

N

linear search

(a) Initial search for boundary points.

linear search

(b) The polytope approximating the boundary of

the constraint region after two iterationms,

Fig. 2.4 Illustration of the simplicial approximation

-approach (Director and Hachtel 1976).
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obtained by searching for a boundary point along the normal direction to
the largest simplex from the center of the corresponding hypersphere.

The computational effort per iteration can be expressed as

CE = LP 4+ (k+1) LPy_q + LS, (2.22)

where ij is the computational effort to solve a j-dimensional 1linear
program and LS is the computational effort in a one-dimensional search.
It is to be noted that the number of constraints for the linear
programming problem increases with the number of faces of the polytope.
For the k-dimensional linear program and at the nth iteration we have 2k
+ (n-1)k constraints, while for the k-1 dimensional linear program the

number of constraints is fixed and is equal to k. The sequence of

approximations is regarded to have converged when
rnet = rpn £ 8 rp + S50 (2.23)

where I, is the radius of the hypersphere obtained in the nth iteration,

61 and 62 are given relative and absolute convergence parameters.

2.5.3 The Nonlinear Programming Approach

The two methods described before do not explicitly optimize
values for paraméter tolerances, in other words there is no optimal
tolerance assignment.

Pinel and Roberts (1972) used nonlinear programming to assign

parameter tolerances. The nominal parameter values are fixed and the
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constraints are approximated by truncated Taylor series expansions.
Bandler (1972, 1974) and Bandler and Liu (1974a) treated centering and
tolerancing simultaneously for the benefit of increased tolerances by
permitting the nominal point to move.

A nonlinear programming formulation of the optimal centering,
tolerancing and tuning problem is |

minimize C(¢0, e, w, t) , (2.24)
O o200 T 70

subject, for example, to a constraint on yield

Y60, e w £) 2 Y (2.25)

where C is a suitable cost function, sometimes called objective

function, and Y;, is a lower yield specification.

The objective function C should reflect a realistic cost-
tolerance and tuning relation. Reasonable properties of the objective

function are (Bandler, Liu and Tromp 1976)

c(¢9, ¢, u, t) - constant as ¢ > @

C(fo’ £ My E) T for any & 0 (2.26)
C(go’ € M, £) - C(QO, €, M) as t » 0

C(QO’ €y By b)) > e for any t, » = .
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An appropriate objective function, for example, is

eIy

c. k
-1 + 3
X

. ci ¥i (2.27)
=17 i=1

where x; and y; may indicate either the absolute tolerances and tuning

1

ranges, respectively, or the relative values w.r.t. nominals. If tuning
is not allowed or is fixed for some parameters, their corresponaing ci
should be set to zero. Similarly, ¢; may be set to zero if the
corresponding tolerance is fixed.

In the case of no tuning, Pinel and Roberts (1972) suggested an

objective function of the form

(o +—) ’ (2.28)

where ®; and c¢; are constants. This objective is essentially the same

as (2.27), since the o will contribute only a constant value to the

optimum cost. A unit cost function (Karafin 1974) can be expressed as

Cy = €% & EI/Y . (2.29)

~ ~

An orthotope describing the tolerance region is to be inflated by
minimizing the cost function. The center of the orthotope provides the
nominal parameter values and the lengths of the orthotope edges are

twice the absolute tolerances.
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2.5.4 Sensitivity Minimization

Some sensitivity measures such as the measure of Lee and Su

(1977) and that of Styblinski (1977), can be considered as objective
functions also. The constraints are implicitly expressed in the

objective, hence an unconstrained optimization problem results.

2.6 Statistical Circuit Analysis

2.6.1 The Monte Carlo Method

Statistical circuit analysis, providing an estimate of
manufacturing yield, has usually been treated through the Monte Carlo
method. A set of random parameter values is generated according to the
anticipated distribution of outcomes and corresponding analyses are
performed.

Elias (1975) presented an approach which applies the Monte Carlo
analysis directly to the nonlinear constraints. In an effort to reduce
computational cost, Director and Hachtel (1976) suggested applying the
Monte Carlo method in conjunction with an approximation to the boundary
of the constraint region. The approximation is the polytope obtained in
the simplicial method described in Subsection 2.5.2.

The Director and Hachtel polytope might be described by quite a
large number of hyperplanes, for example, if the algorithm converges in
n iterations, the number of these hyperplanes is 2K 4+ nk. The yield
estimate obtained by this approximation is not accurate enough (Director
1977). More recently, Director and Hachtel (1977) suggested updating

the polytope according to the Monte Carlo points which fall within the
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constraint boundary but not inside the polytope.

In order to reduce the number of Monte Carlo analyses, while
keeping high confidence in the yield estimate, importance sampling
(Hammersley and Handscomb 1964) was used by Pinel and Singhal (1977).
The objective of importance sampling is to concentrate the distribution
of sample points at critical regions instead of spreading them evenly.
Compensation is done to correct for distorting the distribution. It is
assumed that worst cases occur when one or more parameters assume

extreme values, i.e., a one-dimensionally convex constraint region is

implied.

2.6.2 Space Regionalization

Space regionalization was suggested by Scott and Walker (1976).

Based upon the probability of having an outcome to fall within a region,
a weight is assigned to this region and the center of the region is
checked against the nonlinear constraints to determine whether this
whole weight will contribute to the yield or not. See Fig. 2.5. The
number/of required analyses, however, increases exponentially with the
number of variables subject to statistical variations, since the
response at the center of each region is to be evaluated.
Regionalization was also used by Leung and Spence (1976, 1977)
exploiting the technique of systematic exploration. The centers of the
regions are scanned systematically by changing one parameter at a time.
The circuit response 1is efficiently evaluated using matrix inverse
modification methods. Hence, computational saving is only available for

linear systems. Leung and Spence also suggested checking the worst



23

contributes
to yield

consfraint region

/ . . . | 7| T—does not
| | contribute

: y . / - to yield

Fig. 2.5 Space regionalization for yield estimation,
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outcome in each region, instead of the center of the region, if a lower

bound on yield is required.

2.6.3 Analytical Methods

Karafin (1974) presented an approach using truncated Taylor
series approximations to the constraints. The constraint function
values are assumed to be normally distributed for all tolerance choices.
The parameters are assumed to be statistically independent and each
parameter is symmetrically distributed about its nominal value.
According to these assumptions, Karafin was able to reduce the k-fold
integration of the k-variate probability distribution function to at
most 3-fold integration. The yield estimate is based upon the resulting
distributions of the values of the constraints. Obviously, the method

is computationally expensive.



CHAPTER 3

THE EQUIVALENT TOLERANCE PROBLEM

3.1 Introduction

A tolerance problem which is equivalent to the tolerance and
tuning problem of Bandler and Liu (1974b) is presented. The generalized
least pth function (Bandler and Charalambous 1972), required for
constructing the equivalent pfoblem, is given. Based on this
equivalence, a mathematical definition of yield is developed.

The optimal worst-case design, in which all outcomes should meet
the specifications, after tuning if necessary, is formulated as a
nonlinear program. It is shown how to express the minimization of the
maximum violations of the worst outcome, called worst-case centering, as

a minimax problem.

3.2 The Generalized Least pth Function

Given a set of functions fj(g), J € J, we define (Bandler and

Charalambous 1972)

U(fj(f)y Jdy DP, A) 2‘ (3.1)

1/q

, M#0,
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where
M = max (xfj) , Q=p sign (M) , (3.2)
JjeK
J, MO0,
K = (3.3)

(3 | jeg, re5(0) >0}, M>0,

- 1 if U approximates max f.(¢)
jed 97

1

A = (3.4)
+ =1 if U approximates min f.(¢)

Jjed

and where p is a scalar greater than one.

3.3 The Equivalent Tolerance Problem
It is possible to transform a tolerancing and tuning problem to
an equivalent tolerance problem only. The following theorem confirms

this observation.

3.3.1 Theorem 3.1
An outcome

~ ~

can be tuned to satisfy the constraints, i.e., there exists p ¢ Rp such

~

that

$+TpeR, (3.6)



27

if and only if ¢ € R, where R,4 is the tunable constraint region

t
defined by
A
Rop = {¢ | max U(gy(®+10), 1, ® -1) 20}, (3.7)
P.G':Rp
where
18,2
= {1, 2, ..., my}, (3.8)
Proof

Assume that there exists g* € Rp such that

$+ T P* ¢ R * (3.9)
Hence,
8;( + T %) >0 for all i ¢ T . (3.10)
Also,
min g.(¢ + T P¥) > 0 . (3.11)
iel
But since
max U (¢+Tp), I, =, =1) > U(g;(¢+TP%), I, =, -1) , (3.12)
€
2%
and
U(g; (9+Tp%¥), I, =, -1) = min g;(9+TP*) > 0 , (3.13)
iel
then

Now, ¢ € R . implies that there exists P* ¢ R, such that (3.13)

is satisfied. Consequently,
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o + T p¥ ¢ Rc .
~ - QuEsDc

3.3.2 Example
To illustrate this idea, consider a two-dimensional example in

which the constraint region is defined by the two constraints

€1(2) = 9 - 1 >0,
5(8) = 50y = (9,-5)2 = 2520 .

Let
4.5 2.0 0.5

8.0 2.5 1.0

Fig. 3.1 shows the constraint region Re and the tunable constraint

region Rct* In the figure RE and R¢(u) are defined according to (2.5)

and (2.10), respectively, where Rp is assumed as in (2.12).

3.4 Mathematical Definition of Yield
We are now ready to give a mathematical definition of production
yield. An outcome ¢ is said to meet the design specifications either if

? € Rc or there exists P ¢ R, such that

e
+

]

O

«R,, (3.15)

i.e., this outcome is tunable. In other words

€ R

e

Ct . (3616)
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untunable outcome

, hjnable outcome
¢5L+EE}L

$O+EptTp

feasible outcome

a1

2._

O i i 1 1 1 \ =¢
O 2 4 6 8 10 12 1

Fig. 3.1 Geometric interpretation of the tolerance problem equivalent

to the tolerance-tuning problem.
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In an abstract manner, the expected potential yield, i.e., the

expected yield after tuning is given by

Rct
where F(¢) 1is the joint probability distribution function of the

outcomes. The expected yield before tuning is

Y= J F(¢) doq doy ... déy . (3.18)
R

c
If the outcomes are uniformly distributed between the tolerance
extremes, i.e., inside the orthotope Re, the expected potential yield

and the expected yield can be expressed as

Yp = V(R8 n Rct)/V(Re) (3.19)

and

Y =VER_NDRHNR) , (3.20)

where V(R) denotes the hypervolume of the region R. The expectation of
having outcomes which require tuning as a post-manufacturing process is

also given by (2.18).

3.5 Worst-case Design
The worst-case design problem arises when the worst outcome is
supposed to meet the specifications. This implies a lower potential

yield specification YL = 100%. Thus, for the nonlinear program, the
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constraint (2.25) reduces to

For a one-dimensionally convex region Rct’ (3.21) can be replaced

by
RyS Ret (3.22)

where R, 1s the set of vertices defined by (2.7).
At the worst-case optimum, the set of active constraints at a

vertex ¢ R, is defined by

Tie = {1 lgg(F +T ¢ =0, te1,2,.00,m}}, (3.23)

where pr* is the optimum setting for the tuning variable for the vertex

21" = ¢0* + E* ];(P y (3.2“)

~

E* and ¢0* are the worst-case optimums of E and qp, respectively. The

~

set of active vertices is consequently defined by

Ray = (87 | & ¢ R,y I3, # O} . (3.25)
The set of all active constraints is
ok

Iac = U Igc . (3.26)
r=1
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An alternative approach is to define the set of active vertices

for each constraint g, i =1, 2, ..., My given by

Rl - (& lg (& +T " =0, ery, (3.27)

where ¢ is given by (3.24) and or®* is the setting of the tuning
variable for this vertex at the optimum. Thus, the set of active

constraints is defined by

Io={ilie{1, 2, vv., me),Riy # @} . (3.28)

The set of all active vertices is

Ray = .U Ryy - (3.29)

3.6 Worst-case Centering
Worst-case centering is a minimax problem in which the tolerance
vector e is fixed either absolutely or relatively w.r.t. the nominal

vector 49 while 49 and the tuning vector t are variables. The problem

~

can be expressed as

minimize U(-gi (O +E p+Tp)y I, » 1), (3.30)

020, 0<t<ty .y

where Pmax is an upper bound on the tuning range, U is the least pth

function defined by (3.1) and p is chosen to give the worst outcome.

~
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3.7 Conclusions

Hgving a tolerance problem which is equivalent to a tolerance-
tuning p;oblem allows us to deal solely with tolerance assignment. It
permits the evaluation of yield to be based upon hypervolume computation
as is shown in Chapter 4.

The one-dimensional convexity assumption implies that the
vertices of the tolerance orthotope are the candidates for worst case.
Hence, for a worst-case design, it reduces the infinite number of
constraints for the nonlinear program to a finite number. Subsequently,
a solution based on this, or any other assumption made to create a

tractable problem, can be verified.



CHAPTER 4
YIELD DETERMINATION

THROUGH LINEAR CUTS

4.1 Introduction

An analytical approach to the evaluation of yield and yield
sensitivities is presented. The availability of yield sensitivities
allows the use of efficient gradient techniques for solving the
nonlinear programming problem presented in Chapter 2.

In the case of a uniform distribution of outcomes inside the

tolerance orthotope, computation of hypervolume plays the basic role in
yield evaluation. Formulas for nonfeasible hypervolumes (hypervolumes
outside the constraint region but inside the tolerance orthotope) as
well as their sensitivities are provided (Bandler and Abdel-Malek
1977a). An alternative approach to evaluating the nonfeasible
hypervolumes based on feasible hypervolumes is also presented. Criteria
for choosing a computationally efficient approach are given (Abdel-Malek
and Bandler 1977).

The hypervolume formula is based upon linear cuts of the
tolerance orthotope. The linear cuts are functions of the nonlinear
constraints defining the boundary of the constraint region. It is shown
how to construct the cuts in the special cases of linear andwquadratic
constraints (linking this chapter with the next chapter).

For an arbitrary statistical distribution of outcomes, the

34
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tolerance region is partitioned into a collection of orthotopic cells
(orthocells). A weight 1is assigned to each orthocell and a uniform
distribution is assumed inside it. This approach 1is suitable for
circuits, since the distribution of outcomes is usually defined by a
histogram rather than an expression for the probability distribution
functi(;n. Formulas for evaluating the weighted hypervolume and its
sensitivities are derived (Abdel-Malek and Bandler 1977). Some simple

illustrative examples are given.



PART I

THE UNIFORM DISTRIBUTION

4.2 Evaluation of Hypervolume
Based upon either 1linearization or intersections of the
hypersurface g(¢) = 0 with the tolerance orthotope, we construct the

linear cut

af¢ ~c 20, (4.1)

~ A~

where q is a column vector of k components and ¢ is a scalar. We will

derive a general expression for the nonfeasible hypervolume defined by

this linear cut and the tolerance region Re, denoted by V(R), where
= . y,
R={y | &ly) <OINR (4.2)

Define a preference vertex

¢r' = gO + r (‘4.3)

~

4]
e

where

MY = -sign(qj) , i=1, 2, «vvp k (4.4)

and E is a kxk diagonal matrix with elements set to ;> i
k, as in (2.3).
The general formula for the hypervolume* can be written as

*H. Tromp originally suggested such a formula (see Acknowlegements).

36
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1 2K v sk
V = o. T (=1) (8Y) , (4.5)
k! ! J
J=1 s=1
where
s k €, s r
6 = max 0’ 1; Z -l l H. = M. l] 9 (us6)
. a. J J
J=1 J
k
S _ S r
v = i§1 | W= |/ 2 (4.7)

and “j is the distance between the intersections of the hyperplane qT¢ -

¢ = 0 and the reference vertex gp along an edge of R€ in the Jjth
direction. It is to be noted that &5 is positive if and only if the

vertex ¢° violates the linear cut (4.1).
4,2.1 Two Dimensional Examples

Consider the examples given in Fig. 4.1. The nonfeasible area in
Fig. U4.1(a) is given by

V = A ¢Pab - A stac - A ¢'bd,

where A abc denotes the area of the triangle abec. Hence,



(a)

(b)

Fig. 4.1 Two-dimensional examples illustrating the calculation of

the nonfeasible hypervolumes, (a) partially feasible

tolerance region, (b) nonfeasible tolerance region.
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2e, 2 2e, 2
] 2
= l‘a a 1- (1 = ) - (1 = ) .
2 1 2 01 s,

Also, in Fig. 4.1(b), the nonfeasible area is given by

Ao ab - A o% ac - & ¢1 bd + A& ¢2 cd

<
n

2eqy 2 2e.. 2 2¢ 2e. 2
=1aa[1-(1-;—l—) -(1-0‘—a +(1-;—l-3—2) ]
12 1 2 1 2

4.,2.2 Three Dimensional Example
In the example shown in Fig. 4.2, the intersections of the linear
cut with the orthotope edges are defined by the polygon abcde. The

nonfeasible volume is given by

2, 3 2¢, 3 2¢e, 3
1 (1 =Ly ql =2y _ (. =33
V - 6 a-l (!2 (13 1 (1 o ) (1 o (1 a )
1 2 3
2¢ 2¢, 3
+ (1-4- 2) .
(!1 (!2
4.3 Hypervolume Sensitivities

The hypervolume sensitivities can be expressed as

kK da. _k ok s k-1 ..S
iv—o =Jk—|- 3 "{H [ o |B+Ajk 2 (-1)V (&% % ,  (4.8)
3oy =1 3s p=1 P s=1 35
p#]



)
Q
;)

Fig. 4.2 Three-dimensional example illustrating the calculation of nonfeasible.

~ hypervolume for partially feasible tolerance region.

0%
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k
2 s k-1
8V _ r 9V k v s r s
se, -~ M _ 0~ A o, z (-1 l“i'“il (67) ’ (4.9)
i 9. i s=1
i
where
A= LT (4.10)
k! . J
J=1
2k vs s k
B= I (-1)° (&) (4.11)
s=1
and
- 0 if =0,
s
0= (4.12)

€. da .
Lz ——-3—2- |u§-u§| —gif >0 .
j=1 (OtJ) 3¢i

It is to be mentioned that the hypervolume and its sensitivities are
defined when ¢; * for any i, since the 1limit exists. But, the
sensitivities are discontinuous whenever a vertex ¢S satisfies the
equation
gT fs -c=0. (4.13)
4.4 An Alternative Approach
For an alternative approach to calculating the hypervolume V and

its sensitivities we define a complementary vertex
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(4.14)

where

(4.15)

=1, 2, veuy k.

T = o) = sign(q,), i
Wy = 74 ¢ g qi’ =

as the distance between the

In a similar manner we define 7.

complementary vertex ?r and the intersection of the hyperplane gTy-c =0
Hence, the nonfeasible

along an edge of RE in the Jjth direction.

hypervolume defined by the linear cut (4.1) is

k
k k _ 2 -s __k )
v=2KTT .- L a. ]l z Y GYH |, (4.16)
) J k! . J
j=1 j=1 s=1
where
- k €. -
8§~ = max 0, 1 - 12 :‘1 | us. - ur I |, (4.17)
j=1 a. J J
J
—s k s T
v I | u-w | /2. (4.18)
121 i i

The hypervolume sensitivities can be expressed as
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340 j=1 2¢) p=1
i 1 .
P#J
ok k-1
_ 35>
- {k -1 ) —0}, (4.19)
s=1 aq)i
K ¢ ; Vv
f%— =2 | | S )
i j=1 3 30
J#i
+ A [%— : -1V | u? - ug | %) ) (4.20)
ai s=1
where
_— ko _
Bl -‘—[ 3y (4.21)
J=1
_ X sk
B= z (-1° (3 (4.22)
s=1
and
.0 if3°= 0,
—S
_%_ - (4.23)
94
i
k €. s ; SE.
Lz —_']'—2-|11.-11.|—‘10 if 35> 0 .
3= et T ey
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4.5 Efficient Computation
In order to -evaluate the hypervolume and its sensitivities
efficiently we use the following criteria:

(i) If qT¢P - ¢ 2 0, use the reference vertex approach.
(ii) If qT$F - ¢ £ 0, use the complementary vertex approach.
(iii) If qT¢" - ¢ < 0 and qT¢F - ¢ > 0, then

if |9T¢r - ¢| < |qT¢T - c|, use reference vertex approach,

~ ~

if |9T¢r -c| > |ST'F - c¢|, use complementary vertex approach,

where Qr and §F are the reference and complementary vertices,
respectively. The cases (i) and (ii) are clear since the orthotope will
be either completely feasible or completely nonfeasible, respectively.

Case (iii) follows according to the following theorem.

4.5.1 Theorem 4.1

If qTg" - ¢ <0, qT¢" - ¢ > 0 and [gT¢" - c| < [qT¢F - c|, then

Order (S) < Order (S), (4.24)
where
iy k T4
S={s|se{1, 2, ...,27},qg"¢% -c <0}, (4.25)
SE{s|sel1, 2, ..., 2k}, qT¢® - c> 0} . (4.26)

In other words
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42}
>

{s | >0}, (4.27)

ne

{s | >0} . (4.28)

vl

Proof
In the case under consideration the order of a set is simply the

number of its elements. Assume that s ¢ S, then

qf¢® -c <o, (4.29)
qT¢" - e+ qT(e%-¢") <0, (4.30)
or
k
-(qTe" - e) + T qge (M) >0 (4.31)
i=1
But, since
-(qT¢F - ¢) < (qT¢F - ¢) and o= -l (4.32)
then
- Kk -
(qTer _¢) + 'zl q; € (=3 - ) >0, (4.33)
1=
i.e.,
qT¢S - e > 0, (4.34)

where
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03 =¢0 - E 15 . (4.35)

Hence,
seS. (4.36)

This means that for each vertex s ¢ S there exists a vertex.g e-g, thus

Order (S) £ Order (§) .

QbEth

4.6 Example

Consider the following four-dimensional example, with a linear

cut given by

4 b 0
S %2 5 4
24 15 60 240 =

and where

M
|
Oy OV

Hence,

-1
=1 =

-1

-1 2

oo owu
oo NOo
O =00
OO OO
o Ul Ul &=
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and
4 4 4
I 4 8 12
v I 8 x5 x 20 x 80] [1- (1- 5) - (1- 2Q2 - (1- 80)
L L
12 8 12
+ (1- - 80) + (1- 20 80)
= 1034.15
Table 4.1 shows the nonfeasible vertices. A check of the

analytical formulas for the gradients and the numerical gradients

obtained by central differences is shown in Table 4.2.

The alternative approach will lead to

- 19 5 0 0 O] [ 14

¢ 171 +]0 2 0 off1] =19},

- 9 0 0 4 of |1 13
26 0 0 0 6/ |1 32

vV = 2)'l X5x2x4x6 - [u, (8x1.6)(5x1.6)(20x1.6)(80x1.6)

SO | E e B B
‘ 8x1.6 5x1.6 20x1.6
4 Y
'y 8 12
+ O-5356 " 20x1.6) ~ '~ 80x1.6)
Y 4
10 12 p 12
+ O-3851.6 ~ 8x1.6) * O 5x176 ~ 80x1.6
8 12 y 8 12 )”

+ O S0x1.6 ~ 8oxt.6) ~ '" 5x1.6 ~ 20x1.6 ~ 80x1.6

= 3840 - 2805.85 = 1034.15



TABLE 4.1

NONFEASIBLE VERTICES FOR THE EXAMPLE IN SECTION 4.6

Nonfeasible
vertices

Vertex

20
20
20
20
20
20
20
20

14

14

13
13
13
13

14

14

32

32

14

10
11
12
13
14
15
16

32

32

14

32

13
13
13
13

32

14

32

32

14

48



TABLE 4.2

HYPERVOLUME GRADIENT CHECK

Analytical Numerical
Parameters - .
gradients gradients
0
¢1 -337.50 -337.50
: ,
¢2 -540.00 -540.00
0
¢3 -135.00 -135.00
0
¢4 - 33.75 - 33.75
€ 337.50 337.50
€, 573.60 573.60
€z 268.20 268.20

€ . 173.18 173.18
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The Linear Constraints Case

Let the constraint region be defined by the m linear constraints

g (¢) = ¢lq¥ - c*>0, 2 =21, 2, ..., m. (4.37)

Assuming no overlapping of nonfeasible regions defined by

different constraints inside the orthotope R , i.e.,
- €

where

R' ﬂ R' - ﬂ 9 ]‘I's 8
A
Rz = {3 € R€ | gz(i) < 0}, (4.39)

the yield can be expressed as

m
Y=1- ¢ V(Rl)/V(Re) . (4.40)
=1

Knowing that

V(RE) = ok TL[ €.

(b.41)
. J
=1
the yield sensitivities are given by
m A k
k T—T
304 2=1 304 J=1
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m m k
i S »3——]/[(21‘178.)], (4.43)
si €. - - 9 j=1

where V¥ denotes V(Rl)“ The linear constraints can be used as linear
cuts directly. Hence, the nonfeasible hypervolume Vm and its
sensitivities can be obtained using (4.5), (4.8). and (4.9) for each

constraint and where

= ug SQ(QP)/Q& ,

[y S
[}

k
= ug [ i§1 o} (4»2 + M oeg) - C’“MJS’ , (4.44)
o
“‘3’: u? q% / q% , (4.45)
ji 3

according to the reference vertex approach or using (4.16), (4.19) and

(4.20), where

9 - r o, b

- k —-
- [}
= g [ifl af (09 + f &gy - ctl/dd (4.46)
3o~ -
—i_.r 2 L
a¢9 =My 9y / SER (4,47)
1
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for the fth constraint using the complementary vertex approach.
4.8 The Quadratic Constraints Case

4.8.1 Method Based on Intersections
Consider a vertex ¢r detected to be active w.r.t. a quadratic

> 0 after the worst-case design process (see Section

constraint gz(?)

3.5). If the tolerances are allowed to increase slightly beyond their

worst-case values, intersections between the orthoﬁope edges passing

through ¢¥ and the hypersurface g£(¢) = 0 will arise. The number of

these intersections is k, which is the number of edges passing through
o7, if

agz(?”)/wj £0, for all j. (4.48)

In order to find the intersection point along the jth edge, or

its extension in the direction '”gfj’ where e. is a unit vector in the

-~

jth direction, we express gl(¢) = 0 as
2 r .r r r r
(¢j) + 2¢j §£(¢1’ ¢2, ce ey ¢j_1, ¢j+1, ce ey ¢k)
+ g (07 030 +vs 05 g 03,0 ees 0y) = 0, (4.49)

where £, and n, are constant functions and 03 is the only variable.

Hence, the point of intersection is (¢€, ¢£, e 1},_ ceey ¢E), where
L. Sl _ re.r A
xj = EZ + El Ny 9 Uj(¢j - Xj) >0, (4.50)
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is a real root of (4.49). The condition imposed on the root insures
that it is in the direction -ugej w.r.t. ¢P. If both roots lie to this
direction, the one closer to ¢P is to be chosen.

The equation of the hyperplane, representing the linear -cut,

which passes through these k points of intersection is

'¢1 65 o, 1
') r r
A ® e ¢ 1
det | | 2 k =0 (4.51)

r
A V-

r r L
¢4 ¢ N A 1
and ¢r is a reference vertex for this cut.
The yield sensitivities are calculated according to the gradients

of the k intersections.

2 .
AN, 9k 3 an
n-1=_M’@,: ,1 [252#-#J,11j, (4.52)
1 1 2/522"712 1 1
[}
ﬁ-o (4.53)
3p. : :
1

Thus, if Gg is the distance from the vertex QP to the point of

intersection with the 2th constraint along the orthotope edge in the jth

direction, then

ij uj (¢J - XJ) ’ (4.54)
2o r ifé

= -y i#3 (4.55)
34)0 IJJ a¢i ’ J
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2
dag r
——0- = U, . (”'956)
a¢j J

4,8.2 Method Based on Linearization

An alternative method to obtain the cuts is to consider
linearizing the quadratic constraints at a point ta which may be the
nominal point ?0 or a vertex ?P. Hence, the linear cut based upon the

2th constraint is given by

gl(ga) + (Q - Qa)T v gz(ga) 20 . (4.57)

The reference vertex ¢¥ is identified by

~

ag, (¢2)
ur: = _sign [_—-9;;?——} y j = 1, 2, veoy k . . (4958)
J

The distance from the reference vertex to the point of intersection with

the fth cut along the orthotope edge in the jth direction is

) r a ralt a 3g (4%
0y = Wy 18 (0) + (0 - ¢) Vg, (o )] /[—2'5:‘] (4.59)

Accordingly, we have

L a a
da, 3g, (6°) T 3g (%)
i_ . r [ A r'_ a 4~

5 + (¢ -7 Ei] /[ 30 ]

P o
[

3¢i

-3
<
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r a r a,l a 3§%£if) 2
- o) (8,0 + (4 - 8D Te )y / | 1y | oo
where
' 32g (¢) 32g (¢) 2g (¢) ]
Q_~ L= —
2 3o 2 e 3o 9
20 *12% *1%%
azg&(¢) 32g (9) 22g (¢)
= ‘q' = o v & =
3¢23¢1 a¢§ 3¢23¢k
H = . , (4.61)
2%g (¢) 22g (¢) 228 (¢)
2,20, 20, 30, 202 |

is the Hessian matrix which is a constant matrix for a quadratic

function g (¢), H; is the ith column of H and Hyj is an element of H.

In deriving (4.60) it is assumed that (¢ - ¢2) is independent of ¢g,

is= 1’ 2, ey k.



PART II

ARBITRARY STATISTICAL DISTRIBUTIONS

4.9 The General Case

As described in Chapter 2, we can assume that all outcomes will
lie within the tolerance orthotope Re. This orthotope is now
partitioned into a set of orthocells R(i1, 12, ooy ik) as shown in Fig.
4.3, where ij = 1, 2, ceey nj, nj is the number of intervals in the jth
direction and j = 1, 2, ..., k. A weighting factor W(i,, i,, ..., i)

is assigned to each orthocell and is given by

W(i) = w(i)/V(R(1)) , (4.62)
where
i= (1, iy, e, 1), (4.63)
w(i) = J F(¢) dv , (4.64)
" R(1)
k
V(R(1)) = { av=TTe (4.65)
R(1) j=1 J
dv = dé, dd, ... d¥ , (4.66)

56
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WI,00  W(2,0) W(3,0)

. ol a —_—]y 82’0.,
[ 4 ‘ \ :

{31) 1

¥

won| | wa,n W(z,y

as /

w(,2) |
w(0,2) / w2 | | €2,2
N ' _

..Fié.'4.3 Two—dimenéiohal illustfatibn.of‘thé paftitioﬁiné
| of the tolerance'region into cells indicating the
dimensions and weighting of those cells relevant to
the calculation of the weighted nonfeasible hyper-

volume.
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are the dimensions of the orthocell and F(¢) is

€ .
9 veey kl
Tk

L,i0 %2,i,

the joint probability distribution function (PDF).

The weighting factors W(i) can also be obtained by sampling the
parameters or from a histogram if the PDF is not available.

In principle, the problem of finding the yield is now reduced to
finding the contribution to the yield given by all of these orthocells.
Considering l ! By orthocells independently, however, will be a tedious

J=
job. By exploiting how the hypervolume formula (4.5 ) is constructed, a

formula for the weighted nonfeasible hypervolume with respect to the #th

constraint is constructed and is given by

n,+1 n.,+1 nk+1

K 1 2 .k
v o= H,— o] } D ez MWD (8 () |, (4.67)
J=1 i1=1 i2=1 ik:1

where, for indexing with respect to ¢', i.e., numbering starts at this
vertex (see Fig. 4.3), a§ is the distance from the reference vertex to

the point of intersection of the &th linear cut with the orthotope edge

in the jth direction,

’ (4.68)

Ej,o =0, =12, ..., k, (4.69)
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k k-1 k
AW(i) = W(i) - = W(i-e-) + 2 ) W(i- e
= z ol i- e5- ey) - ...
j=1 J Jj=1 p=j+1 J P

+ (=1)K W(i - € - €p = +ov - ex) > (4.70)

Ej= (0, 0, ooy 0, 1, 0, ooy 0)

.

(4.71)
3

and where

W(i) = 0 if ij = 0 or ij = n+1 for any j. (4.72)

Again, assuming no overlapping of nonfeasible regions defined by

different cuts inside the orthotope Re , the yield can be expressed as

m
Y=1- 31 V&, (4.73)

2=1

where m is the number of linear cuts.

4.10 Independent Parameters

In the case of independent parameters, (4.67) can be written as

k 1 2
(1 ) ) )
vV o= [ Tl ! | aj ] .2 AW1(11) bX AW2(12) ces
J=1 11=1 12=1



60

nk+1
I MW (i) (SRank | (4.74)
1p=1

where i and §%(i) are as defined in (4.63) and (4.68), respectively, and

where
ij(ij) = Wi(ig) - wy(i3-1) , 3 =1, 2, ..., ky (4.75)
Wj(0) = Wy(ng+1) = 0, i=1,2, «eoy k, (4.76)
wj(ij) = Wj(ij)/ej,ij , ij = 1, 2, ceey nj, L.77)
wJ(lJ) = J fJ(¢J) d¢J , lJ = 1, 2y ¢eey nj, (4.78)

Rj(ij)

fj(¢j) is the PDF of the jth parameter and Rj(ij) is the ith interval

for that parameter. Similarly the yield will be given by (4.73).

4.11 Yield Sensitivities

Formulas for yield sensitivities can be derived assuming that the
weighting factors W(%) are independent of 90 as long as the ratios
between j,i. » ¥5=1, 2, «.., ny, are fixed for each parameter j = 1,
2, ooy ko JThis is true, for example, if the sizes of the orthocells

are fixed.

Let
KJ,ij = ej,ij/ej , (4.79)

hence,



The yield sensitivities are

a _ at
0o~ ~ 0°
3¢i 2=1 34)1
a7 ot
- = ’
9ey g=1 %3
where
1y Kk aak Kk n1+1 n2+1
ALy S TT7& Bk 2
0 k! . 0 . .
a¢i j=1 a¢l p=1 11= i =1
P#J
L/
38~ (1)
. k-1 =
(6*(1)) 5 ,
r L n+1 n_+2
% v, k da. _k 2
_gv__= -12% z —g [ X |B+alk z z
€5 * 3=1 a¢. p=1 P =1 i_=1
J= ¢i p" 11- 12_
p#j
2
387 (1)
. k=1
(6*(1)) 3 ’
€

now given by

T 61

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)
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K
A = ﬁT'T_T of (4.85)
. j=1
n1+1 n2+1 nk+1 .
B= £ I .. I AW (s%(i) (4.86)
i1=1 is=1 ip=1

and where

( 0 if §%(i) = o,

as¥ (1)
-_b“’“': 4 ()4.87)
965 \
k dak lJ
- -——%—5-—13 Doy g if s¥1) >0,
j=1 (o3) 8¢y p=1
(4 (4 is
38 (3) 28 (}) k 1
=, - I I K. . (4.88)
e, i 4,0 ot j,p-1
1 ¢i J=1 j p=1

The formulas for 90%/3¢2 and for ug are similar to those derived for the
uniform distribution.

The case of independent parameters is obtained by substituting

AW(i) = TKT ij(i.) (4.89)
~ j=1 J

in (4.83), (4.84) and (4.86).
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4,12 Example
In order to illustrate the calculation of the weighted hyper-
volume, consider the two-dimensional example shown in Table 4.3. The

weighted volume is given by

L]
1]

h 3

1 L A

[2 x 12 x 3] [iz .Z AW(11’ is) (6(11’ 12))2
1=1 i=1

1813/3600 .

The same example can be considered as if the parameters are
independent as shown in Table 4.4 and Table 4.5. Here, the weighted

volume is given by

1 ! 3
V= [2 x 12 x 3] [iz M(1,) M) (8(iy, i
1:1 12=1

where the § are as given in Table 4.3. Hence,
V = 1813/3600 .

Assuming that the sizes of the orthocells are fixed, the sensitivities
of the weighted hypervolume with respect to the nominal parameter vector
¢O can be evaluated. The location of ¢0 itself is not important. It is

the relative location of the constraint with respect to the orthotope

that matters. The constraint can be considered as
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TABLE 4.3

EXAMPLE TO ILLUSTRATE CALCULATION OF WEIGHTED
HYPERVOLUME BY THE GENERAL FORMULA

Orthocell i1 0 1 2 3 4
dimensions El,il 0 3.0 3.0 2.0 _
2 f2,4,
0 0 w,W 0 0 0 0 0
w 0 18/100 12/100 3/10 0
1 2.0 W 0 3/100 1/50 3/40 0
: AW - 3/100 - 1/100 11/200 -3/40
8 - 1 3/4 1/2 1/3
w 0 12/100 8/100 2/10 0
2 3.0 W 0 1/75 2/225 1/30 0
' AW - -1/60 1/180 -11/360 1/24
8 - 1/3 1/12 0 0
w,W 0 0 0 0 0
3 - AW -  -1/75 1/225 -11/450 1/30
J - 0 0 0 0
Reference vertex ¢r given by ui = -1, ug =1
Intersections of the linear constraint are a = 12, a, = 3

Weighted volume V = 1813/3600




TABLE 4.4
LENGTHS AND WEIGHTS OF FIRST PARAMETER INTERVALS
i sl,il w(11) W(11) AW(11)
0 0.0 0 0 -
1 3.0 3/10 1/10 1/10
2 3.0 2/10 1/15 -1/30
3 2.0 5/10 1/4 11/60
4 - 0 0 -1/4
TABLE 4.5
LENGTHS AND WEIGHTS OF SECOND PARAMETER INTERVALS
i, 82,i2 w(12) W(12) AW(12)
0 0.0 0 0 -
1 2.0 6/10 3/10 3/10
2 3.0 4/10 2/15 -1/6
3 - 0 0 -2/15
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/12 - 973 20 .

According to (4.45) we have

Ja
<_8. - -1,
304
3(!1
= (=1) (=1/3)/¢1/12) = 4,

3
22 . (1) (1/12)/(=173) = <1/H
3¢1

and

Bag o
0=
8¢2

.

Using (4.87), the values of 862(1)/8¢g are given in Table 4.6 and Table

4.7. Substituting in (4.83) we get

ﬂ% = -43/720 ,
36

]
3"—0 = 43/180 .
8¢2

These sensitivities were verified using the central difference
approach with A¢g - 10_3’ i= 1, 2. An agreement of 6 digits was

obtained.



TABLE 4.6

L. . 0
VALUES OF 368" (i;,1,)/9¢;

67

-1/18

1 2 3
0 -1/48 -1/24
-1/18 -11/144 0
0 0 0
TABLE 4.7

L. . 0
VALUES OF 38" (i,1,)/¢,

1 2 3
0 1/12 1/6
2/9 11/36 0

0 0 0

2/9
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4,13 Conclusions

The approach presented for yield estimation provides an
inexpensive yield determination without the need for the multitude of
circuit simulations required in the Monte Carlo technique. The method
approximates the integration of the PDF over the feasible region. The
freedom in discretizing the PDF and hence the sizes of the orthocells
allows the use of any previous information about the problem. This is
an advantage, particularly if a worst-case solution is already known.
In addition, the availability of yield sensitivities permit the use of
gradient optimization techniques.

The better the description of the boundary of the constraint
region by linear cuts the more accurate is the yield estimate. It is
possible to describe a constraint defining the boundary by a different
cut - at each orthocell, however, the computational effort will increase.
In Chapter 6 an algorithm is described which provides updated
approximations to the constraints. The sequence of approximations is
directed to give better locations of the boundary of the constraint

region.



CHAPTER 5

THE MULTIDIMENSIONAL APPROXIMATION

5.1 Introduction

A new procedure for multidimensional approximation integrated
with the tolerance problem is described in this chapter. Approximation
by interpolgtion is employed in order to save computation of the exact
function. Complicated functions, typically constraints or functions for
which gradient information is not available, are approximated. The
approximations are to be used in the optimization. Hence, gradient
optimization techniques can be employed.

It is shown how points where the approximation coincides with the
exact function can be chosen to permit efficient construction of the
quadratic approximation. These points are termed base points. Theorems
dealing with preserving one-dimensional convexity and parameter symmetry
in the approximation are stated and proved. One-dimensional convexity
is an important property to preserve, as indicated in Chapter 2, and
parameter symmetry may be exploited to computational advantage.

An efficient algorithm for evaluating the quadratic approximation
as well as its sensitivities is presented. Since small interpolation
regions may be required to obtain accurate approximations, the algorithm
is designed to deal with different approximations in different

interpolation regions (Bandler and Abdel-Malek 1977a).

69
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5.2 Interpolation by Multidimensional Polynomials
An approximate representation of a function f(¢) by using its
values at a finite set of points is possible (Thacher and Milne 1960

and Sobolev 1961b). These points are called nodes or base points, and

denoted by

where Ny is the number of base points.
Interpolation can be done by means of a linear combination of the

set of all possible monomials. Hence,

N
£(9) = I a. 9.(9) (5.1)
- j=1 I~
where aj =1, 2, ..., N, are unknown coefficients,
_ o _ o o k
0 4 (&,-0,) 1(¢2_¢2) e (4.-8) k .21 o <m, (5.2)
1=
or
a1 a a k
¢j é ¢1 ¢22 L ¢kk b -21 aism P} (503)
i=

m 1is the degree of the interpolating polynomial, k the number of
independent variables, i.e., number of components of ¢, %, i = 1, 2,

...y K, are nonnegative integers and § may be any reference point. The

number of such monomials is given by

y o {mkt (5.4)

m!k! °
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If the number of base points N is such that

N, =N, (5.5)
exact evaluation of the coefficients aj» j=1,2, ..., N, to force the
approximation to coincide with the actual function at the base points,
i.e.,

P(P) =£(f ,n=1,2, ..., N, (5.6)

~

where
n
P(¢) = I b, 0.(9 (5.7)
~ i J Jj\~
J=1
is possible.
The following system of simultaneous linear equations results.

- -

o (oly ooy ... (el | | by £( 1)
o (#) (&) ... W& | |vp| |8A
: SN . (5.8)

. . .

o . .

<I>1(,‘]31\]) @2(’431‘1) cee @N(q,N) by f(f?N)

J L o
The solution of (5.8) exists if the system of equations is linearly
independent. This is satisfied if the set of base points is degree-m

independent (Thacher 1959).

5.3 Interpolation by Quadratic Polynomials
Nikol'skii (1969) proved that, unlike the one-dimensional case, a

high-order multidimensional approximation does not guarantee a higher
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accuracy for the approximation. For interpolation, in particular,
higher accuracy for high-order polynomial interpolation is not
guaranteed even in the one-dimensional case. An illustrative example is
shown in Fig. 5.1. A smaller interpolation region, however, makes the
approximation more accurate. For an error bound on interpolation, see
Sobolev (1961a, 1961b). A quadratic polynomial is the simplest
polynomial which can have the curvature to bound a maximum, minimum or
vertex.

In order to minimize the computational effort to obtain the
quadratic polynomial approximation, the number of base points required
will be chosen to be equal to the number of unknown coefficients, i.e.,
interpolation will be adopted. Replacing m by 2 in (5.4) the number of
base points is

N = (k+1)(k+2)/2 . (5.9)
Let Ri be the interpolation region defined by

= te s > be ol i=0,2, .00,k (5.10)

where §‘is the center of the interpolation region and Gi’ i=1, 2,

k, are parameters defining the size of the interpolation region. The
quadratic polynomial approximation can be expressed in terms of the

monomials (5.2) or (5.3) as

P(§) = ag +a (6B +

~

1 -
> (9)7H(

~

%) (5.11)
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Fig. 5.1 Interpolation by first and second order polynomials.

The errors within the interpolation region are Al

and AZ'
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or

2
P(Q) = b‘| ¢% + bo ¢§ + ... + Dg ¢k + bg4l ¢1¢2
+ bk+2 ¢1 ¢3 + (¢ + bN-k—1 ¢k—1 ¢k
+ by ¥+ Dyge1 %2+ .o+ by K+ DN (5.12)

where H is the Hessian matrix of the quadratic approximation and is

given by

M

= vV P(y) (5.13)

V - - - (5.1“)

,a¢k

The relations between the coefficients in (5.11) and (5.12) are given by

b; = hii/2 , i=1,2, ..y k, (5.15)
1
bjz, = hij) L=J-1+ 2 (k-p+1), i < J , (5.16)
p=1
k -
bN-k—1+i = aj; - .21\hij joi=1,2, «cvp k , (5.17)
j=
k - 1 k k -
b, - z . 0. z z .. 0. b,
= a - a + h (5&18)
N 0 jop 2171 2 i=1 j=1 ij i Y3 o

where N is given by (5.9).



75

5.4 Sparsity and Choice of Base Points

If we have freedom in choosing the base points, we can save
computational effort, particularly if the number of variables k is
large. In general, the matrix of monomials in (5.8) is full, however it
is possible to make it sparse by using the following choice of base
points. Let

1. 2 N - N
f cbs¢ ]-P[-\:]k -1kBOk]+[¢¢ “‘2] b (5‘19)

~ ~K A~ A ~ o~

[o

~

where

D is a k x k diagonal matrix with diagonal elements Gi’

1k is a k-dimensional identity matrix,

0k is a zero vector of dimension k,

B is a k x L matrix having the structure

- T T T 1
e Oz 1 Q3 |
T T
Uy O3 a1
== .
-\.B - Ek_S ~0k—2 1) (5-20)
T -1
Tk-2
T
~k=-3 31
T
~“ ]
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where Ej is a column vector of dimension j and having components uj j

such that
O<luyylet,i=1,2 00y 3, (5.21)
?j is a diagonal matrix of dimension j with diagonal elements Tij
satisfying
0 < | Tij |_<_ 1’ i - 1, 2, ¢« ooy j ') (5.22)
and
L = k(k-1)/2 . (5.23)
According to this choice of base points it is clear that
ag = £(oN) . (5.24)

The system of simultaneous linear equations is now the sparse system

given in (5.25), shown on next page, where

3 5
_ 8y 57 Tig weq O

6y = uj—i,k—i » 1 <3 (5.26)

Hence, solving (5.25) reduces to the following
hij = [£(¢1) + £(eN-k=T+1) — 2r(oN)1/62 (5.27)

;.2 [£(91) - £(ON-K-1+1)]/28, 5 2 q, o,

ooy ko, (5.28)
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h..=h.. = [£(6% - £(d) (cj)2h£ (ci)zgii
s 1 J A A PV 2 T Yy 2
- d i J A
5 oay - 5y agl/y g, (5.29)
where
i
2=j-14+ £ (k-p+1),3>1i. (5.30)
p=1

Subsequently, the number of multiplications/divisions required to obtain
the approximation is reduced to 5k2 - 2k instead of (N3 + 3N2 - N)/3 for
Gauss elimination, where N is defined in (5.9).

Fig. 5.2 shows the choice of base points in two dimensions and
three dimensions.

If we are not completely free in choosing the base points, for
example, if the function evaluation is expensive and some evaluations
for parameter values inside the interpolation region are known, the
matrix of monomials can appropriately be arranged. Assuming that the
resulting matrix of monomials will not be singular, we replace the
bottom rows of the matrix of monomials by the monomials of these known,
n say, base points. No singularity will result, for example, if the
rows introduced are independent and full. This arrangement in the
matrix of monomials is shown in Fig. 5.3. In solving the resulting
system of simultaneous equations, we proceed with finding the polynomial
coefficients using (5.27), (5.28) and (5.29) until we come to the full
part of the matrix, i.e., the last n equations. The unknown

coefficients beyond this point should be found by solving n simultaneous
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(b)

Fig. 5.2 Arrangement of the base points w.r.t. the centers
of interpolation regions in (a) two dimensions and

(b) three dimensions.
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The arrangement of the matrix of monomials for

Fig. 5.3

a restricted selection of base points.
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linear equations, for example, by Gauss elimination.

5.4.1 Example

Consider the approximation of the function

2

f(?) = ¢3 +5 65 ¢3 + 0+ 2 05 + ¢3 + 3,
where
.¢17
¢
$ = .
43
[ o]

The execution time wusing a CDC 6400 computer to evaluate the
approximation using equations (5.27), (5.28) and (5.29) is 0.005 s
compared with 0.066 s using Gauss elimination. Using equal step size §
for the interpolation region, the Euclidean norm of the errors in the
coefficients of the approximating polynomial is plotted against 6§ in

Fig. 5.4.

5.5 Preservation of Parameter Symmetry

If symmetry exists in the original problem it is preferable to
keep it in the approximation. Generally, there is no guarantee that the
approximation will be symmetric if the actual function is so unless the
base points are specially chosen.

A function f(¢) is said to be symmetrical with respect to a
matrix S if )

£(3¢) = £(g) , (5.31)
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where S is a kxk permutation matrix obtained by interchaning suitable
rows of a unit matrix. It has exactly one entry of 1 in each row and in

each column, all other entries being O.

5.5.1 Lemma 5.1
The transformation S is a one to one mapping, i.e.,

(1) if ¢2 =

14 7]

o and ¢P =

IR 2]

gc then ga = o0,

(ii) if gc =

[}
142}

42 and ¢C =

tn

gb then ga = 4P

Proof

The proof of (i) follows directly from theory of linear algebra.

To prove (ii) we have

The inverse of S exists, since |det(S)| = 1 and is given by the
transpose of S. Thus,
sT 542 =58T 542, (5.33)
and
02 = ¢P | (5.34)
QtEiDt

5.5.2 Corollary 5.1

Let Qn, n=1,2, ..., N, be N distinet vectors then § ¢% , n

1, 2, ..., N, are N distinct vectors also. The proof is obvious since S
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is a one to one transformation.

5.5.3 Theorem 5.1

If gn, n=1, 2, ..., N, are N degree-2 independent base points
and if for each base point ¢%, S ¢" is a base point also, then P(¢) will
be symmetric with respect to S if f(¢) is so.
Proof.

Consider the system of simultaneous linear equations given by

£(40) = ag + al Qn + %-(¢n)T§(2n), n=1,2,...,N (5.35)

~ ~

Knowing that H is symmetric and since the N base points are
degree-2 independent, this system will have a unique solution a,, a and

H.

~

Replace ¢ by S ¢® in (5.35) and using the previous corollary, we

will have the following system of N simultaneous linear equations in a»

0
a' and H'.
T 1 T
pst™) =gy v 2 e 3 GOT RGN, nez, N, (5.36)
where
aé = a,o . (5-37)
at = STa 5 (5'-38)
andr

H' = §T HS . (5.39)
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Comparing (5.35) and (5.36) and knowing that

£(8 ¢™) = £(¢M) (5.40)

the two systems should have a unique solution satisfying

(5.41)

o |
n
%
i)

and

ux |
1}
W
=
uT |
1]

(5.42)

Therefore, the value of the interpolating polynomial P(¢) at any point ¢

is given by

=S

—
vm |
e

Now,

:a

> HS ¢ . (5.44)

P(S¢) = Eb + a o +
Using (5.41) and (5.42) we obtain

P(S9) = P(9) (5.45)
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for any point ¢, i.e., P(¢) is symmetric with respect to S.

Q.E.D.
The requirements for the previous theorem .are satisfied, for

example, if in (5.19) we have

Se =9, (5.46)

spsT=p, (5.47)
and

SB =85, (5.48)

where Bi and Bj are not necessarily distinct columns of B. Accordingly,

from (5.19) we have

tn
1
e
-
PR -
\S]
<
=2
[
t
192}
l{w}
—
PN
=
1
p Iy
~
[s9]
O
~
[ S—3
+
N
[ }
e |
ve |
<
[

3 [E 1 ¢ 2 LY ¢ N] ) (5»”‘9)
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where i1, 12, ceny iN, are the corresponding permutations of 1, 2, ...

N.

5.6 Preservation of One-dimensional Convexity

As described in Chapter 2, one-dimensional convexity is the
property which makes the vertices candidates for the worst case. Hence,
it is essential to preserve this property in the approximating
polynomial P(?) if it already exists in the exact function f(¢).

The following theorem indicates how to choose the base points in

order to preserve one-dimensional convexity.

5.6.1 Theorem 5.2
If there exist three distinct base points ¢!, ¢2 and ¢3 in the

ith direction, i.e.,
0= 8l v, | (5.50)

where 5, J = 2, 3, are scalars and e; is the unit vector in the ith
direction, then the interpolating polynomial P(¢) is one-dimensionally
convex/concave in the ith variable if the interpolated function f(¢) is

SO.

Proof

Assume that P(4) is not one-dimensionally convex/concave, i.e.,



88

P(Ae3+(1=2)6P) 2 A P(6H)+(1-1) P(e®) , 0 < A < 1, (5.51)

where

(5.52)
and where c¢ is a scalar.

Hence,

P(pP+(1-2)ce, ) 2 % P(6®)+(1-2) P(¢P+ce,) . (5.53)

Expanding P(¢a+(1-k)cei) and P(¢a+cei) in Taylor series and knowing that

P(¢4) is a quadratic polynomial, we have

PGH + (10 0 oy TRGH « 3 (-0%% ey e
2 P(¢a) + (1=2)e gg v P(¢a) + %’(1—x)02 ez He . (5.54)

Thus,

2 T > T
(1=2) e; Hey < (1-2) e ﬁ e (5.55)

R

but since 0 < (1-1) < 1, hence,

el He, $O. (5.56)
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Without any 1loss of generality we can number the three base

points such that
03 =y o1+ (1-y) 92 , 0 <y < 1. (5.57)

and

92 = o1 + 8 ¢ (5.58)

~1 »

where g is a scalar.

Then,

P(93) = P(y o1 + (1-v)9?) ,

1
P(e" + (1-v)B &)

-

P(¢1) + (1-v)8 eI v P(o") + %‘(1-Y)232 el Hei

~

:
vP(e1) + (1-y) [P(e1) + 8 g{ v P(g‘) + 5‘52 el g ¢!

1
- 12'(1—Y)Bzg'£ Hei + 3 (1-v)282 g{ Hei

Ye(o) + (1) P(42) - Ly(1v)82 T g ¢ -
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But, using (5.56), 5
P(p3) <y P(T) + (1-y) P(42) (5.59)

and since f = P at the base points, then
£(93) 2y £(o1) + (1-y) £(42) , (5.60)

which contradicts the fact that f(¢) is one-dimensionally convex/concave
in the ith variable. Hence, the assumption (5.51) is never true.

QsEst

5.6.2 Corollary 5.2

A quadratic polynomial is one-dimensionally convex/concave if and
only if all of the diagonal elements of 1its Hessian matrix are
nonnegative/nonpositive.

The proof follows since inequality (5.56) is never true.

The previous corollary allows an easy check on one-dimensional
convexity of any quadratic function. 1In addition, the choice of base
points as given in (5.19) satisfies the requirement of locating three

base points in each direction.
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5.7 Efficient Calculation of Polynomial and Gradients at Vertices

5.7.1 Theory

During optimization the values of the polynomial approximations
of the different constraints and their gradients are required. Hence,
an efficient technique for these calculations is essential.

The method used for computing the polynomial and its gradients at
the vertices exploits simple properties of a quadratic approximation.
Consider the following two equations relating the polynomial values and

gradients at a vertex ¢r to the values at another vertex ¢S,

P(") = P(42) + (47-0)T v P(4%) + 2o -4 TH " -4%) (5.61)

~

and

VP($") = v P(¢%) + H(4"-¢%) , (5.62)

where H is the Hessian matrix for the quadratic approximation and V is

~

the vector of partial derivatives with respect to the components of ¢ as
defined in (5.13) and (5.14), respectively.

Let ¢r and ¢s be related as follows

o = ¢s + 231 e (5.63)

where e is the unit vector in the ith direction and €5 is the tolerance

~

in the ith variable.



Hence, we have

r = s + 21'1

AN

according to the following vertex enumeration scheme:

r=1+ . oi-1, Wy € 1-1,13,

where

and where ¢O is the nominal parameter vector and E is a kxk

matrix with diagonal elements set to €45 1 =1, 2, ..., k.

Then (5.61) and (5.62) reduce to

P(oT) = P(¢%) + 2e; Vi P($°) + 2 s% Hij

ry . S
TR(T) = TR+ 2¢; gy,

~

92

(5.64)

(5.65)

(5.66)

diagonal

(5.68)

where V; is the ith component of v, Hijj is the ith diagonal element of H

and Hy is the ith column of H.

~
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If ¢P and ¢s fall into different interpolation regions, which is

~ ~

the case if e; > §; (see Fig. 5.5), (5.67) and (5.68) are no longer
applicable because of the different polynomials.

Let Nindenotesthe number of interpolation regions and H%, & = 1,

2, .., Nin denote the Hessian matrices of the quadratic approximation

at the different interpolation regions.

Define the set I as

4

I={i| €; < 8, iel1, 2, ..., kI} . (5.69)

It is clear that if nj is the number of elements of I, then

N, =2 1, (5.70)

5.7.2 Algorithm

The efficient algorithm is described by the following steps.

Step 1  Compute P¥(¢S) and V P¥(¢S) for all s e S, where

S
L LT L
S={s | s=1+ I > 27, W, =-1if i eI,
. 1
i=1
W o= {-1,1} if i £ 1} . (5.71)
i
ko ySe1 I Py
=14+ 5 52 , (5.72)
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Fig. 5.5 Three situations created by certain step sizes § = 61= 62

and tolerances. The different interpolation regions and

their centers are indicated.
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0 if jelI

1 if j¢ I

and where ¢ identifies an interpolation region.

Set J «1I.

Step 2 If J is empty stop.

Step 3 Set i «1, where i1 e J and iq < j for all je J.
Step 4 Find T = & + &

. 2 L
Step 5 Find the vector G; - T g; for all & defined by (5.72).

Step 6 For all s € S and for all & calculate

PAE) = PU) + T v, pR(6S) + ¢ 6f; (5.74)
TN = PR G (5.75)

L L
where G;; is the ith element of G; and r is defined by (5.64).

Step 7  Set S «SU{r |r=8+2i-1 ses}, (5.76)
Jd «J -1{1, 2, ..., i} (5.77)

and go to Step 2.
This scheme is illustrated for different cases in Fig. 5.6. The

computational effort required for considering all vertices compared to

that required for one vertex only is shown in Table 5.1.



(a)

(b)

Fig. 5.6

Illustration of the efficient technique for evaluation

of the approximations and their derivatives.

(a) n, 1 and initially S = {1}

(b) ni

3 Nin

2, N.

2 and initially S
in :

{1, 3} .
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TABLE 5.1

COMPUTATIONAL EFFORT FOR EVALUATION OF THE QUADRATIC POLYNOMIAL

AND ITS DERIVATIVES

Description

Number of additions

Number of multiplications

At one vertex only

At all the vertices using
original formula

At all the vertices using
the efficient scheme

At all the vertices using
the efficient scheme when

n. = k
i

2

k-

Lk + 5)
7
2k'1k(3k +5)

n.

M1 i
[Ek(3k+5)+(k+2)(2 -1)]+ni

%k(3k+7)+(k+2)(2k—1)

3

3 x zk'l k(k + 1)

ken; 3 ny
2 [fk(k+l)+ni(k+l)+2 -1]

gk(k+1)+2k-1

L6
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5.8 Conclusions

The approximation procedure described permits exploitation of
available analysis programs, whether they are efficiently written or not
and whether or not they supply derivative information. Experimental
data can also be handled, however, a least squares fit might be better
in this case due to experimental errors.

The efficient technique for calculating the approximation and its
gradients can be implemented with a suitable large-change sensitivity
algorithm, for example, see Leung and Spence (1975).

Although it was shown that one-dimensional convexity can be
preserved in the approximation, convex approximation for a convex
function is not guaranteed. A sufficient condition is to choose three
base points along each of an infinite number of possible directions,

which is unreasonable.



CHAPTER 6

DESIGN ALGORITHMS

6.1 Introduction

In this chapter, algorithms for worst-case design and for design
with yield less than 100% are presented. The ideas and techniques of
Chapters 4 and 5 are implemented in the algorithms. The aim of the
worst-case design algorithm is to facilitate rapid and accurate
determination of design solutions through a sequence of updated
multidimensional approximations. The algorithm directs the
approximations to be performed to critical regions where constraint
violations might occur. Hence, approximations not only for accurate
worst-case design but also for reliable yield analysis are to be
expected.

The algorithm attempts to minimize the number of evaluations of
exact functions by collecting as many critical regions as possible
within each interpolation region. When the yield drops below 100% the
algorithm retains the approximations obtained during the worst-case
design and employs the yield formulas presented in Chapter U4. It is
shown how we can overcome the problem of overlapping nonfeasible
hypervolumes defined by different constraints.

Two-section transmission-line transformer and 1lowpass filter

examples illustrate the algorithms.

99
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6.2 Worst-case Design Algorithm
Approximation is only done for complicated functions (objective,
responses or constraints) or functions for which gradient information is
not available.
6.2.1 Phase 1: Updated approximations for a single interpolation
region.
Step 1 Choose initial values for ¢O, e and §.

~ ~ ~

Step 2 Until Gi z_si, i=1,2, «.., k, set si + Hsis
Step 3 Set ;} the center of the interpolation region, to ¢0.

Step 4 Choose base points to satisfy (5.19) and such that ¢n 3 Ri’ n

~

1, 2, ..., N, where R; is defined in (5.10).

Step 5 For each approximated function, interpolation is carried out by
solving (5.25).

Step 6 Set ?0 and € to values obtained by solving the nonlinear
programming problem, resulting from worst-case design problem
described in Chapter 3, and employing the approximations.

Step 7 If |¢g - Eél > 1.5 Gi for any i, go to Step 2.

Step 8 Stop if 6 is sufficiently small.

Step 9 Set & « 8/4. Go to Step 3 if 61'2 €; for all i.

Step 10 1If Gi < €5 for any i, go to Phase 2.



6.2.2

Step 1

Step 2

Step 3

Step U

Step 5

Step 6
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Phase 2: Updated approximations in more than one interpolation
region.
Interpolation is carried out by solving (5.25) around the

centers of interpolation (see Fig. 5.5) regions given by
s s .
o € {o|o =9 +PE, wy € {=1,1}, 1= 1,2,...,k} , (6.1)

where ¢ = 1, 2, ..., Nin identifies the interpolation region
and is given by (5.72), P is a kxk diagonal matrix with
elements Pj defined by (5.73) and where base points ¢"

satisfy (5.19) and

0" e R* & {o | 6, > | o5-0% | , i =1,2, .oy K} . (6.2)

set ¢°

~

and ¢ to values obtained by worst-case design.
Let the set of candidates for active vertices be

S .
ave (g ) < 8.1, (6.3)

where % is given by (5.72), P§

is the quadratic approximation
of the jth constraint at the gth interpolation region and sav
is a small positive number for defining the candidates.

s .
If, for any vertex 9- € Ravc’ | 03 - o5 | > 28; for any i,
where ¢ and s are related through (5.72), go to Step 1.

Stop if § is sufficiently small.

Set § « §/4. Go to Step 1.
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Comment The procedure can be made more efficient by interpolating a
constraint gj(?), say, in the 2%th interpolation region only if
there exists a vertex fS ¢ RY which has been detected as a
candidate for being active w.r.t. that constraint after the

previous optimization.

6.3 Introduction of Tuning

The centers of interpolation regions given by (6.1) will not be
suitable for accurate location of the boundary of the constraint region
Rc when tuning is considered. This boundary is still more important

than the boundary of the tunable constraint region R,t+ The set of

candidates for active vertices is given by

2%

where U is the least pth function defined by (3.1). P% is the quadratic

approximation of the jth constraint at the %th interpolation region, Gav

is a small positive number for defining the candidates,

ne

{1, 2, <., me! (6.5)

and m, is the number of constraints at the vertex ¢5. The suggested

centers of interpolation are

?is =gs+zg* , (6.6)
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where ¢5 ¢ R and p* is the optimum of

ave

max U(F% (5), J, =, -1) . 6.7)
geRb J o~

Efficiency in finding the approximations can be improved by collecting
more than one of these suggested centers in one interpolation region,

for example, let

e 1 =S . T8 .
¢y =3 |max ¢y -min ¢7|, 1=1, 2, ..., k, (6.8)
sest ses*
L
where the sets 5", & = 1, 2, ..., Ny = are constructed using the

following steps.

Step 1  Set R+« @ and let N.,=o0.

Step 2  Stop if the set (Ryy, - R) is empty.

Step 3 For an s, such that ¢ ¢ (R yo - R), if

is € {$|251_2 |¢i-¢£| , 1= 1,2,...,k, for all r ¢ s*} , (6.9)
for any £ = 1, 2, ..., Nin’ set Sl “ Sl U {s} and go to Step 5.
, N,
in _
Step 4 Set N;, * Ny +1and S % = {s}.

Step 5 Set R=RU {gs} and go to Step 2.

Finally, N;, will be the number of interpolation regions. It is
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to be observed that this construction of the sets Sz, L =1, 2, ...,

Nin’ is not unique. It depends upon the numbering of the vertices.

6.4 Design for Yield Less than 100%

If the yield is relaxed to be 1less than 1004 an accurate
approximation for the boundary in small interpolation regions may be
inappropriate. Preferably, the interpolation regions should cover those
parts of the boundary where violations occur. The active vertices for
worst-case design identify probable locations where constraints are
violated if a high but 1less than 100% yield is acceptable. The
approximations are, therefore, ultimately centered on active vertices.
Based upon the expected yield, a rough estimate for the size of the

interpolation region is given in the following subsection.

6.4.1 Estimation of the Size of the Interpolation Region
Consider the illustrative two-dimensional example shown in Fig.

6.1. Assuming equal nonfeasible hypervolumes determined by the

candidates for active vertices, defined in (6.3), during a worst-case

design procedure, we have

o “TT LT (6. 10

N 1 - Yex) 2 | (e. + 6.) = il 2 - S: .10)

av i=1 i=1

where N,, is the number of candidates and Y, 1S the expected yield.

Hence,
k €5 Nav
| (1 +=) =« ——S— . (6.11)
is1 8; k1(1-Y_ )
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expected vertex

- 23,
o O

I

N \

Y active vertex

Fig. 6.1 Estimation of a suitable interpolation region

size according to an expected yield.
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Assuming a fixed ratio ei/éi; i=1,2, ..., k, then

117k
<] -1 . (6.12)

6i = Ei/ [Nav/k!(1-Ye

The estimate given in (6.12) is only applicable if the resulting N

satisfy

0« 6; <egg ,1=12, ..., k. (6.13)
Otherwise, we choose
§: >e. ,i=1 2, ..., k. (6.14)

6.4.2 Algorithm

Step 1 Execute Phase 1 and Phase 2 (if necessary) of the worst-case
deéign algorithm using a consistent stopping $§ as found in
Subsection 6.4.1.

Step 2 Find the set of candidates for reference vertices given by

Saye = 18| P’S(gs) <8 .t - (6.15)
See (6.3) for definition of terms.

Comment The set of reference vertices S_ ., is the set of candidates for
worst-case and hence it is available after the worst-case
design process.

Step 3 For each s ¢ Savo construct the constraint

gs(9) = UCRL(®), J°%, P, - 1) 20, (6.16)

where U is given by (3.1), p > 1 and



Step 4

Step 5

Comment
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3 = {j | Pg(?s) <o b (6.17)

v

Choose factors Ky > 1 by which each tolerance is expected to

increase, i.e., set €4 * Ki€4> i=1,2, ..., k.

Find optimal values for ?0 and € using the worst-case nominal

and the tolerances obtained in Step U4 as starting values for

the optimization process. Yield and yield sensitivities

required during optimization are calculated according to the

constraints gs(g) 20, s € Sype

The yield and its sensitivities are calculated using updated

linear cuts as described in Section 4.8. If the method of

intersections is used we apply the following steps to avoid

problems arising from having less than k intersections.

(a) Obtain default cuts by linearizing gs(g) at gs, S € Savc
at the worst-case design.

(b) Update the sth linear cut using the k intersections if

they exist, otherwise keep the latest sth 1linear cut

fixed, for all s € Savc'

6.5 Examples

6.5.1

Two-section Transmission-line Transformer

Consider the two-section 10:1 qQuarter-wave lossless transmission-

line transformer used by Bandler and Macdonald (1969a). The specifi-

cations and results of the worst-case tolerance optimization problem of

the characteristic impedances Z1 and Z2 over 100% bandwidth are shown in

Table 6.1 for two different objective functions. The constraint region
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"TABLE 6.1

WORST-CASE DESIGN OF THE TWO-SECTION 10:1 QUARTER-WAVE TRANSFORMER

CcbC

_ A 0 ,

Fuizizon zg z9 €/2y . &/Z; s N.O.F.E.  Time
' , (%) (%) : _ (sec)
2.5637 5.5048 14.678 9.007 0.4 18 7.213
C _ ‘ ' _ S
1 2.5234 5.4379  14.988 9.081 0.1 -~ 24 . 9.533
2.1515 4.7350 12.715 12.697 0.4 12 2.468

C » - , - .
2 2.1494  4.7305 12.687 12.700 0.1 18 2.959

. 0 .0 . -

Starting values Z1 = 2,2361, Z2 = 4,4721, g = 0.2 and €5 = 0.4

Frequency points used 0.5, 0.6, ..., 1.5 GHz

= O
N O

ml N
m‘ N

ObjectiVe cost functions C, = L ,1 ; C, =
. 1 El' €,y 2

Reflection coefficient specification |[p| 5'0.55

—
N

*N.O.F.E. denotes the number of function evaluations‘~
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and the resulting optimum solutions in two cases are shown in Fig. 6.2
and Fig. 6.3. An equal value of 61 and 62 was used. The figures show
the interpolation regions and the resulting approximations for the
constraint boundary. The results obtained are contrasted with the
results obtained by Bandler, Liu and Chen (1975).

Subsequently, the approximations obtained at the two active
vertices for the worst-case problem having the objective function C1,
shown in Table 6.1 and Fig. 6.2, were used for yield optimization. This
problem is denoted PO. A rough estimate of § = 0.1 was obtained using
(6.12) and was used for solving the following two problems:

minimize l/s1 + 1/s2 ,
P1

subject to

Y > 90% ,

P2 minimize (1/81 + 1/62)/Y

assuming a uniform distribution of outcomes between tolerance extremes.
The optimum solutions for P1 and P2 are shown in Table 6.2 and
contrasted with the worst-case solution PO in Fig. 6.4. The program
FLNLP2 by Chu (1974) was used for solving the resulting nonlinear
programming problem. Since a convex constraint region appears in this
problem, the values of yield obtained are lower bounds for the true

yields.
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Fig. 6.2 Minimization of l/el+ 1/5:2 for the two-section transformer.
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max lpl € 0.55
6.0r
55 final "Vinitial solution
¥ region |
\.7. 1
| s
Z, '7 1] | final solution
-
5.0+ [ initial
/ nominal N
. .
final | \
*nominal l 4 ‘
45+ . m'lni»rI\ax |
optimum |/ initial
/ 1 region
l r =7
¥ |
+ | %
| VAR \
_ —
4.0; final region”
—— exact functions
—-— initial approximation
——- final approximation
35 e : s
1.5 20 25 3.0 - 35

Zy

Fig. 6.3 Minimization of Z?/€1+ Zg/e2 for the two-section transformer.
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TABLE 6.2

YIELD DETERMINATION AND OPTIMIZATION OF THE TWO-SECTION
10:1 QUARTER-WAVE TRANSFORMER

Problem Z0 Z0 € /Z0 € /Z0 Objective Yield
1 2 1/ °1 2/ %2 )
(%) (%)
P1* 2.5273 5.3998 21.09 13.51 3.2465 90.0
p2%* 2.5290 5.1513 31.44 22.13 3.2597 65.5

* Minimize l/el + l/e2 subject to yield > 90%

**%  Minimize (l/€1+1/€2)/Y




max lpl £ 055
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\
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Fig. 6.4 The optimum tolerance regioné and nominal values for the

6.5

ase, 90% yield and optimum yield designs.
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6.5.2 Three-component LC Lowpass Filter

A normalized three-component lowpass ladder network, terminated
with equal load and source resistances of 1  is shown in Fig. 6.5. The
circuit was considered for worst-case design by Bandler, Liu and Chen
(1975). Although this filter is symmetric a three-dimensional
approximation was required in order to pérform the yield technique
described before.

Using equal step size § for all components, a worst-case design
was first obtained with final 6§ = 0.01. The base points used are given

by (5.19) with

0.5 -0.5 1.0
B =|-0.5 0.5 1.0
0.8 0.8 1.0

consistent with the vector of components

e
1]
e

N

This choice of base points should preserve symmetry as indicated in
Section 5.5. The specifications and the objective function are given in
Table 6.3. The convergence of the quadratic approximation coefficients
as the step size § is reduced is shown in Fig. 6.6 for the insertion

loss constraint at the frequency point 2.5 rad/s. The coefficient by is

not shown in the figure. Its value is close to zero and hence the
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Fig. 6.5 The circuit for the LC lowpass filter exampie.
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TABLE 6.3

WORST-CASE AND YIELD CONSTRAINED RESULTS OF
THE LC LOWPASS FILTER

0 0 0
Yield L) L ¢! e/l &y &/C
%) - ) ) )
100 1.999  1.998  0.9058 9.88 9.89 7.60
96 1.997  1.997  0.9033  11.23  11.23  12.46

Frequency points used 0.45, 0.5, 0.55, 1.0 in the passband and

2.5 in the stopband
0 0

L1 L2 C0

Objective cost function is — + — + —
&1 %2 %

Insertion loss specification < 1.5 dB in the passband and > 25 dB

in the stopband




corresponding final values

ts w.r.t.

icien

normalized coeff

2.5

-2.0

1.5

1.0

0.5

- b

506 | '
117

Fig. 6.6  Convergence of the quadratic
approximation to the insertion

loss constraint at 2.5 rad/s.

phase 1 phase 2

change in $£
for same & ’

b.,bg

! 1 1 1 1 '
0.64 ole 0.04 00i 0.0025
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normalized value is highly oscillatory. At the worst-case optimum,
given in Table 6.3, the active frequency point constraints are 0.55, 1.0
and 2.5 rad/s.

Now, consider the problem given by
minimize L?/s1 + Lg/e2 + Co/eC )

subject to

Y 2 96% .

The quadratic approximation with 6 = 0.04, which was used in this
problem, is shown in Table 6.4 after and before averaging symmetric
coefficients. The diagonal elements of the Hessian matrix, as defined
by the coefficients of the approximating polynomial, suggest a one-
dimensionally convex constraint region. Symmetry between L1 and Lo was
used to reduce computation in finding the wvalues and the gradients of
the intersections between the orthotope edges and the quadratic
constraints. The results are shown in Table 6.3 and in Fig. 6.7. The
tolerance for the capacitor e, was approximately doubled, with respect
to its value for the worst-case design, by allowing the yield to drop to
96%.

In order to check the results, a uniformly distributed set of
10,000 points was generated inside the tolerance region. The results
are shown in Table 6.5. Also shown is the computational time saving
when the approximation is used for statistical analysis instead of the

exact constraints.



TABLE 6.4

COEFFICIENTS OF THE QUADRATIC APPROXIMATION AROUNDiACTIVE VERTICES
‘ Freq. 2 A2 2
point State Ll‘ L2 ;C L, L, Llc L,C L1 L, C -
, before -0.06847 -0.,06847 -0.57056 .33010 0.92247 0.93855 -1.67845 -1.69182 -0.46249  3.83750 ,.
0.55 : ' » ' ‘ _ .
’ after -0.06847 -0,06847 -0.57056 ,33010 0.93051 = 0.93051 -1.68513 -1.68513 -0.46249 3.83750
before -1.12188 -1.16702 -9.98122 .21439 _8.16357 -8.30295 10.21440 10.51832 44.18607 -33.86206
1.00 ; ‘ : .
after -1.14445 -1.14445 -9.98122 ,21439 -8.23326 -8.23326 10.36637 10.36637 44.18607 -33.86206 -
before -1.38601 -1.42228 -9.90167 .39487 -0.92910 -0.94732 10.19142 10.32736 32.94001 —46,93184
2,50 ’ ' - S ‘ : - o ' ‘ o ' :
' after  -1.40414 -1.40414 -9.90167 -.39487 -0.93821 -0.93821 10.25939 10.25939 32.94001 -46.93184
:Coefficients of the quadratié approximations obtained at active vertices with a step § = 0.04. The table shows

- the coeff1c1ents obtained by the algorithm and the coeff1c1ents used for yield determlnatlon after averaging.

. ymmetrlc coefficients.

6TT
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worst-case
tolerance region

tolerance
region for ————
96% vyield

Fig. 6.7 The tolerance regions for the worst-case design and the 96%
yield for the LC filter. The linear cuts shown are based on
the intersections of the active quadratic constraint approxi-

mations with edges of the tolerance orthotope for 96% yield.
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TABLE 6.5

COMPARISON OF METHODS OF YIELD ESTIMATION
FOR THE LC LOWPASS FILTER

Description Yield CDC Time
P © (sec)

Exact constraints 96.59 20.98

Approximate constraints 96.58 10.43

Yield estimation using a set of 10,000 uniformly distributed points
inside the tolerance region for the case of 96% yield according to
the linear cut. All of the five frequency points were used.
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6.6 Conclusions

The algorithm for worst-case design provides reliable
approximations at critical regions where constraint violations might
occur. For low yield, however, violation by unexpected constraints
might occur. The relevant approximations may require updating if the
original approximations were carried out far from the respective
boundaries of these constraints.

Finally, an inexpensive estimate of production yield might be
checked at a proposed solution by performing the Monte Carlo analysis in

conjunction with the final approximations.



CHAPTER 7

PRACTICAL EXAMPLES

7.1 Introduction

Techniques and algorithms presented in Chapters 4, 5 and 6 are
now applied to realistic design problems.

The first circuit is the Karafin (1971) bandpass filter, which is
subjected to a statistical analysis. Yield is estimated assuming
different probability distribution functions of production outcomes,
namely, the uniform distribution, the bimodal distribution and the
normal distribution. The results obtained are contrasted with the Monte
Carlo method.

Nonlinear programming is used to obtain worst-case designs for
two-section and three-section inhomogeneous, nonideal waveguide
transformers. These structures were previously considered by Bandler
(1969), whose analysis program (Bandler/and Macdonald 1969b) was used to
calculate the required responses.

A current switch emitter follower circuit (Ho 1971) is
investigated in some detail. An optimal worst-case design and a design
which maximizes production yield for assumed correlations beetween
‘transistor model parameters are obtained.

The examples in this chapter, involving nonlinear programming,
are solved by transforming the nonlinear program into an unconstrained

minimax problem by the Bandler-Charalambous (1974) technique. The

123
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resulting minimax problem is solved by finding the minimum of the least
pth objective (Bandler and Charalambous 1972) using Fletcher's

unconstrained optimization method (Fletcher 1972).



PART I

YIELD ANALYSIS

7.2 The Karafin Bandpass Filter

The low-frequency bandpass filter, shown in Fig. 7.1, was used
for verification of the yield formula. This filter was studied in
various ways by Butler (1971), Karafin (1971, 1974), Pinel and Roberts
(1972) and by Bandler and Liu (1974a). The insertion loss specifica-
tions are shown in Table T7.1. All filter components were assumed

subject to statistical variations, i.e.,

The values of the quality factor Q for each inductor are those
suggested by Karafin (1974). They are associated with nominal values of
corresponding components taken from Bandler and Liu (1974a). (See Table

7.1 for these and the remaining nominal values.) Accordingly, the

corresponding resistances are

125
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Fig‘,7‘l Karafin's bandpass filter.
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TABLE 7.1

SPECIFICATIONS FOR THE BANDPASS FILTER

Frequency range (Hz) Relative insertion loss (dB) Type
0 - 240 35 lower (stopband)
360 - 490 3 upper (passband)
700 - 1000 35 lower (stopband)

Reference frequency 420 Hz (fixed, therefore, ripples higher than 3 dB

are to be expected in the passband)

=5.0729 x 10*8,

7

Nominal values L)=3.0142, C9=4.975 x 1078, 1.9-2.902, cg

3
0 -7 0 0 -
L.=0.82836, C_=5.5531 x 10 °, L7=0.30319 and C8=1.6377 x 10

0
5 6
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RL1 = 474,27 2,
R, = 127.98 &,
3
RL5 = U7.47 @,
and
RL7 = 456.62 & .

7.3 Yield Estimation for the Karafin Filter

The adjoint network technique of Director and Rohrer (1969) was
used for evaluating first-order sensitivities and, hence, linearizing
the constraints at each frequency point in order to obtain the linear
cuts. The results produced by Bandler and Liu, as acknowledged by them,
violate the specifications at certain unconsidered frequency points.
The linearization, taking note of this fact, was done for each
constraint at the worst violating vertex, i.e., the vertex which gives
the most negative value for the particular constraint. All
linearizations were carried out at worst-case design vertices proposed

by Bandler and Liu (1974a), for which

100 €,/49 - 6.99 ,

6.52 ,

0
100 €,/ 65

100 e3/63 = 6.97 ,

100 €4/¢8 = 6.55 ,

100 ss/cbg

4.36 ,
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100 E6/¢g = 5.69 ,
100 €;/69 - 6,80 ,
100 e8/¢% = 5.25 .

7.3.1 The Uniform Distribution

A uniform distribution of outcomes inside the tolerance orthotope
was assumed. The yields obtained by the approach presented in Chapter U4
and applying the Monte Carlo method with the nonlinear constraints are
shown in Table 7.2 for different values of parameter tolerances. Also
shown are the execution times using a CDC 6400 computer for the approach
of Section 4.7 and the Monte Carlo method. The linearization time is
included in the execution time for calculating the yield. More
frequency points were considered for larger tolerances. These

additional points provide new linear cuts which do not overlap.

7.3.2 The Bimodal Distribution

The parameters were assumed independent with uniform
distributions, but with accurate components removed. Such a
distribution was observed by Pinel and Roberts (1972) and used by Pinel
and Singhal (1977). According to the approach presented in Chapter 4,

the following weights for each parameter will result in

wi(1) = 0.5,
W.(2) = 0.0,
wi(3) = 0.5 .



TABLE 7.2

COMPARISON WITH THE MONTE CARLO ANALYSIS FOR UNIFORM
DISTRIBUTION BETWEEN TOLERANCE EXTREMES

% i % i
Tolerances (%) Sample points Yield (%) CDC Time (sec)
0 0 0 0 0 0 0 0 (Hz)
* *%
sl/L1 ez/C2 ES/LS 84/C4 eS/L5 56/C6 87/L7 ss/c8 Approx. M.C. Approx. M.C.
6.99 6.52 6.97 6.55 4.36 5.69 6.80 5.25 188, 700, 876 100.00 99.75 0.67 24.0
7.00 7.00 7.00 7.00 5.00 6.00 7.00 6.00 188, 700, 876 100.00 99.65 0.66 24.2
188, 700, 876 99.99 99.60 0.67 24.4
8.00 8.00 8.00 8.00 6.00 7.00 8.00 7.00 190, 240, 360, 99.94 99.35 1.56 52.4
480, 490, 700,
860
10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 190, 240, 360, 92.62 93.00 1.67 51.4
480, 490; 700,
860

CDC time for selecting frequency points = 7.65 sec
* This time includes the linearization time

** 2000 points were used in Monte Carlo (M.C.) analyses with the nonlinear constraints

0¢T
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The problem is equivalent to 28 disjoint orthotopes. The results are

shown in Table 7.3 and are contrasted with the Monte Carlo method.

T7T.3.3 The Normal Distribution
The Jjoint probability distribution function of a normal
distribution is (Neuts 1973)
=1
HTcov) ™ (o= o)

~ ~

F(¢) = 1

1 1 [
exp|- o= ¢
~ k 2 "1 2
(2m/2 /|COV |
‘'where k is the number of parameters, ¢0 is the vector of mean values of
the parameter vector ¢ and CQV is the covariance matrix.

If the parameters are uncorrelated, CQV is a diagonal matrix

given by

cov .. ,

N

where 03 is the standard deviation of the ith parameter. Hence,
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TABLE 7.3

COMPARISON WITH THE MONTE CARLO ANALYSIS FOR
BIMODAL DISTRIBUTION

$.-b. Yield (%) CDC Time (sec)
il (%) ,

2 Approx. - M.C. Approx. M.C.

[-10,-5], [5,10] 68.9 71.0 4.9 45.6

Frequency points used are 190, 240, 360, 480, 490, 700 and 860 Hz
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F(¢) = L 1 exp [-

V2 e K
]

0.2,

i=1

The distribution was discretized in the interval (¢Q - o, ¢0 o,
i-2"%, % +2°%)

for each parameter into three equal subintervals. The weights were

obtained in the following manner. Let (Abramowitz and Stegun 1965)

¢g_2oi/3
_ 0.2, 2 _
$5-2%
¢l+20i/3
= —— [-(s,-69)2/26% | do, = 0.4950
12 = 2o, eXPp i7%37 720y | 9% PRI
$5-294/3
1 ¢g+2ci 0,2, 2
13 = 2“01 exp [—(¢i—¢i) /Zqi] de; = 0.2298.

¢g+201/3\

Considering a probability of unity for finding ¢, jn the interval

(69

i - 29 ¢g + Zci), i.e., a truncated distribution, the weights for

each interval are given by

Wi(1) = 0.2298/(I1 + Ip + I3) = 0.2407,

0.5186,

wi(2) = 0.4950/(I1 + Ip + I3)

Wi(3) = 0.2298/(I17 + Io + I3) = 0.2407.



134

Fig. 7.2 shows the truncated and the discretized normal distributions.
The yields obtained are shown in Table T7.U4. Equal standard
deviations for the eight parameters and for two values, namely, 5% and
6% of the nominal values were considered.
Table 7.5 shows the execution times and the resulting yields for
different numbers of Monte Carlo analyses applied to the 1linearized
constraints. As expected, the yield is affected by changing the number

of Monte Carlo analyses.

7.4 Discussion

Excellent agreement with the Monte Carlo method validates the
yield estimates obtained. Thus; a rough solution to a worst-case
centering and tolerance assignment problem which provides critical
regions for approximating the boundary of the constraint region can be
recommended. This allows only essential constraints to be considered
and justifies a worst-case solution even if less than 100% yield is

subsequently contemplated.



ﬁ__ normal distribution

discretized distribution 7,
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Fig. 7.2 Normal distribution, truncated normal distribution and discretized normal distribution.
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TABLE 7.4

COMPARISON WITH MONTE CARLO ANALYSIS FOR
NORMALLY DISTRIBUTED COMPONENTS

oy Yield (%) CDC Time (sec)
— (%)
0
¢i Approx. M.C. Approx.  M.C.
5.0 96.5 95.1 4.9 69.2
6.0 88.4 87.0 7.4 68.0
TABLE 7.5

EFFECT OF NUMBER OF MONTE CARLO ANALYSES ON THE YIELD
BASED UPON THE LINEARIZED CONSTRAINTS

—6-(%) N.O.M.P.* Yield (%) CDC Time (sec)
!
2000 94.4 24.6
5.0 500 94.2 7.0
200 91.5 2.8
2000 86.6 24.3
6.0 500 85.2 6.9
200 84.0 2.8

* N.O.M.P. denotes the number of Monte Carlo points used




PART II

WORST-CASE DESIGN

7.5 Two-section Waveguide Transformer

The two-section waveguide transformer, investigated for a minimax
(equal-ripple) response by Bandler (1969), was selected to perform a
tolerance assignment. The general configuration of such a structure is
illustrated in Fig. T7.3. A design specification of a reflection
coefficient of 0.05 over 500 MHz bandwidth centered at 6.175 GHz was
chosen. Table 7.6 shows the dimensions of the input and output
waveguides and the widths of the two sections.

The program developed by Bandler and Macdonald (1969b) is used to
obtain the reflection coefficienf. No sensitivities are provided by
this program. An equal absolute tolerance ¢ is assumed for the heights
and the lengths of the two sections. The assumption seems reasonable if
they are machined in the same manner.

The objective is to maximize the absolute tolerance ¢e. The
optimum nominal point and associated tolerance, given in Table 7.7, were
obtained by the worst-case design algorithm presented in Section 6.2.
The program FLOPT4 (Bandler and Sinha 1977) was used for solving the

nonlinear program:

maximize ¢

subject to
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Fig. 7.3 Illustrations of an inhomogeneous waveguide transformer.



TABLE 7.6

FIXED PARAMETERS AND SPECIFICATIONS FOR THE

TWO-SECTION WAVEGUIDE TRANSFORMER

‘Width Height

Description _ ‘ Length |
(cm) (cm) (cm)
Input guide 3.48488 0.508 o
First section 3.6 o ~ variable variable
Second section 3.8 ~ variable " variable
Output guide | 4.0386 ' -2.6193' ®

Frequency points used 5.925, 6.175, 6.425 GHz
Reflection coefficient specification o] 5_0.05

Minimax solution.(no tolerances) [p] = 0.00443_

139
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TABLE 7.7

-RESULTS CONTRASTING THE TOLERANCED SOLUTION AND
- THE MINIMAX SOLUTION WITH NO TOLERANCES FOR THE
TWO-SECTION WAVEGUIDE TRANSFORMER

| by b, L2k
Descrlpthn (cm) (cm) ‘ (cm) , (cm)'
Toleranced 0.72812 1.42432 1.55409 1.51153
optimum . ’ ' o
Minimax 0.71315  1.39661 1.56044  1.51621
optimum : i v

Equal absolute value of tolerance = 0.02013 cm
Number of complete response evaluations = 45

CDC time (approximation and optimization)} = 33 s
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Due to ill conditioning, early results (Bandler and Abdel-Malek
1977a) were not the best possible. Shifting by a constant value the
level of all functions involved in the minimax formulation, a tolerance
of 0.02013 cm was obtained. The number of actual response evaluations
to reach the optimum starting from the minimax optimum (no tolerances)
is shown in Table 7.7. The execution time shown includes both
approximation and optimization times.

The minimax, nominal and the upper envelope of worst-case
responses are shown in Fig. 7.4. The numbering scheme of the vertices

is that given by (2.9) with the parameter vector

Vertices which fall within the worst-case upper envelope are not
indicated in Fig. 7.4. It was observed, however, that vertices 2, 6, 10
and 14 are either active or almost active w.r.t. the reflection
coefficient constraint at band center. Furthermore, vertices 3, 7, 11
and 15 are- either active or almost active near the band extremes.
Hence, when b; is at its positive extreme while b, at its negative
extreme, the frequency point at the center of the band is more likely to
be violated. The edges of the band are critical frequency points when

b1 is at its negative extreme while b, is at its positive extreme.

Retaining the épproximations obtained by the worst-case design
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Nominal, minimax and upper envelope of worst-case

responses for the two-section waveguide transformer.
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procedure subsequently facilitates inexpensive Monte Carlo analyses.
Hence, different statistical distributions of outcomes may be assumed
and estimates of corresponding yields obtained. Assuming € = 0.03 cm,
for example, while keeping the worst-case nominal obtained, 500
uniformly distributed Monte Carlo analyses were conducted with the
approximation and with the actual functions. The approximation yields

excellent results 12 times faster as shown in Table 7.8.

7.6 Three-section Waveguide Transformer

The three-section transformer with ideal junctions for which a
minimax optimum was obtained by Bandler (1969) is considered for
tolerance assignment. Specifications and dimensions of input and output
waveguides are given in Table 7.9.

Nonideal Jjunctions were assumed and the widths of the three.
sections were fixed for convenience, so that the step changes are equal
from one section to the next. An equal tolerance in the heights and
lengths of the three sections was maximized for the reason given in
Section 7.5.

Starting at the minimax optimum with equal steps of 0.02 for the
interpolation region the results shown in Table 7.10 were obtained. The
program FLOPT4 (Bandler and Sinha 1977) was used for solving the
nonlinear programming problem formulated for the worst-case design.
Fig. 7.5 shows the upper envelope of worst-case responses as well as the
nominal design response. Although the envelope shows one vertex which
is active at the 1lower frequency edge of the band, several other

adjacent vertices, which restricted the increase in tolerance, are
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TABLE 7.8

COMPARISON OF METHODS OF YIELD ESTIMATION FOR THE
TWO-SECTION WAVEGUIDE TRANSFORMER

Number Tolerance Yield (%) CDC Time (sec)

of points €

Approx. Actual  Approx. Actual

500 0.03 87.6 88.6 0.4 5




TABLE 7.9

»  FIXED PARAMETERS AND SPECIFICATIONS FOR THE

THREE-SECTION WAVEGUIDE TRANSFORMER

145

. Height

Description ' Width ' Length
(cm) (cm) (cm)
' Input guide K 3.48488 0.762 w
First section 3.30581 Variéble ‘variab1¢ ,
Second section 3.12674 variable vvariable
Third section '2.94767_' variable variable
Output guide 2.76860 1.60325 o

* Frequency points used 5.7, 6.1, 6.45, 6.8, 7.2 GHz

Reflection coefficient specification_|p| < 0.050 (nonideal junctions)

Minimax solution (no tolerances) lo| = 0.017 (ideal junctions)




TABLE 7.10
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RESULTS CONTRASTING THE TOLERANCED SOLUTION AND THE MINIMAX SOLUTION
WITH NO TOLERANCES FOR THE THREE-SECTION WAVEGUIDE TRANSFORMER

Description b - b b; S I J?"2 43

(cm) - (cm) ~(cm) (cm) - (cm) (cm)
Toleranced ) g1034  1.36526 -1.70189 1.45242 1.53875 1.63253
optimum : : - o
Minimax 0.90318 1.37093 1.73609 1.54879 1.58375 1.64590
optimum » : _ a :

Equal absolute value of tolerance = 0.01383 cm
Number of complete response evaluations = 56

CDC time (approximation and optimization) = 167 s




reflection coefficient

07

(|
13
06
specification ,
o5 L
04r
30
03+
numbers identify vertices
02 nominal
| Ol
0 1 | 1 |
5.5 6.0 6.5 70 75

frequency GHz

LyT

Fig. 7.5 Nominal and upper envelope of worst-case responses

for the three-section waveguide transformer.



148

almost active. This appears to explain the fact that the envelope is
substantially lower than the specification at other frequencies.

In order to show the benefits of retaining the approximations
developed by the worst-case design algorithm, a Monte Carlo analysis was
conducted with the actual functions and with the approximations. An
equal tolerance of 0.02 cm was assumed around the worst-case nominal
design and 500 uniformly distributed points were generated. The

resulting yields and execution times are contrasted in Table 7.11.

7.7 Discussion

Optimal assignment of tolerances on the physical dimensions of
multisection inhomogeneous waveguide transformers has been successfully
investigated. It is evident how the design centering scheme provides
reliable approximations facilitating subsequent inexpensive statistical
analyses.

A check on the goodness of an approximation at each frequency
point considered was done by comparing it with the final actual
worst-case response. An agreement of at least three significant figures
was obtained in these transformer examples, which is well suited to
current fabrication and measurement capabilities for these waveguide

structures.
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TABLE 7.11

COMPARISON OF METHODS OF YIELD ESTIMATION FOR
THE THREE-SECTION WAVEGUIDE TRANSFORMER

. 9 .
Number Tolerance Yield (%) CDC Time (sec)

of points €

Approx. Actual  Approx. Actual

500 0.02 96.4 96.0 1 11.5




PART III

YIELD OPTIMIZATION

7.8 Optimal Design of a Nonlinear Switching Circuit

Statistical design is applied to a current switch emitter
follower (CSEF) circuit which was previously investigated by Ho (1971)
in the context of sensitivity calculations.

The circuit is shown in Fig. 7.6. The decoupled equivalent
circuit of the transmission line is used (Calahan 1972). Considering a
lossless tranémission line and the charge-control model of the
transistors as well as the diode the circuit is shown in Fig. 7.7. The

following two equations are used for the transmission line model.

Ui (t) = [eg(t-1) + Zg ig(t-1)] U(t-1) + %(t),

U.r-(t)

[e,(t-D + Zg iz(t-f‘;] U(t-1) + %(t),

where 2, and T are the characteristic impedance and the delay time of

the transmission line, respectively, U is the step function given by

The parameter ¢ represents the initial voltage distribution stored on

the transmission line. Thus, we take

@i(t) - @r(t) =0 for t > 1.

150



Fig. 7.6 The CSEF circuit (Ho 1971).
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The original circuit parameters and model parameters are given in Table
7.12. The state equations are formulated as described in Appendix A.
The Subroutine DVOGER (IMSL Library 1975), based on Gear's
integration algorithm (Gear 1971a), was used. The algorithm has a
variable step and hence interpolation was used to find the values of
ui(t) and up(t) if t - 1 falls between time steps. Alternatively, t/n,
where n is an integer can be used as a fixed step, however, integration

will be expensive.

7.9 Worst-case Design of the CSEF
The parameter vector considered for a worst-case design (see Fig.

7.7) is

The corresponding tolerances are denoted by e, &, €3 and ®. Fig. 7.8
shows the input voltage Eq and the time point constraints used. The
response obtained with the parameter values in Table T7.12 are also
shown. The circuit is initially at equilibrium with Eq = -0.776 V.

The optimal worst-case nominal parameters and tolerances are
shown in Table 7.13. Two approximations according to Phase 1 of the
worst-case design algorithm (Subsection 6.2.1) were required and hence

30 response evaluations. The nominal design response as well as the



TABLE 7.12(a)

CIRCUIT PARAMETER VALUES

R, 281.33 Q
R, 75.00 Q
R, 78.24 Q
R, 50.00 Q
E, 4.03 V
E, 1.13 V
E, 1.70 V
C, 1.50 pF

TABLE 7.12(b)

DIODE MODEL PARAMETERS

Igp diode saturation current 0.6 x 107°A
CJD depletion layer capacitance 0.12 pF
TTD transit time 0.01 ns
9 inverse of thermal potential 38.668 V!
ID = ISD(exp(eVD)-l)

dID
CD = CJD + TTp avg
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TABLE 7.12(c)

TRANSISTOR MODEL PARAMETERS

I saturation current 0.6 x 1070 A
o common base current gain 0.99
RB base resistance 50.0 @
CC collector junction capacitance 0.5 pF
CJE emitter jungtion depletion 0.12 pF

layer capacitance
TT base transit time 0.01 ns
0 inverse of thermal potential 38.668 V1
IE = IS (exp(GVBE)-l)
Ic = Q IE

dIE
CE = CJE + TT avgg
RB and CC are assumed zero for transistor’T3
TABLE 7.12(d)
TRANSMISSION LINE PARAMETERS
Z0 characteristic impedance 50 @

T delay time 0.25 ns
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TABLE 7.13

WORST-CASE DESIGN FOR THE CSEF CIRCUIT

157

0 0 0 0 0 0 0 0
E4 Z0 R4 C0 el/E4 82/20 83/R4 84/C0
) () () (pF) (%) (%) (%) (%)

1.655 92.004 45.533 1.248 4.46 8.29 13.77 14.00
3 0

Objective cost function 2 ¢i/€i
i=1

Number of complete response evaluations = 30
CDC modeling time = 48 s

CDC time (approximation and optimization) = 103 s




158

responses for the active vertices are also shown in Fig. 7.8. The

output capacitor Cy was constrained such that

€3 - €y > 1.0 pF.
This constraint was designed to prevent an unrealistic nominal value.

7.10 Statistical Design of the CSEF

The output section of the CSEF circuit was optimally designed to
provide maximum yield. The statistical distributions of the circuit
parameters and the transistor model parameters were assumed to be fixed.
The nominal values of the output circuit parameters were optimized in
order to obtain maximum yield.

The statistical distributions of the transistor 'T3 model
parameters are based upon results published by Butler (1974) and by
Balaban and Golembeski (1975). The transistor current gain B was
assumed to have a triangular probability distribution function with a
peak at g = 60 and 40 < g £ 100. Correlation between transistor model
parameters (see Table 7.12(c)) was established according to the

following equations

I = 0.0061 B (1 + 0.3516 X.;) x 1072 4 ,
Cgg = (0.144 - 0.242 x 10738) (1 + 0.2 Xpp) PF ,
TT =

0.01 (1 + 0.2 XP3) ns,

where X,j are independent uniformly distributed random numbers over the
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range

The numerical coefficients in each of these equations were obtained by
preserving the ratios of the corresponding coefficients of Balaban and
Golembeski (1975) and, at the same time, ensuring that they lead to the
same nominal values we have. According to these distributions the
weights and intervals for the discretized distribution were determined
and are shown in Table 7.14.

The circuit parameters were assumed to have the distributions

Ey = E} + 0.1632 Xpy »

Zo = Z8 + 9.5 Xp5 ,
Ry = RY + 4.4 Xpg -
Co = Cg + 0.27 Xp7 ,
where, again,

-1 £X . <1

ri ,i=u,5,6,7b

The yield was maximized and constraints on the output capacitance Cy @S

well as on the transmission line characteristic impedance were

introduced. These constraints are

cd > 1.27 pF ,



RESULTING WEIGHTS DUE TO CORRELATION BETWEEN B, IS AND C

TABLE 7.14

JE
IS CJE
B *% _9 *%
EI i = 0.221x10 "A ec = 0.0218 pF
Sf JE’
EB,i w Ea,i w Wy W, Wa Wy W, W
B o
20.0 0.3333 0.0080 0.3333 0.8320 0.1680 0.0000 0.2345 0.4084 0.3571
20.0 0.5000 0.0041 0.5000 0.3599 0.6113 0.0288 0.3174 0.4258 0.2568
20.0 0.1667 0.0024 0.1667 0.0744 0.5731 0.3525 0.4059 0.4472 0.1469

* o = B/(B+1)

** Equal intervals for I

Lower extremes of the parameters are B = 40.0, o = 0.9756, I

and CJE = 0.0958 pF

S

and CJE are considered

g = 0.1582x10"°A

09T
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ZCO)SZOLI ’

where Z, is an upper bound on the characteristic impedance of the

transmission line. The specifications considered are

Vo(t) £ -1.45 V, t = 0.3 ns,

Vo(t) 2 -0.85 V, t 0.62, 0.69, 0.8 ns ,

Volt) < -1.50 v, t

1.02, 1.09, 1.2 ns .

According to these specifications and the assumed statistical
distributions the yield was maximized allowing the nominal parameter

vector

to vary. The yield and yield sensitivities were obtained using linear
cuts obtained from the quadratic approximations as described in
Subsection 4.8.2. The interpolation region size and center are shown in
Table 7.15.

The results obtained for two different upper bounds on the
characteristic impedance Zp are shown in Table T7.16. In order to check
the results, 1000 Monte Carlo points were generated according to the
assumed statistical distribution in conjunction with the quadratic

approximations. The resulting yields are also tabulated in Table 7.16.



TABLE 7.15

INTERPOLATION REGION SIZE AND CENTER
FOR THE CSEF EXAMPLE

Ey 20 Ry Co o3 Iss CiE3 T,
-9
V) (D)) () (pF) (10 “A) (pF) (ns)
3 1.632 95.0  44.0 1.35 0.98285 0.49135 0.1285 0.0100
0.170 15.0 10.0 0.45 0.00786  0.34400 0.0380 0.0025

9T



TABLE 7.16

RESULTS FOR THE MAXIMIZATION OF YIELD
FOR THE CSEF CIRCUIT

0 0 0 0 . Yield (%)
Description E4 ZO R4 c0 Optt?;éatlon
V) () (52) (pF) (sec) Linear cut M.C.

Starting values 1.632 95.00 44.00 1.35 - 25.7 39.4
Optimum for 1.595  100.00 51.15 1.27 67.8 58.6 68.9
Z = 100 Q

Ou

Optimum for 1.638  105.00 53.07 1.27 40.6 85.6 89.1
Z = 105 Q@

Ou

CDC modeling time = 74 s

CDC time required for M.C. employing approximation = 5 s

€91
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T.11 Discussion

It has been indicated that constraints may be required to bound
the nominal parameter values. Otherwise, unrealistic parameter values
can be obtained, for example, zero output capacitance.

For the worst-case design obtained the power dissipated in the
output circuit is 0.1854 mW at the nominal solution. It is 0.365 mW for
the original design at equilibrium when Eq = =-0.776. This saves power
and limits fluctuations in chip temperature.

Other integration techniques, different from Gear's method, were
tried for simulating the circuit response. It seems that the state
equations we have are stiff differential equations and hence the
Runge-Kutta and Adams methods were not successful (Gear 1971b, Chua and
Lin 1975).

A single interpolation region was found to be satisfactory. The
difference between the predicted responses at vertices according to the
approximations and the actual responses subsequently checked by
integration was, over the sample points used, less than 2%. A Monte
Carlo analysis was not conducted with the response calculated by
integration since each such simulation on a CDC 6400 computer takes

about 1.7 execution seconds.



CHAPTER 8

CONCLUSIONS

In this thesis, the problem of design centering, tolerancing and
tuning for both restricted and unrestricted production yield have been
considered. The equivalent tolerance problem allows us to deal only
with the optimal assigmment of design tolerances. The concept of a
tunable constraint region, resulting from the equivalent tolerance
problem, permits the estimation of production yield by calculating
weighted hypervolumes even if the design employs tunable parameters.

The analytical approach to calculating production yield
facilitates the evaluation of yield sensitivities. As far as the author
is aware, the only available method which provides yield sensitivities
and hence permits the use of efficient optimization techniques is that
presented in Chapter 4. The method is éeneral enough to be applied with
any statistical distribution and not necessarily for electrical
circuits. The idea of evaluating yield based on linear cuts has been
thought of ipdependently by Spence¥. In principal, the technique
approximates the integration of the PDF over the constraint region or
the tunable constraint region.

A multidimensional approximation procedure designed to suit the
tolerance problem has been presented. The procedure not only

facilitates efficient use of any simulation program but also provides

¥ R. Spence, Dept. of Electrical Engineering, Imperial College, London,

England, private communication, April 1977.
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reliable approximations to be used for calculating production yield

through linear cuts. The cuts provided by the quadratic approximations

are not fixed but dynamic depending upon the location of the tolerance
orthotope relative to the approximate constraint boundary.

Alternative methods for evaluating production yield have been
indicated. For a fixed nominal point, statistical analysis may be
performed based upon fixed linear cuts or Monte Carlo analysis in
conjunction with the actual constraints. The former method proved to be
less expensive. If a design center is being sought use is recommended
of a method which provides reliable approximations. These
approximations facilitate subsequent inexpensive statistical analyses.
Hence, manufacturing yield may be maximized for a fixed distribution of
production outcomes or unit cost may be minimized for unrestricted yield
efficiently by employing the approximations.

Promising directions for further research have been revealed by
this work.

(1) Modification of the hypervolume formula in order to obtain the
exact hypervolume in the case of overlapping linear cuts inside
the tolerance orthotope.

(2) The evaluation of production yield for circuits having responses
which can be expressed as biquadratic functions of the parameter
of interest. Since finding the intersections of these responses
with the orthotope edges reduce to solving quadratic equations,
linear cuts based ﬁpon these intersections as described 1in
Subsection 4.8.1 can be obtained.

(3) An implementation of the efficient technique for evaluating the



(4)
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quadratic approximation in a discrete problem. Large savings‘are
expected by employing the quadratic approximation in the branch
and bound technique (Dakin 1966).

The selection of candidates for worst cases in order to reduce
the number of constraints in the nonlinear program is not yet
optimally automated. Fast detection of worst cases still

requires further investigation (Tromp 1977).



APPENDIX A
TOPOLOGICAL FORMULATION OF THE STATE EQUATIONS

FOR THE CSEF CIRCUIT

The basic steps required in the formulation of the state

equations for nonlinear networks are sketched out. For further details

see Chua and Lin (1975).

Step 1

Step 2

Step 3

Formation and characterization of network branches

This step involves the characterization of 1linear and
nonlinear elements, controlled and independent sources and tree
and cotree (link) branches. The choice of the tree branches is
based upon
(i) all independent and controlled voltage sources,
(ii) as many capacitors as possible,
(iii) as many resistors as possible,
(iv) as few inductors as possible,
(v) no independent current sources.
Solving the resistive nonlinear subnetwork

We solve for the voltages across the nonlinear resistors
in the tree as well as the currents in the nonlinear resistors
in the cotree.
Solving the loops which include capacitors only and the cutsets
which include inductors only

In this step we express the currents 1in the cotree
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capacitors and the voltages across the tree inductors in terms
of the derivatives (w.r.t. time) of the tree capacitor voltages
and the cotree inductor currents. Also, they may well be
functions of the derivatives of voltages of the tree inde-
pendent voltage sources and derivatives of currents of cotree
independent current sources (if these derivatives exist).
Step 4 Collecting relationships derived so far to formulate the state
equations.
Regarding the CSEF circuit shown in Fig. 7.7, the input and

output circuits can be treated independently.

A.1 Formulation of the State Equations for the Input Circuit
The tree chosen according to the priorities mentioned before is
shown in Fig. A.1. According to this tree, the set of independent KCL

equations is

O

i=o0, (A.1)

where

~ET

~CT
i=|Izz], (A.2)

~RL

~JL
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Fig. A.1 Directed graph of the input circuit and branch
numbering.
—— . Tree chosen

---- Link

170



A
Igr =

Ict

IpT

I

and where

Tree voltage source currents

Tree capacitor currents

Tree resistor currents

Link resistor currents

Link current

sources

-1
-1

-1
-1

-1

-1

-1

°
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(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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Hence, we can write (A.1) as

]
o
14 I Daq Doo| | IpT|=2Q> (A.9)
1
I
1 D3y D3o IRL
L EaL
where
-1
Do z|=-1 1 =1 =1 =11, (A.10)
211 !
-1
Do =0, (A.11)
Dpq = T -1 -1, (A.12)
-1 -1
1
-1
Doo = |1 : , (4.13)
I 1
Dyg=[-1 1 -1 -1 =11, (4.14)
D=0 (2.15)

and ﬂg is the identity matrix of order 9.
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The KVL equations can be written as

Ver
v
T T T | ~CT
D31 D21 D3q1 4 =0, (A.16)
DT DT DT I "9 XRT
212 22 232! v
*RL
VaL |

where superscript T denotes transposition.

It is required to represent the link currents IRL in terms of VET

and Vor° We have

RL = By ImL

~

~

_ T T T
= D31 Vgr + D21 Ve + D31 VRt > (8.17)

where

R, = Rp4q . (A.18)

Using (A.9) and (A.15) we can write

Tpr = -D3q Iy - D3p Igg,
= -931 }RL . (A.19)
Thus,
YRT = BT ;RT = - BT 931 {RL ’ (A.20)



where

Ry = [Rq]
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(A.21)

Substituting for Vp. in (A.17) and with some manipulations, we obtain

where

From (A.5), we have

Substituting for

Ier =

More explicitly,

[ Cc1

Cg1

CE2

| Cc2

where

dvge/dt ]

dVgg(/dt
dVggp/dt

dvgp/dt

E1

Cr2

~RL =

g~

~CT =

= D21

g™' [D

~

T
R, + D37 By R3q -

D21 IpL - R22 LgL -

R-1

~

~11

they can be written as

T T
11 Ygr + R21 Yerl

Ve ]

VBE1

VBE?2

Vea |

Cgg + TT 8 Ig exp(® vggq) ,

Cygg + 1T 9 Is exp(a VBE2) ’

ERL from (A.22), the state equations are

-1 T T
-Dp1 B [D34 ¥gr + D31 Yerl - Ro2 Lo -

-115

-I17

F 146

. I18_

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)
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I16 = ® 195 » (A.30)
118 = a 117 i3 (Ao32)

A.2 Formulation of the State Equations for the Output Circuit
Figure A.2 shows the chosen tree and branch numbering. The set

of independent KCL equations is

Di=0, (A.33)
where
I
1 -1
1 ; -1
D = 1 b1 -1 -1 ) (A.34)
1 -1 1 -1
1] -1 -1 1
LET
I
i= |1, (4.35)
LRL
.EJL.
A I
Igy = Tree voltage source currents = , (A.36)
- I
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Fig. A.2 Directed graph of the output circuit and branch numbering.
" —— Tree chosen

---- Link
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I3
Icr 2 Tree capacitor currents = | Iy| » (A.37)
15
A .. ) Ig
I, = Link resistor currents = , (A.38)
- I
T
g
I 4 Link current sources = Ig | - (A.39)
| Lo,
The KVL equations are
r "
v
-1 1 = -1 ~ET
-1 =1 -1 =11 -1 v
i T
1 -1 T 20, (am0)
-1 =1 =11 -1 A "
11 -1 |-BE
Vo)
Hence,
VRL = Ry, IgL
- pT T
=231 Yer + D31 Yer (A.41)
where
R
M
R = , (A.42)

Dyq = , (A.43)
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1 - N
) _ A.

D51 = [ _} . (A.44)

Thus,
“1 T T .)45
Taw = R [D4q Vgp + D3q Vel - (A.45)

From (A.33), we have
- .16
IgT = D19 IgL (A.46)
and

Ior = -Dpq Ipy - Do2 Lo - (A.47)

Substituting for I. from (A.45) into (A.47), the state equations are

=1 [p? T - .48
Ior = -Dp1 By P79 Ver + D21 Yer! - P22 ot - (A.48)

Or, more explicitly, the state equations are

Ey |
uj I
Cop dVg/dt Ry i 9
T T
Cg3 dVpgg/dt| = -Dpy T [D7q D311 | Vg | + |Tg-Ig |» (A.49)
0 \' 1 Ig-1
Cp dvp/dt Be3| |Z9-T1o0
i Vp
where
CD = CJD + TTD <] ISD exp(o VD) ’ (A.51)

18 = IS (exp( GVBES)_1) ’ (A.52)
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Ig = G'I8 ’ . (A053)

110 = Igp (exp(e VD)_1) . (A.54)

If the diode is similar to the transistor base emitter Jjunction,

then

and

110 = I8 . (A056)

Hence, the three state equations (A.49) can be reduced to the following

two equations

Ey
Co dVp/dt 1/Ry -1 1 | ug Ig
M + + . (A.57)
1
Cg3 dVggz/dt| - - 1/2¢ -1 -1 =2]| Vo Ig-Ig
LVBE3
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SUBJECT INDEX

Adjoint network, 128
Approximation,

Chebyshev, 2

multidimensional, U4, 69 etseq.

nominal, 2

quadratic, 4, 69, 71 etseq.

simplicial (see simplicial approximation)
Base points, 69-70, 75 etseq.

Biquadratic function, 166

Branch and bound, 167

Constraints, 4, 10 etseq.
active, 31
linear, 50
quadratic, 52

Convexity, 13, 15
one-dimnesional, 11-14, 31, 69, 87-90

Correlation, 123, 158
Cost function, 19
examples of, 20, 108
unit, 20, 109
Design,
centering, 1, 4, 13 etseq.
statistical, 3
outcome of, 8
worst-case (100% yield), 2, 5, 30-32, 100-102
yield less than 100%, 5, 104-107
Distributions, 8

arbitrary, 34, 56-68

187



SUBJECT INDEX (continued)
bimodal, 123, 129

normal, 24, 123, 131-136
uniform, 30, 34, 36-55, 109, 118, 123

Equivalent tolerance problem, 5, 25 etseq.

Hypervolume, 30, 34, 36 etseq.
sensitivities, 30, 39
weighted, 35, 58

Importance sampling, 22

Interpolation (see also approximation),
center of, 72, 100-104
region, 69, 72, 100-104

Least pth function, 25-26

Least squares, 2

Linear cut, 34, 36

Linear programming, 15, 18

Minimax, 2, 3, 32, 123
Monomials, 70

Monte Carlo method, 7, 21-22 etseq.
Nonlinear programming, 4, 7, 18 etseq.

Objective function (see cost function)
One-dimensional search, 15
One-way tuning, 10

Orthocell, 35
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SUBJECT INDEX (continued)

Orthotope, 9

tolerance (see regions)

Overlapping, 50, 99

Performance contour, 13-16
Polynomials (see also approximation),
quadratic, 5, 70

Polytope, 15

Regionalization,
space, 22-24
Regions,

constraint, 10
tolerance, 8-9

tunable constraint, 27
tuning, 10

Sensitivity, 2

first-order, 2
large-change, 13, 98
measures, 21
minimization, 2-3, 21

Simplicial approximation, 4, 7, 15-18, 21

Sparsity, 75-81
State equations, 168
Statistical (see also yield analysis),

analysis, 2, 21-24

distributions (see distributions)

Symmetry, 69, 81-87, 114

Systematic exploration, 22
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SUBJECT INDEX (continued)
Tolerance assigmment, 4, 18

Tolerance-tuning problem, 4, 19, 25, 102-104

Vector,

nominal, 7-8
tolerance, T7-8
tuning, 7-8

Vertices,

active, 31
complementary, U1
definition, 9

numbering scheme, 9, 92
reference, 36

Worst-case (see also design),

centering, 2, 32

Yield, 28-30, 34 etseq.

analysis, 123 etseq.

optimization, 150 etseq.

potential, 11, 30

production, 1, 4, 11, 30
sensitivities, 5, 34, 50, 60 etseq.
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