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SCOPE AND CONTENTS 

This thesis addresses itself to what is considered to be one of 

the most general theoretical problems associated with the art of 

engineering design .. A unified treatment is presented of production 

yield evaluation, worst-case design and yield optimization. The 

formulation is suited to nonlinear programming methods of solution .. 

Viewed in its entirety the approach integrates the following 

concepts: design centering, assignment of component tolerances, 

post-production tuning, yield estimation for realistic distributions and 

modeling of response functions .. Many of the ideas can also be used 

separately depending on the type of design evaluation required, the 

number of degrees of freedom involved and the availability and 

properties of suitable simulation programs. 

The thesis presents an analytical approach to yield and yield 

sensitivity evaluation. Basic to the approach is the discretization of 

the distributions by use of orthotopic cells to which suitable uniform 

distributions ar e applied. Multidimensional polynomials provide 

approximations to actual functions, which may be expensive to compute .. 

Algorithms for updating and evaluating these polynomials are developed 

to permit efficient use of gradient optimization methods .. 

Industrially oriented design examples are furnished to justify 

the theory. A telephone channel (lossy) bandpass filter is considered 

with relative insertion loss specifications to illustrate the analysis 
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of yield. The cascade connection of nonideal, inhomogeneous sections of 

rectangular waveguides is considered from the worst-case design point of 

view. A current switch emitter follower involving transistors, a diode 

and a transmission line provides a challenging example for yield 

optimization including parameter correlations. 
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CHAPTER 1 

INTRODUCTION 

The practical problem of optimally designing circuits in the face 

of statistical uncertainty on the parameters is the subject of this 

thesis. The estimation of the percentage of manufactured circuits which 

meet specifications, called production yield, has always been important 

but, increasingly mandatory for modern circuit design, is the associated 

optimization problem called design centering. This is the process of 

defining a set of nominal parameter values to optimize the economics of 

the circuit in terms of maximum tolerances, or yield, or minimum cost. 

Particularly, for mass-produced designs ( such as integrated circuits, 

telephone channel filters, etc.) , large savings are possible if 

permissible tolerances can be relatively large. 

Many variations of the problem may occur. Given the circuit 

specifications find, for example, a design that (1) maximizes the 

worst-case tolerances, or (2) maximizes the production yield w .r. t. an 

assumed probability distribution function of the parameters around 

nominal values, or (3) minimizes the overall production cost given 

relations between cost of the components and their tolerances. In 

general, tight tolerances imply high production cost but high yield, 

while large tolerances lower the production cost at the expense of low 

yield. 

The practical question of tuning is closely related to design 
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centering. A design may require tuning as a post-manufacturing process 

in order to meet specifications. 

Unlike conventional minimax or constrained optimization where 

interest is in a single point in the parameter space, due to parameter 

spreads in the tolerance problem we have certain regions of interest. 

These are typically the regions where possible worst cases can occur or 

where constraints may even be violated. Detection of these critical 

regions is a difficult problem. See Tromp (1977) . For high yield, 

however, a worst-case design (a design which meets the specifications in 

the worst case) should provide a good indication of these regions and 

is, therefore, felt to be worthwhile investigating as a preliminary 

exercise to statistical design. Fig. 1.1 shows a possible sequence of 

problems in computer-aided design which fall into the present context 

(Bandler and Abdel-Malek 1977b) . The problems increase in complexity as 

one proceeds down the graph. 

The nominal approximation is the most well-known and widely used 

design technique. By least squares or any other suitable measure a best 

nominal (single design) may be obtained. If the specificatons cannot be 

met by this single solution, it is impossible to seek better or more 

realistic designs. An improved approximation, e.g. , a minimax or a 

Chebyshev solution can be found if tolerances are not involved. If 

explicit assignment of tolerances is not required one could carry out a 

sensitivity minimization. This involves an objective function which 

usually includes first-order sensitivities at the nominal design. 

Many complications may arise if one jumps straight into a cost 

minimization without .having sufficient information about the problem. 



Nominal Approximation 

a-------11.i Minimax Approximation 

Tolerance Problem 

•;1-----�...,Mf Sensitivity Minimization 

Explicit Tolerances 

/ "" 
Statistical Design Worst-case Design 

Fixed 
Distribution 

Fixed Tolerances 

Minimax Approximation 

Specifications Satisfied 

Tolerance Optimization 

Specifications Violated 

Maximize Yield�------

Yield Satisfied 

Tune if Cost 
can be Reduced 

Fixed Design 

Tune to Improve 
Yield 

Tune to Increase 
Tolerances 

Tune to Meet 
Specifications 

Optimal Centering / Tolerancing / Tuning / Yield Determination 

Fig. 1.1 Typical sequence of problems in modern computer-aided design 

shown in approximate order of increasing complexity. 
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Thus, it is felt that proceeding down the graph shown in Fig. 1. 1 is 

safer if the increase in problem complexity per step is not too great. 

Due to the mass of calculations involved in statistical and 

worst-case evaluations, the use of multidimensional approximations 

appears as an economical necessity. Approximation of design constraints 

using truncated Taylor series expansions (Pinel and Roberts 1972, 

Karafin 1974) or quadratic interpolation (Bandler, Abdel-Malek, Johns 

and Rizk 197 6) or by simpliciaL approximation (Director and Hach tel 1976) 

to the constraint region boundary are described in the literature. As a 

result, estimation of production yield, tolerance assignment, design 

centering and other uncertainties can be handled at low computational 

cost. 

The work presented in this thesis provides a new approach for 

design centering, optimal tolerancing, post-production tuning and yield 

determination as part of modern computer-aided design. Nonlinear 

programming, which has proved to be successful (Bandler, Liu and Tromp 

1976), is the approach used. Low-order multidimensional approximations 

of responses, as functions of design parameters, are employed. They 

facilitate cheap function evaluations required for solving the nonlinear 

program, the use of any available simulation program, whether it 

provides sensitivity information or not, as well as the development of a 

new analytical technique for evaluating production yield. 

To provide insight into the tolerance-tuning problem, Chapter 2 

presents a brief review of some different approaches to the problem. 

Definitions and concepts as well as geometric interpretations are given. 

Production yield is introduced into the original nonlinear programming 
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formulation of Bandler and Liu (1974b) . 

A tolerance problem equivalent to the tolerance-tuning problem is 

constructed in Chapter 3. This equivalence allows us to treat only 

tolerances in the ensuing chapters. Geometric interpretation and a 

simple example are given. 

Chapter 4 presents a new analytical approach which not only 

provides a value of yield but also facilitates the evaluation of yield 

sensitivities. The approach is general enough to be applied in 

conjunction with any statistical distribution and not necessarily for 

electrical circuits (Abdel-Malek and Bandler 1977) . The availability of 

yield sensitivities permits the use of efficient gradient techniques in 

solving the nonlinear program (Bandler and Abdel-Malek 1977a) . 

Chapter 5 deals with a multidimensional approximation procedure 

suitable for the tolerance problem. Quadratic polynomials are used 

since they are simple functions which have curvature and being 

polynomials are cheaply evaluated along with their derivatives. It is 

shown how to obtain the approximations with minimal effort and to 

evaluate them efficiently. Theorems dealing with preserving certain 

properties of the original functions in the approximation are stated and 

proved. 

The ideas presented in Chapters 4 and 5 are implemented in the 

algorithms given in Chapter 6. Algorithms for worst-case design as well 

as design for yield less than 10 0% are described (Bandler and 

Abdel-Malek 1977a) . Simple lumped and distributed circuit examples 

illustrating the algorithms are given. 

Chapter 7 is devoted to practical implementation of the approach 
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and the algorithms presented. Yield determination for a telephone 

channel bandpass filter (Butler 1 971 ,  Karafin 1 971 and 1 974, Pinel and 

Roberts 1 972, Bandler and Liu 1 974a) applying different statistical 

distributions is described. The worst-case designs of two-section and 

three-section nonideal inhomogeneous waveguide transformers (Bandler 

1 969) are given. A nonlinear current switch emitter follower (CSEF) 

circuit containing a transmission line (Ho 1 971 ) is considered for 

worst-case design as well as design for yield less than 1 00%. 

The formulation of the state equations required for the .analysis 

of the CSEF is given in Appendix A. 

Original contributions claimed for this thesis are: 

(1 ) A formulation of the design problem embodying centering, 

tolerancing, tuning and yield. 

(2) The construction of the tolerance problem equivalent to the 

tolerance-tuning problem. 

(3) An approach for updated multidimensional approximations suitable 

for the tolerance problem. 

( 4) Based upon the approximations, analytical expressions for yield 

and yield sensitivities. 

(5 ) Sufficient conditions for preserving one-dimensional convexity 

and parameter symmetry in the quadratic polynomial approximation. 

(6) An efficient algorithm for evaluating the quadratic approximation 

at the vertices of the tolerance orthotope. 

(7) Algorithms, which employ the approximations, for worst-case 

design as well as designs for yield less than 1 00%. 



CHAPTER 2 

DESIGN CENTERING AND STATISTICAL ANALYSIS: 

2. 1 Introduction 

A REVIEW 

Several approaches for design centering and for statistical 

circuit analysis have been suggested in the literature. Emphasis will 

be placed here on some of the more ingenious methods. Relevant 

definitions of · concepts such as constraint region, tolerance region, 

tuning region and manufacturing yield are given. 

one-dimensional convexity is presented. 

The idea of 

A method dealing with pairwise parameter interaction (Butler 

1971) is described. The simplicial approximation of Director and 

Hachtel (1976) and the nonlinear programming approach (Bandler 1972, 

Pinel and Roberts 1972) are given. 

Techniques for statistical analysis using Monte Carlo methods, 

space regionalization and analytical evaluation are described. 

2. 2 Fundamental Concepts and Definitions 

A design is described by a nominal parameter vector <l>O , a 

tolerance vector e: and a tuning vector�' where 
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4> 0 t, 
4> 0 t2 

<l> o t 8. ( 2. 1 ) 
..... 

;o 
k tk 

and k is the number of designable parameters. The tolerance vector e: 

may be used to define the extremes of the tolerance region or the 

standard deviation, etc. 1be tuning vector�' defines the size of the 

tuning range. See Bandler, Liu and Tromp ( 1976) .  It  is assumed that 

the parameters can be varied continuously. Some of these vector 

elements may be set to zero or held constant. 

An outcome {� o , �' el of a design {<1> 0, e: , t} implies a point in 

the parameter space given by 

(2.2) 

where 

e: 1 µ 1 

e: 2 µ2 

E � 8 (2.3) µ 

e:k µk 

and where B is a random vector distributed according to a joint 

probability distribution function (PDF). The PDF might extend as far as 

(-00, 00) ,  however, for all practical cases it is possible to consider a 

tolerance region R such that 
e: 
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(2. 4) 
e: 

where F(  �) is the PDF. 

For the sake of simplicity as well as the implications of 

independent design parameters, there is no loss of generality to 

consider R e: to be an orthotooe defined by 

where 

� E R } µ 

A R µ = { � I -1 � µi � 1 , i = 1 , 2 , • • • , k } • 

(2. 5) 

(2. 6) 

This orthotope is centered at �O and has edges of length 2 e:i, i = 1, 2, 

.... ' k. 'I'he extreme points of R are called vertices and the set of e: 
vertices is defined by (Bandler, Liu and Tromp 1976) 

(2. 7) 

The number of these vertices is 2k and the following enumeration scheme 

used by Bandler (1974) will be considered. For a vertex 

we have 

k 
r = 1 + E 

i=l 

µr:'+1 
(-1-) 2i-1. 2 

(2. 8) 

(2. 9) 



where 

The tuning region is defined by (Bandler and Liu 1974b) 

Rt<�) � {t I t = t0 
+��+I e, e E RP} , 

T � 

and R may be defined, for example, by p 

RP b. { P I -1 � pi � 1 , i = 1 , 2, ... .. , k}  

or in the case of one-way tuning or irreversible trimming, 

or 

RP { £ 0 � Pi � 1, i = 1, 2, ...... , k} .. 

10 

(2. 10) 

(2 .. 12) 

(2.13) 

(2 .. 14) 

The constraint region (or feasible region) itself is given by 

b. 
R0 { ! I gi ( _!) 2. O, i = 1 , 2, .. .. , m0 } , (2.15) 

where m
0 is the number of constraints gi .. The tolerance, tuning and 



constraint regions are illustrated in Fig. 2.1. 

2.3 Production Yield 

The production or manufacturing yield is simply defined by 

b,. Y N/M , 

11 

(2. 16) 

where M is the total number of outcomes and N is the number of outcomes 

which satisfy the specifications. 

yield by 

y 
p 

Similarly we define the potential 

(2. 17) 

where NP 
is the number of outcomes which meet the specification, after 

tuning if nee es sar y. 

require tuning is 

Hence, the relative frequency of outcomes which 

2. 4 One-dimensional Convexity 

(2. 18) 

A region R is said to be one-dimensionally convex (Bandler 1972) 

if for any direction defined by the unit vector �j' j = 1, 2, . . .  , k, 

and for any two points 2
a, *

b E' R, where 

then 

<l> a + c e. , -J c is a scalar, (2. 19) 



r------, 
tolerance I /�tuning region Rt( µ. ) 

. R I I region e 1 1 
\:, 

r -'-\----:--;,,o+E-1 ' � 
I I I 
I 
I 
I 
I 
I 

12 

-------------------cJ,1 

Fig. 2.1 Illustration of regions R·, R and R (Bandler, Liu 
. C £ t 

and Tromp 1976) . 



• = .a + x(•b - •a) �  R for all O � l � 1. - - -

One-dimensional convexity is illustrated in Fig. 2. 2. 

13 

(2. 20) 

The region R is said to be convex if (2.19) is not assumed. See 

Mangasarian (1969) . 

If all vertices of the tolerance orthotope are  within a 

one-dimensionally convex constraint region, then the whole tolerance 

orthotope lies inside the constraint region. For a proof, see Bandler 

(1972) .  

2. 5 Design Centering 

2.5.1 Centering via Large-change Sensitivities and Performance Contours 

Large-change sensitivities together with performance contours 

were used by Butler ( 1971) • A scalar continuous function of design 

parameters which reflects the goodness of a design is chosen as a 

perfor mance criterion. A nominal design which satisfies this 

performance criterion is assumed to exist. The concept of large-change 

sensit.ivities is that of finding changes in function values due to 

significant deviations in designable parameters. This concept is used 

to draw contours of the performance criterion changing parameters in a 

pairwise manner for each contour. The design center is obtained by 

inspection, i.e. , by choosing a nominal value which is well centered for 

all contours. As an example of a performance criterion, we might use 



' 

F.ig. 2 .. 2
° 

Illustrations of convex, one-dimensionally convex 

and nonconvex regions (Liu 1975). 
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J = g. ( <I>) ' 1 ..... (2 .. 21) 

where gi, i = 1, 2, ..... , m0, are the m0 design constraints defining the 

feasible region .. The method is illustrated in Fig. 2 .. 3 for the case of 

three parameters. 

2.5 .. 2 Simplicial Approximation 

The simplicial approximation approach of Director and Hachtel 

(1976) involves linear programming as well as one-dimensional search 

techniques. Their approach is to inscribe a hypersphere inside the 

constraint region. During the process of enlarging this hypersphere a 

polytope which approximates the boundary of the constraint region is 

constructed. 

The procedure is illustrated in Fig. 2. 4. The algorithm 

initially searches for points on the constraint boundary in both 

positive and negative directions for each parameter from a feasible 

point (a .point within the constraint region). The convex hull described 

by these boundary points provides the initial polytope approximating the 

boundary of the constrant region. This polytope will be an interior 

approximation only if the constraint region is convex .. Using linear 

programming a hypersphere is to be inflated inside this polytope in a 

k-dimensional space. The tangent hyperplanes are determined. These 

hyperplanes, faces of the polytope, are simplices (Coxeter 1963) in a 

space of k-1 dimensions .. The largest simplex, i .. e .. , the one which 

contains the largest hypersphere, is to be broken and replaced by k 

simplices. This is performed by adding a new vertex to the polytope 
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Fig.. 2. 3 Performance contours for pairwise changes in 

parameter:'. Reducing �-� will result in a 
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constraint 

linear search 

(a) Initial search for boundary points . 

.linear search 

/L--'�-

(b) The polytope· approximating the boundary of 

the constraint region after two iterations. 

region 

Fig. 2.4 Illustration of the simplicial approximation 

·approach (Director and Hachtel 1976) . 
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obtained by searching for a boundary point along the normal direction to 

the largest simplex from the center of the corresponding hypersphere. 

The computational effort per iteration can be expressed as 

CE = LP
k + (k+1) LPk_1 + LS , (2. 22) 

where LPj is the computational effort to solve a j-dimensional linear 

program and LS is the computational effort in a one-dimensional search. 

It is to be noted that the number of constraints for the linear 

programming problem increases with the number of faces of the polytope. 

For the k-dimensional linear program and at the nth iteration we have 2k 

+ (n-1) k constraints, while for the k-1 dimensional linear program the 

number of constraints is fixed and is equal to k. 

approximations is regarded to have converged when 

The sequence of 

(2.23) 

where rn is the radius of the hypersphere obtained in the nth iteration, 

o1 and o2 are given relative and absolute convergence parameters. 

2.5.3 The Nonlinear Programming Approach 

The two methods described before do not explicitly optimize 

values for parameter tolerances, in other words there is no optimal 

tolerance assignment. 

Pinel and Roberts ( 1972) used nonlinear programming to assign 

parameter tolerances. The nominal parameter values are fixed and the 
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constraints are approximated by truncated Taylor series expansions. 

Bandler (1972, 1974) and Bandler and Liu (1974a) treated centering and 

tolerancing simultaneously for the benefit of increased tolerances by 

permitting the nominal point to move. 

A nonlinear programming formulation of the optimal centering, 

tolerancing and tuning problem is 

minimize C( �O , E, µ, t) 
�Q, E, t2_ Q 

subject, for example, to a constraint on yield 

(2. 24) 

(2. 25) 

where C is a suitable cost function, sometimes called ob iecti ve 

function, and yL is a lower yield specification. 

The objective function C should reflect a , realistic cost­

tolerance and tuning relation. Reasonable properties of the objective 

function are (Bandler, Liu and Tromp 1976) 

C( !O ' :, �' t) + constant as E + oo --

c<,1?' :, �' t) + 00 for any E. + 0 (2.26) ]. 

cc 10 , :' �' t) + cc10 , .: ' �) as t + 

cc10 , .: ' �' t) + 00 for any t. + 00 
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An appropriate objective function, for example, is 

k C. k 
I: 

_!, + I: c! Yi = 
i: 1 X 1 

i i: 1 
(2.27) 

where X· and y· may indicate either the absolute tolerances and tuning 
1 1 

ranges, respectively, or the relative values w.r.t. nominals. If tuning 

is not allowed or is fixed for some parameters, their corresponding c1 
should be set to zero. Similarly, ci may be set to zero if the 

corresponding tolerance is fixed. 

In the case of no tuning, Pinel and Roberts ( 1 972) suggested an 

objective function of the form 

C = 
k C. 

1 
E Cai + -) 

i: 1 8i 
(2.28) 

where ai and ci are constants. This objective is essentially the same 

as (2.27) , since the ai will contribute only a constant value to the 

optimum cost. A unit cost function (Karafin 1 974) can be expressed as 

c = ccc1>0, E, t)/Y • u - (2.29) 

An orthotope describing the tolerance region is to be inflated by 

minimizing the cost function. The center of the orthotope provides the 

nominal parameter values and the lengths of the orthotope edges are 

twice the absolute tolerances. 
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2.5.4 Sensitivity Minimization 

Some sensi ti vi ty measures such as the measure of Lee and Su 

( 1977) and that of Styblinski ( 1977) , can be considered as objective 

functions also. The constraints are implicitly expressed in the 

objective, hence an unconstrained optimization problem results. 

2.6 Statistical Circuit Analysis 

2.6.1 The Monte Carlo Method 

Statistical circuit analysis, providing an estimate of 

manufacturing yield, has usually been treated through the Monte Carlo 

method. A set of random parameter values is generated according to the 

anticipated distribution of outcomes and corresponding analyses are 

performed. 

Elias (1975) presented an approach which applies the Monte Carlo 

analysis directly to the nonlinear constraints. In an effort to reduce 

computational cost, Director and Hachtel (1976) suggested applying the 

Monte Carlo method in conjunction with an approximation to the boundary 

of the constraint region. The approximation is the polytope obtained in 

the simplicial method described in Subsection 2.5.2. 

The Director and Hachtel polytope might be described by quite a 

large number of hyperplanes, for example, if the algorithm converges in 

n iterations, the number of these hyperplanes is 2k + nk. The yield 

estimate obtained by this approximation is not accurate enough (Director 

1977) • More recently, Director and Hachtel ( 1977) suggested updating 

the polytope according to the Monte Carlo points which fall within the 
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constraint boundary but not inside the polytope. 

In order to reduce the number of Monte Carlo analyses, while 

keeping high confidence in the yield estimate, importance sampling 

(Hammersley and Handscomb 1 964) was used by Pinel and Singhal ( 1 977) . 

The objective of importance sampling is to concentrate the distribution 

of sample points at critical regions instead of spreading them evenly. 

Compensation is done to correct for distorting the distribution. It is 

assumed that worst cases occur when one or more parameters assume 

extreme values, i.e. , a one-dimensionally convex constraint region is 

implied. 

2.6.2 Space Regionalization 

Space regionalization was suggested by Scott and Walker ( 1 976) .  

Based upon the probability of having an outcome to fall within a region, 

a weight is assigned to this region and the center of the region is 

checked against the nonlinear constraints to determine whether this 

whole weight will contribute to the yield or not. See Fig. 2.5. The 

number of required analyses, however, increases exponentially with the 

number of variables subject to statistical variations, since the 

response at the center of each region is to be evaluated. 

Regionalization was also used by Leung and Spence ( 1 976, 1 977) 

exploiting the technique of systematic exploration. The centers of the 

regions are scanned systematically by changing one parameter at a time. 

The circuit response is efficiently evaluated using matrix inverse 

modification methods. Hence, computational saving is only available for 

linear systems. Leung and Spence also suggested checking the worst 



contributes 
to yield 

constraint region 

does not 
contribute 
to yield 

Fig. 2.5 Space regionalization for yield estimation. 
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outcome in each region, instead of the center of the region, if a lower 

bound on yield is required. 

2.6.3 Analytical Methods 

Karafin (1974) presented an approach using truncated Taylor 

series approximations to the constraints. The constraint function 

values are assumed to be normally distributed for all tolerance choices. 

The parameters are assumed to be statistically independent and each 

parameter is sy mmetrically distributed about its nominal value .. 

According to these assumptions, Karafin was able to reduce the k-fold 

integration of the k-variate probability distribution function to at 

most 3-fold integration. The yield estimate is based upon the resulting 

distributions of the values of the constraints. Obviously, the method 

is computationally expensive. 



3.1 Introduction 

CHAPTER 3 

THE EQUIVALENT TOLERANCE PROBLEM 

A tolerance problem which is equivalent to the tolerance and 

tuning problem of Bandler and Liu (1974b) is presented. The generalized 

least pth function (Bandler and Charalambous 1972) , required for 

constructing the equivalent problem, is given. Based on this 

equivalence, a mathematical definition of yield is developed. 

The optimal worst-case design, in which all outcomes should meet 

the specifications, after tuning if necessary, is formulated as a 

nonlinear program. It is shown how to express the minimization of the 

maximum violations of the worst outcome, called worst-case centering, as 

a minimax problem. 

3. 2  The Generalized Least pth Function 

Given a set of functions f / p) ,  j e J, we define (Bandler and 

Charalambous 1972) 

11 
u Cf/ _!) ,  J, P, x) 

0 
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M = 0 

(3. 1) 

, M ;c O , 



where 

M = max ( Xf . ) 
jE:K J q = p sign (M) , 

K = ! J
, M < O , 

{ j I j e J , Af j ( ! ) > 0} , M > 0 , 

X = 

1 if U approximates max f . ( � ) , 
je;.J J -

-1 if U approximates min f . ( � ) 
je J J -

and where p is a scalar greater than one � 

3.3 The Equivalent Tolerance Problem 

26 

(3 . 2) 

It is possible to transform a tolerancing and tuning problem to 

an equivalent tolerance problem only. The following theorem confirms 

this observation . 

An outcome 

can be tuned to satisfy the constraints , 

that 

� + T p E R 
C ' 

i. e. , there exists p e R such 
p 

( 3 . 6 ) 
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if and only if <I> E R0t, where R0t is the tunable constraint region 

defined by 

where 

Proof 

I { 1 ,  2, • • •  , m0 } .  

Assume that there exists e* € RP such that 

Hence, 

Also, 

But since 

and 

then 

,2 + 'l'. £* E Re • 

gi(! + I £*) L O  for all i E I  

min g
1. ( <I> + I £*) L O  

iE I  "' 

- 1 ) = min g- ( <l>+TP*) L 0 ]. - --i€ I  

( 3 .  7 ) 

(3 .. 8) 

(3. 9) 

(3. 1 0 )  

(3. 1 1 ) 

(3. 1 2) 

(3. 1 3) 

(3. 1 4) 

Now, <I> E Rct implies that there exists P* E RP such that (3. 1 3) 

is satisfied. Consequently, 
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Q.E.D. 

3.3 . 2  Example 

To illustrate this idea, consider a two-dimensional example in 

which the constraint region is defined by the two constraints 

Let 

$0 = [4 . 5 1 , 
8.0 

� = [
2 • O 

] and 
2.5 

t = [o . 5 
] .. 

1 .. 0 

Fig..  3. 1 shows the constraint region Re and the tunable constraint 

region R0t. In the figure R e: and Rt ( �) are defined according to ( 2 .. 5 ) 

and (2.10) , respectively, where R is assumed as in (2.12). 
p 

3 .. 4 Mathematical Definition of Yield 

We are now ready to give a mathematical definition of production 

yield .. An outcome $ is said to meet the design specifications either if 

! e R0 or there exists � e R p such that 

$ + T p E: R 
C ' 

i.e .. , this outcome is tunable .. In other words 

(3 .. 15) 

( 3  .. 1 6 )  
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I I I 1 
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R� 
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feasi ble outcome· 
4 

2 

0 0�-�2-. --�4---s�-�a---,�o--�,2------ � 

Fig . 3 . 1  Geometric interpretation of the tolerance prob lem equivalent 

to the tol erance -tuning prob lem . 
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In an abstrac t manner, the expected po tential yield, i . e . ,  the 

expected yield after tuning is given by 

(3 . 1 7) 

where F( $ )  is the joint probabili ty dis tribution function of the 

outcomes . The expected yield before tuning is 

Y = J F( ! )  d$ 1 d$ 2 • . •  d$ k . 

RC  

(3 . 1 8) 

If the outcomes are uniformly distributed be tween the tolerance 

ex tremes, i . e .  , inside the orthotope R , the expected po tential yield e: 
and the expec ted yield can be expressed as 

and 

Y = V (R O R ) /V (R ) , e: C e: 

(3 . 19) 

(3 . 20) 

where V (R) denotes the hypervolume of the region R .  The expec ta tion of 

having ou tcomes which req uire tuning as a post-manufacturing process is 

also given by ( 2 . 18) . 

3 . 5  Wors t-case Design 

The worst-case design problem arises when the wors t outcome is 

supposed to mee t the specifica tions . This implies a lower po tential 

yield specifica tion Y1 = 1 00% . Thus, for the nonlinear program, the 



constraint (2 . 25) reduces to 

R c:::: R 
e: ct · 
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For a one-dimensionally convex region Rct, (3 . 21) can be replaced 

by 

where Rv is the set of vertices defined by (2. 7) . 

At the worst-case optimum, the set of active constraints at a 

vertex <11' E Rv is defined by 

(3. 23) 

where pr* is the optimum setting for the tuning variable for the vertex 

(3 . 2 4) 

E* and $O * are the worst-case optimums of E and $0, respectively. The 

set of active vertices is consequently defined by 

The set of all active constraints is 

I = ac 

(3. 25) 

I�c . (3. 26) 
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An alternative approach is to define the set of active vertices 

for each constraint g i, i = 1, 2, • • • , m0
, g iven by 

(3 .. 27) 

where <!>1'.' is given by ( 3 .. 24) and pr* is the setting of the tuning 

variable for this vertex at the optimum. 

constraints is defined by 

Thus, the set of active 

lac = { i  I i e  {1, 2, • • •  , m 0 } , R�v -t 0} .  

The set of all active vertices is 

3 .. 6 Worst-case Centering 

me 

u 
i=1 

i Rav 

( 3 . 28 ) 

( 3 . 29 ) 

Worst-case centering is a minimax problem in which the tolerance 

vector E: is fixed either absolutely or relatively w .r . t .  the nominal 

vector p_O while t/ and the tuning vector t are variables .. The problem 

can be expressed as 

minimize U (-g . ( 4>0 + E  µ + T  p) ,  I ,  CX), 1) , 
0 l - -

! 2.�, �<�s.Snax 

( 3 . 30 )  

where t is an upper bound on the tuning range, U is the least pth - max 

function defined by (3 . 1) and µ is chosen to give the worst outcome . 
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Having a tolerance problem which is equivalent to a tolerance-
1, 

tuning problem allows us to deal solely with tolerance assignment. It 

permits the evaluation of yield to be based upon hypervolume computation 

as is shown in Chapter 4. 

The one-dimensional convexity assumption implies that the 

vertices of the tolerance orthotope are the candidates for worst case. 

Hence, for a worst-case design, it reduces the infinite number of 

constraints for the nonlinear program to a finite number. Subsequently, 

a solution based on this, or any other assumption made to create a 

tractable problem, can be verified. 



4. 1 Introduction 

CHAPTER 4 

YIELD DETERMINATION 

THROUGH LINEAR CUTS 

An analytical approach to the evaluation of yield and yield 

sensitivities is presented. The availability of yield sensitivities 

allows the use of efficient gradient techniques for solving the 

nonlinear programming problem presented in Chapter 2 .  

In  the case of a uniform distribution of outcomes inside the 

tolerance orthotope, computation of hypervolume plays the basic role in 

yield evaluation. Formulas for nonfeasible hypervolumes (hypervolumes 

outside the constraint region but inside the tolerance orthotope) as 

well as their sensitivities are provided (Bandler and Abdel-Malek 

1 977a) . An alternative approach to evaluating the nonfeasible 

hypervolumes based on feasible hypervolumes is also presented. Criteria 

for choosing a computationally efficient approach are given (Abdel-Malek 

and Bandler 1 977) .  

The hyper volume formula is based upon linear cuts of the 

tolerance orthotope. The linear cuts are functions of the nonlinear 

constraints defining the boundary of the constraint region. It is shown 

how to construct the cuts in the special cases of linear and quadratic 

constraints (linking this chapter with the next chapter) .  

For an arbitr ary statistical distribution of outcomes, the 

34 
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tolerance region is partitioned into a collection of orthotopic cells 

(orthocel ls) . A weight is assigned to each orthocell and a uniform 

distribution is assumed inside it . This approach is suitable for 

circuits, since the distribution of outcomes is usually defined by a 

histogram rather than an expression for the probability distribution 

function. Formulas for evaluating the weighted hypervolume and its 

sensitivities are derived (Abdel-Malek and Bandler 1977). Some simple 

illustrative examples are given. 



PART I 

THE UNIFORM DISTRIBUTION 

4.2 Evaluation of Hypervolume 

Based upon either linearization or intersections of the 

hypersurface g( 4>) = 0 with the tolerance orthotope, we construct the 

linear cut 

qT 4> - c 2.. 0 , (4.1) 

where q is a column vector of k components and c is a scalar. We will 

derive a general expression for the nonfeasible hyoervolume defined by 

this linear cut and the tolerance region R ,  denoted by V (R) ,  where 
e: 

(4.2) 

Define a reference vertex 

(4  .. 3) 

where 
µi = -sign( qi) , i = 1, 2, .. .. .. , k (4.4) 

and E is a kxk diagonal matrix with elements set to e:i' i = 1, 2, . .. .. , 

k, as in ( 2 .. 3 ) .. 

The general formula for the hyperyolume* can be written as 

*H. Tromp originally suggested such a formula (see Acknowlegements) . 
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where ( 
l ( 

k 

l 1 k 2 vs s k 
V = k !  n a . E (-1) ( o ) , 

J =1  J 
s=1 

max ( O ,  
k e: . 

I ) ' os 1� E _J_ s r = µj 
- µj j:1 a . J 

vs = E µ� µ� I / 2 
i=1 l. l. 
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( 4 . 5 ) 

( 4 . 6 ) 

( 4 . 7 )  

and aj is the distance between the intersections o f  the hyperplane qT $ -

c = 0 and the reference vertex �r along an edge of R
e: 

in the jth 

direction. It is to be noted that os is po sitive if and only if the 

vertex $s violates the linear cut (4.1) . 

4.2.1 Two Dimensional Examples 

Consider the examples given in Fig. 4.1. The nonfeasible area in 

Fig. 4. 1(a) is given by 

where 8 abc denotes the area of the triangle abc. Hence, 

V = .1 
2 

a a - .1 
[ a ( 1 -

2 e: 1 )) ( a ( 1 -
2 e: 1 )

) 1 2 2 1 a
1 2 a

1 

1 
[ 

2 e:2 
) ( 

2 e:2 
) - - a ( 1 - -) a ( 1 - -) 

2 1 a2 2 a2 



(a) 

(b) 

4,3 4' r I'"' a1 4,4 -1 
..--------....----a 

b 

4>1 

4,3
4,

r ,�----
�
-
4 

a1 ----..--1 
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---- •-------------------�..,.a 

b 

Fig . 4 . 1 Two-dimensional examples illustrating the calculation of 

the nonfeasible hypervolumes , ( a) partially feas ible 

tolerance region , ( b ) nonfeasible  tolerance region . 



= - a. 2 1 ( 
2 e: 1 2 2 e:2 

2 

) a. 1- (1 - -) - (1 --) • 
2 a.1 a.2 

Also, in Fig. 4. 1(b) , the nonfeasible area is given by 

V = Ii <t>r ab - Ii <1>4 ac - Ii <t> 1 bd + h. <t,2 cd 

4.2.2 Three Dimensional Example 
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In the example shown in Fig. 4.2, the intersections of the linear 

cut with the orthotope edges are defined by the polygon abcde .. The 

nonfeasible volume is given by 

V - .1 (1 (1 
2 e:1)

3 

- 6 a.1 a.2 0.3 - -
a.1 

5 2 e:
2 

3 1 + (1- - -) I .. 
a.1 a.2 ) 

4 .. 3 Hypervolume Sensitivities 

5- 3 
( 1- ) 

a.3 

The hypervolume sensitivities can be expressed as 

s 
(-1) " ( 4 .. 8) 



a2 
f -� 

4', 

'P3 

a1 

Fig . 4 � 2  Three-dimensional example i l lustrating the calculation of nonfeasible 

hypervolume for partial ly  feasible tolerance region .  
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where 

and 

1 k 
A = kl n (lj ' 

. j : 1 

2k s k 
= 1: (-1) \) ( os) 

s=l 

0 if oS : 0 ,  
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(4.9) 

( 4 . 1 0 )  

( 4 . 1 1 )  

( 4 . 1 2 )  

It is to be mentioned that the hypervolume and its sensitivities are 

defined when oi + 00 for any i, since the limit exists .. But, the 

sensitivities are discontinuous whenever a vertex <1>S satisfies the 

equation 

qT <l>s - c = 0 • 

4. 4 An Alternative Approach 

( 4 . 1 3 ) 

For an alternative approach to calculating the hypervolume V and 

its sensitivities we define a complementary vertex 



where 

r r 
µ i = -µi = sign(qi) ,  i = 1 ,  2, • . .  , k .  
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(4 . 1 4) 

(4. 1 5) 

In a similar manner we define a .  as the distance between the 
J 

complementary vertex pr and the intersection of the hyperplane 9T1-c = O 

along an edge of R in the jth direction. 
e: 

hypervolume defined by the linear cut (4. 1 )  is 

where 

max ( 
k e: • -s o , 1 E _J_ s r 0 = - µ . - µj j: 1 Cl • 

J 
J 

k -s E s r I I 2 " = µ . - µi i: 1 1 

Hence, the nonfeasible 

(4 . 1 6) 

I , l 
(4. 1 7) 

(4 . 1 8) 

The hypervolume sensitivities can be expressed as 



where 

and 

1L. (.L chi>� 
= -

, k ! 

k 
E --1 n - -a a. . k 

] 0 <l B 
a 4> .  p= 1  P j : 1 

1 p;ij 

- A [ k i
k 

(-1)
v8 

s= 1 

= 2k n e: .  + l � 
j = 1  J i a 4>� 
j;c i 1 

- k " 
[ 2k -s 

+ A -::::- E (-1) I ll� - u: 
1. 1 

<li s= 1 

- 1 k 

A = kin (lj . j= 1 

2k -s k 

B = E ( - 1 ) "  C!s ) 
s=l 

0 if '1'8= 0 ' 

H l8 

= 
a 4>? 

1 
k e: • - aa: 

s r __j_ E I u
j 

- u . I 0 - 2 
j: 1 ( (lj ) J a 4> . 

1 

I cc8 ) ' 
k- 1 

l 

if c8 > 0 . 
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( 4 . 1 9 )  

( 4 . 20 )  

( 4 . 2 1 ) 

( 4 . 22)  

( 4 . 23 )  



4. 5 Efficient Computation 
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In order to evaluate the hypervolume and its sensitivities 

efficiently we use the following criteria: 

(i) If qT �r - c 2. O, use the reference vertex approach. 

(ii) If qT �r - c � O, use the complementary vertex approach . 

(iii) If qT �r - C ( 0 and �
T f - C )  0 ,  then 

if l �T{ - c l � l �T t· - C I ' use reference vertex approach, 

if l �T{ - c l > l qT �r - C I ' use complementary vertex approach, 

wher e !l? r and 1 r ar e the refer ence and complementary ver tices, 

respectively. The cases (i) and (ii) are clear since the orthotope will 

be either completely feasible or completely nonfeasible, respectively. 

Case (iii) follows according to the following theorem. 

4. 5 .. 1 Theorem 4. 1 

If q T �r - c < 0, � T f - c > 0 and I g T pr - c I � I � 
T f - c I , then 

Order (S ) � Order (S ) ' (4.24) 

where 

!::,. {s I s € {1, k 
�

T
�t - c < 0 }  (4. 25 ) s 2, . .. .  ' 2  }, ' 

- !::,. 
I s € {1, 2k } '  �

T
f - c ) 0 }  (4. 26 ) S = {s 2, . . . ' . 

In other words 
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S � {s as > 0} , 

s � {s I as > o} (4. 28) 

Proof 

In the case under consideration the order of a set is simply the 

number of its elements. Assume that s e S, then 

or 

But, since 

then 

where 

gT !s - c < 0 ' 

k 

k 
L qi e: i ( -µf + J\) > O • 

i=l 

( g._! :f - C) + L q . e: • ( - µ� - µi:' ) ) 0 ' -- ·- i:l .J. J. J. J. 

qT <l>s - c ) 0 , 

(4. 29) 

( 4 . 30 )  

( 4 . 3 1 )  

(4. 32) 

( 4 . 33 )  

( 4 . 34 )  
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Hence, 

S E S 

This means that for each vertex s E S there exists a vertex s e S, thus 

4.6 Example 

Order (S) � Order (S) 

Q.E.D. 

Consider the following four-dimensional example, with a linear 

cut given by 

!1 � � .!!L__ 
24 + 15 + 60 + 240 - 1 2. O 

and where 

�o = [J] 
Hence, 



and 

[ 
1 

) [ 
4 

4 8 4 12 4 

V :  4! 8 X 5 X 20 X 80 1 - ( 1 - 5
) - ( 1 - 20 ) - ( 1 - 80 ) 

� J2. 4 L 1.2. 4 ) 
+ <1- 5 - 80 ) + <1- 20 - 80 ) 

= 1034 . 15 
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Table 4.1 shows the nonfeasible vertices . A check of the 

analytical formulas for the gradients and the numerical gradients 

obtained by central differences is shown in Table 4 .. 2 .  

The alternative approach will lead to 

V = 24 
X 5 X 2 X 4 X 6 - [ ¼i- ( Bx 1 . 6 ) (5x1 . 6 ) (20x1 . 6 ) ( 8 0x1 . 6 )] 

• [ 1 - 10 4 

( 1- 8x 1 .. 6 ) 

4 + (1- 5x1 . 6 

J O  + (1- 8x1. 6 

8 + ( 1-
20x1 .. 6 

= 3840 - 2805 .. 85 = 

4 4 
- ( 1-

4 
5x1. 6 ) - ( 1-

8 
20x1. 6 ) 

8 
4 

20x1. 6 ) 

J2  4 

80x1. 6 ) 

- J2 
) 

4 

80x1 .. 6 

1034 . 15 

4 

- ( 1- 12 
80x1. 6 ) 

+ � ( 1- 5x1. 6 

4 - (1- -
5x1 .. 6 

12 
80x1. 6 ) 

8 
20x1.6 

4 

1 2 4 ) - 80x 1. .  6 ) 



Vertex <1>1 

1 4 

2 14 

3 4 

4 14 

5 4 

6 14 

7 4 

8 14 

9 4 

10 14 

1 1  4 

12 14 

13 4 

14 14 

15 4 

16 14 

TABLE 4 .1 

NONFEASIBLE VERTICES FOR THE EXAMPLE IN SECTION 4.6 

<1>2  <1>3 <1>4 µ1 µ2 µ3 µ4 

5 5 20 -1 -1 -1 -1 

5 5 20 1 -1 -1 -1 

9 5 20 -1 1 -1 -1 

9 5 20 1 1 -1 -1 

5 13 20 -1 -1 1 -1 

5 13 20 1 -1 1 -1 

9 13 20 -1 1 1 -1 

9 13 20 1 1 1 -1 

5 5 32 -1 - 1 -1 1 

5 5 32 1 -1 -1 1 

9 5 32  -1 1 -1 1 

9 5 32  1 1 -1 1 

5 13 32 -1 -1 1 1 

5 13 32 1 -1 1 1 

9 13 32 -1 1 1 1 

9 13 32 1 1 1 1 

Nonfeasible 
vertices 

X 

X 

X 

X 

X 

X 

.p. 
00 



TABLE 4 . 2  

HYPERVOLUME GRADIENT CHECK 

Parameters Analytical Numerical 
gradients gradients 

<Po 
1 - 337 . 50 -337 . 50 

<Po 
2 -540 . 00 -540 . 00 

<Po 
3 - 1 35 . 00 - 1 35 . 00 

<Po 
4 - 33 . 75 - 33 . 75 

El 
3�7 . 50 337 . 50 

82 573 . 60 5 73 . 60 

83 268 . 20 268 . 20 

E4 1 73 . 18  1 73 . 18 
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4.7 The Linear Constraints Case 
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Let the constraint region be defined by the m linear constraints 

g ( <1> ) = <l>Tq .!l. - c 1 2. O ,  Jl, = 1 , 2 ,  • • •  , m .  Jl, - - - ( 4 . 37 )  

Assuming no overlapping of nonfeasible r egions defined by 

different constraints inside the orthotope R ,  i. e., 

where 

Ri O RJ· = 0 , 
iij 

the yield can be expressed as 

. e: 

Y = 1 - L V (R1)/V (Re:) • 
Jl,:l 

Knowing that 

V (R ) e: = 2k n 
j:l 

the yield sensitivities are given by 

e: . J ' 

( 4 . 38 )  

( 4 . 39 )  

( 4 . 40 )  

( 4 . 4 1 )  

( 4 . 42 )  



ay ( 1 m t m avt 

] ( k k 
] - - - E V - E ·-a - / (2 n e: . ) , a e:i 

-
e:i R.=1  R. =1 e:i j=1 J 
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(4.43) 

where vi. denotes V (R
R.
) .  The linear constraints can be used as linear 

cuts directly . Hence, the nonfeasible R, hypervol ume V and its 

sensitivities can be obtained using (4.5) ,  (4.8) and (4.9) for each 

constraint and where 

( 
k 

_ ct ]/41 = r E qf 
0 µ� e:i) µj ( <l>i + 1 ' 

i:1 
(4 .. 44) 

R, a a. ; r R, I R, = µj qi qj 
a <1>i 

(4 .. 45) 

according to the reference vertex approach or using (4 . 16) , (4 . 19) and 

(4.20) , where 

= µ1: (i!l 
R, (<I>� + µt e;i) - ct ]/qj (4.46) J qi 1 ' 

-R, a a. R, R, --1 r I ( 4 . 47 )  
a <1>? 

= µ j qi qj 
1 



for the R. th constraint using the complementary vertex approach . 

4 . 8 The Quadratic Constraints Case 

4 . 8 . 1 Method Based on Intersections 
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Consider a ve rtex <!> r detected to be active w . r . t .  a quadratic 

constraint g1 ( �) 2.. 0 after the worst-case design p rocess ( see Section 

3 . 5) . If the tole rances are allowed to increase slig htly beyond their 

worst-case values, intersections between the orthotope edges passing 

through <J> r and the hypersurface g
R. 

(!) = 0 will arise . The num ber of 

these intersections is k, which is the number of edges passing through 

cl> r, if 

for all j . ( 4 . 48 ) 

In order to find the inte rsection point along the j th edge, or 

its extension in the direction -µ �e ., where e .  is a unit vector in the 
J .,. J ... J 

j th direction, we exp ress g
R.

( �) = 0 as 

. . .  ' 

( 4 . 49 )  

whe re �
.e, 

and n
.e, 

are constant functions and <l> j is the only va riable . 

f · t t · · ( r r R. r) Hence, the point o 1n ersec 10n 1s cp1, cp 2, . . .  , Aj , . . •  , cJ> k , where 

± /r 2 - n ':, R, R, ( 4 .  50 ) 
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is a real root of ( 4. 49) • The condition imposed on the root insures 

that it is in the direction -µ j�j w.r.t. 4>
r. If both roots lie to this 

direction, the one closer to <l> r is to be chosen. 

The equation of the hyperplane, re pres en ting the linear cut, 

which passes through these k points of intersection is 

det 

<!>1 

A Z 
. 1 

r 
<I> 1 

r 
<I> 1 

<1>2 

</> r 

2 

A
R, 

2 

r 
<1>2 

and <l>
r is a reference vertex for this cut. 

<l>k 1 

<l>r 

k 0 ' (4. 51) = 
r 1 <l>k 

1be yield sensitivities are calculated according to the gradients 

of the k intersections. 

; n � 
� 1 --1 = + 

a 4>i a <1> . -
2/42 -l 

R, n t 

; n� 
__ l 

a <I> i 
= 0 

Thus, if R, is the distance a. . 
J 

2F; -
[ � � J t a <1>i a <1> i 

from the vertex 

' i 

<l> r 

� j (4. 52) 

(4. 53) 

to the point of 

intersection with the t th constraint along the orthotope edge in the jth 

direction, then 

R, Cl. .  = 
J (4. 54) 

(4. 55) 
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(4 .. 56 ) 

4. 8. 2 Method Based on Linearization 

An alternative method to obtain the cuts is to consider 

linearizing the quadratic constraints at a point ,<1>
a which may be the 

nominal point <1>0 or a vertex cpr. Hence, the linear cut based upon the 

tth constraint is given by 

( 4 . 57 )  

The reference vertex 2r is identified by 

j = 1 ,  2 ,  .. . .  , k .  

The distance from the reference vertex to the point of intersection with 

the 1th cut along the orthotope edge in the j th direction is 

( 4 . 59 ) 

Accordingly, we have 
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where 

a 2g ( <1> ) a 2g (<1> ) a2g < <I> ) 
Jl. - lli - Jl. -

2 a <1> a <1> a <1> a <1> a <I> 1 1 2 1 k 

a 2g&( _2 ) a 2g ( <1> ) a 2g ( <1> ) 
i - i -

a <1>
2

a <1> 1 2 
. . . a <1> a <1> a <1>

2 2 k 
H = (4.61) 

is the Hessian matrix which is a constant matrix for a quadratic 

function g1(� ) ,  �i is the ith column of H and Hji is an element of H. 

In deriving (4.60) it is assumed that <tr - pa) is independent of <l>i, 

i = 1 ,  2 ,  • • • , k .  



PART II 

ARBITRARY STATISTICAL DISTRIBUTIONS 

4.9 The General Case 

As described in Chapter 2, we can assume that all outcomes will 

lie within the tolerance orthotope R .. 
€ 

This orthotope is now 

partitioned into a set of orthocells R(i1, i2, . .. .. , ik) as shown in Fig .. 

4 · th b f intervals in the J0 th .3, where ij = 1, 2, • • •  , nj , nj is e num er o 

direction and j = 1, 2, .. .. , k. A weighting factor W(i1 i2 ik) ' ' . . .  ' 
is assigned to each orthocell and is given by 

where 

W(i) = w (i)/V (R (i) )  

w(i) = 

I 
R(p 

dv = n € • •  
. 1 J , i . , 

J = J 

d V : d q> 1 d q> 2 • • • d q>k ' 
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(4 .. 62) 

(4 .. 63) 

(4.64) 

(4.66)  



W{1 ,0) 

<pr , .  
W (0,1)r \V(1 ,1 ) 

a2 

W(0,2) 

. €1 1 , 

W{2,0) W(3,0) . 
a a  

-1 

W{2,2) 

€1 3 , e ·  1 ,4· 

€2,0 

€2,1 

€ 2,2 

Fig . 4 . 3  Two-dimensional illustration of the partitioning 

of the tolerance region into cells indicating the 

dimensions and · weighting of thos e cells relevant to 

the · calculation of the weighted nonfeasible hyper­

vol ume . 

57 
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e1 . , e2 . , • • •  , ek i are the dimensions of the orthocell and F(�) is 
' 1 1 ' 1 2 ' k 

the joint probability distribution function (PDF) . 

The weighting factors W( i )  can also be obtained by sampling the 

parameters or from a histogram if the PDF is not available. 

In principle, the problem of finding the yield is now reduced to 

finding the contribution to the yield given by all of these orthocells. 

k 
Considering n n .  orthocells independently, however, will be a tedious . 1 J J = 

job. By exploiting how the hypervolume formula ( 4. 5 ) is constructed, a 

formula for the weighted nonfeasible hypervolume with respect to the tth 

constraint is constructed and is given by 

�+ 1  k ) 
E aw( i) ( l (�) ) 

ik: 1 
( 4 . 67 )  

where, for indexing with respect to f', i. e., numbering starts at this 

vertex (see Fig. 4.3) , a� is the distance from the reference vertex to J 

the point of intersection of the tth linear cut with the orthotope edge 

in the jth direction, 

k ij 
= max ( 0 , 1- E -1; E 

j=l aj p:l 
€ .  1 ) ' J , P-

Ej , O = 0 , j = 1 ,  2 , . .. .  , k , 

( 4 . 68 )  

( 4 . 69 )  



�W( i ) 

and where 

= W ( i )  - E W(i-e .) + - -J j:l 

k-1 k 

E E W ( i- �j - �p) - • • •  
j: 1 p:j+ 1 

+ (- 1 )k W(i - � 1 - �2 - • • •  - �k) ' 

e . = (0, O, • • •  , O, 1, O, • • •  , 0) -J 

W( i )  = 0 if i . = J 

j 

O or ij = n+ 1 for any j. 
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(4. 71 ) 

(4. 72) 

Again, assuming no overlapping of nonfeasible regions defined by 

different cuts inside the orthotope R , the yield can be expressed as e: 

Y = 1 - E VR, , 
R, : 1 

where m is the number of linear cuts. 

4. 1 0  Independent Parameters 

(4. 73) 

In the case of independent parameters, (4. 67) can be written as 

VR. = ( 1.- Tl a� l [ t k . J· --1 J 
]. 1 = 1 
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(4.74) 

where i and o1 (i) are as defined in (4.63) and (4. 68) , respectively, and 

where 

LlW . ( i . ) J J = Wj( ij) - Wj(ir1) j = 1 ' 2 ,  . . .  ' k ,  (4.75) 

Wj(O) = W / nj+1) = 0 ' j = 1 ' 2,  . . .  ' k , (4.76) 

Wj(ij) = W · ( i · ) / E . J J J , J.j 
ij = 1 ' 2 ,  . .. .  ' n j' (4.77) 

Wj ( ij ) = I fj(<l>j) d <I> j ' ij = 1 ' 2,  .. . .  ' n j' (4.78) 

Rj(ij) 

fj( <l>j) is the PDF of the jth parameter and Rj(ij) is the ith interval 

for that parameter .. Similarly the yield will be given by (4.73) . 

4.11 Yield Sensitivities 

Formulas for yield sensitivities can be derived assuming that the 

weighting factors W( i) are independent of 4>0 as long as the ratios 

between e:j, i .  , ij = 1, 2,  • • • , nj, are fixed for each parameter j = 1, 
J 

2 ,  .. . .  , k .  This is true, for example, if the sizes of the orthocells 

are fixed .. 

Let 

hence, 

K .  • : e: . .  ; e: .  J , J. . J , J. . J J J 
(4 .. 79) 



n . 
, J 

i . = 1 J 

K • •  : 2 ,  j : 1 ,  2 ,  • • • , k . 
J , 1

j 

The yield sensitivities are now given by 

lX._ 
m av.e, 

0 = - L 
a 4>? 

' 
a 4>i R.:::: 1 1 

_ll_ 
m - L ' a e: • a e: • 1 R,: 1 1 

where 

nk+ 1 

r t1W( i ) 
ik= 1 

t1W( !) 

· -61 

(4.80 ) 

(4.8 1 )  

(4.82 ) 

(4.83) 

(4.84 ) 



n1 + 1 

= .I: 
i1 = 1  

and where 

= 

.L k R, A = k ' n a. . ' • . 1 J J = 

n2+ 1 n
k+ 1 

.I: 6W(i) (oR, (i) )
k 

i2= 1  ik: 1  

o if & R- (i) = o ,  

k ij 
1: -½- L K . 1 • 

JI., J , P-
j= 1 · a.j p: 1 
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(4.85) 

(4.87) 

(4.88) 

The formulas for a a.j; a �i and for µl are similar to those derived for the 

uniform distribution. 

The case of independent parameters is obtained by substituting 

k 
8W(i) = n 6W · (i . ) 

j:1 J J 

in (4.83) , (4.84) and (4.86) . 

( 4 . 89 ) 
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4. 12 Example 

In order to illustrate the calculation of the weighted hyper­

volume, consider the two-dimensional example shown in Table 4. 3 ..  The 

weighted volume is given by 

= 1813/3600 . 

The same example can be considered as if the parameters are 

independent as shown in Table 4. 4 and Table 4. 5 ..  Here, the weighted 

volume is given by 

where the o are as given in Table 4.3 .. Hence, 

V = 1813/3600 . 

Assuming that the sizes of the orthocells are fixed, the sensitivities 

of the weighted hypervolume with respect to the nominal parameter vector 

$O can be evaluated. The location of $0 itself is not important. It is 

the relative location of the constraint with respect to the orthotope 

that matters. The constraint can be considered as 
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TABLE 4. 3 

EXAMPLE TO ILLUSTRATE CALCULATION OF WEIGHTED 
HYPERVOLUME BY THE GENERAL FORMULA 

Orthocell . il 0 1 2 3 4 

dimensions £1 0 3. 0 3. 0 2. 0 , 11 

i2 £2 , 1 2 
0 0 w, W 0 0 0 0 0 

w 0 18/100 12/100 3/10 0 

1 2. 0 w 0 3/100 1/50 3/40 0 
/J.W 3/100 - 1/100 11/200 -3/40 
0 1 3/4 1/ 2 1/3 

w 0 12/100 8/100 2/10 0 

2 3. 0 w 0 1/75 2/225 1/30 0 
/J.W - 1/60 1/180 -11/360 1/24 
0 1/3 1/12 0 0 

w, W 0 0 0 0 0 
3 /J.W - 1/75 1/225 -11/450 1/30 

0 0 0 0 0 

Reference vertex �
r given by µ� = -1, r 1 µ = 2 

Intersections of the linear constraint are a.l = 12 , a.2 = 3 

Weighted volume V = 1813/3600 
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TABLE 4 \4 

LENGTHS AND WEIGHTS OF F IRST PARAMETER INTERVALS 

il E:1 . , 11 
w ( i1) W ( i1) flW (i1) 

0 o . o  0 0 

1 3 . 0 3/10 1/10 1/10 

2 3 . 0 2/10 1/15 -1/30 

3 2. 0 5/10 1/4 11/60 

4 0 0 -1/4 

TABLE 4.5 

LENGTHS AND WEIGHTS OF SECOND PARAMETER INTERVALS 

i2 E:2 . , 12 
w (i2 ) W ( i2 ) LlW ( i2) 

0 0 . 0 0 0 

1 2 . 0  6/10 3/10 3/10 

2 3 . 0 4/10 2/15 -1/6 

3 0 0 - 2/15 



and 

According to ( 4 . 45 )  we have 

a a, 
0 = - 1 ' 

a <1> 1 

a a1 o = (-1 ) (- 1/3 ) / f 1/12 ) = 4 ,  
a <1>2 

� 
O = ( 1 ) ( 1/12 ) /(-1/3 ) = -1/4 , 

a <I> 1 

1 • 

66  

Using ( 4 . 87 ) ,  the values of a o1 ( � ) /a <1>� are given i n  Table 4 . 6  and Table 

4 . 7 .  Substituting in ( 4 . 83 )  we g et 

ll_ - -43/720 , 
a <1>

0 -

1 

av -
0 = 43/180 

a <1>2 

These sensitivities were verified using the central difference  

approach with �<l>Q = 1 0-3, i = 1,  2. 
l 

obtained. 

An agreement of 6 digits was 
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TABLE 4.6 

VALUES OF a o 2 (i 1 , i 2 ) / a <1> � 

il 1 2 3 4 

i2 

1 0 -1/48 -1/24 -1/18 

2 -1/18 -11/144 0 0 

3 0 0 0 0 

\ 

TABLE 4 . 7 

VALUES OF a o2 ( i1, i2) / a <1>� 

il 1 2 3 4 

i2 

1 0 1/12 1/6 2/9 

2 2/ 9 11/36 0 0 

3 0 0 0 0 



4 .. 13 Conclusions 
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The appr oach presented for y ield est imat ion pr ov ides an 

inexpensive y ield determination without the need for the multitude of 

circuit simulations required in the Monte Carlo technique .. The method 

approximates the integration of the PDF over the feasible region . The 

freedom in discreti zing the PD F and hence the sizes of the orthocells 

allows the use of any previous information about the problem . This is 

an advantage, particularly if a worst-case solution is already known .. 

In addition, the availability of yield sensitivities perm it the use of 

grad ient optimization techniques .. 

The better the description of the boundary o f  the constraint 

reg ion by linear cuts the more accurate is the yield estimate . It is 

possible to describe a constraint defining the boundary by a different 

cut at each orthocell, however, the computational e ffort will increase .. 

In Chapter 6 an alg or ithm is descr ibed wh ich pr ov ides updated 

approximations to the constraints .. The sequence of approx imations is 

directed to give better locations of the boundary o f  the constraint 

region . 



5. 1 Introduction 

CHAPTER 5 

THE MULTIDIMENSIONAL APPROXIMATION 

A new procedure for multidimensional approximation integrated 

with the tolerance problem is described in this chapter .. Approximation 

by interpolation is employed in order to save computation of the exact 

function .. Complicated functions, typically constraints or functions for 

which gradient information is not available, are approximated..  The 

approximations are to be used in the optimization. 

optimization techniques can be employed. 

Hence, gradient 

It is shown how points where the approximation coincides with the 

exact function can be chosen to permit efficient construction of the 

quadratic approximation. These points are termed base points. Theorems 

dealing with preserving one-dimensional convexity and parameter symmetry 

in the approximation are stated and proved. One-dimensional convexity 

is an important property to preserve, as indicated in Chapter 2, and 

parameter symmetry may be exploited to computational advantage .. 

An efficient algorithm for evaluating the quadratic approximation 

as well as its sensitivities is presented .. Since small interpolation 

regions may be required to obtain accurate approximations, the algorithm 

is designed to deal with different approximations in different 

interpolation regions (Bandler and Abdel-Malek 1977a) . 
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5.2 Interpolation by Multidimensional Polynomials 
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An approximate representation of a function f( <1>) by using its 

values at a finite set of points is possible (Thacher and Milne 1960 

and Sobolev 1961b) . These points are called nodes or base points, and 

denoted by 

where Nb is the number of base points. 

Interpolation can be done by means of a linear combination of the 

set of all possible monomials. Hence, 

f(  <I>) � E 
j:1 

a .  � .  ( <I>) J J -

where aj' j 1, 2, • • •  , N, are unknown coefficients, 

or 

(l (l 
"' b "' 1 t1- Z  "'j - '1'1 '1'2 

(l k 

k 
E 

i:1 
a . < m ' i -

<l>k k ' E <li .S. m ' 
i=1 

( 5 .  1) 

(5.2) 

( 5 . 3 ) 

m is the degree of the interpolating polynomial, k the number of 

independent variables, i.e . ,  number of components of <I>, ai, i = 1, 2, 

• • • , k, are nonnegative integers and 1" may be any reference point. The 

number of such monomials is given by 

N = ( m+k) ! 
m ! k !  (5. 4) 



If the number of base points Nb is such that 

Nb = N , 
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(5 .. 5) 

exact evaluation of the coefficients aj, j = 1 , 2, .. . .  , N, to force the 

approximation to coincide with the actual function at the base points, 

i.e .. , 

P ( f )  = f ( f)  , n = 1, 2, . . ..  , N , 

where 

is possible .. 

The following system of 

4?
1 

( !1 ) �2 ( !1 ) 

�
1 
( f) 4?

2 
( f) 

L bJ. 4? . ( <I>) 
j: 1 

J -

simultaneous linear 

\<!1 ) b 1 

\<f) b2 

equations 

f( !1 ) 

f( i) 

= 

(5 .. 6) 

(5. 7) 

results . 

(5 .. 8) 

The solution of (5. 8) exists if the system of equations is linearly 

independent .. This is satisfied if the set of base points is degree-m 

independent (Thacher 1 959) . 

5.3 Interpolation by Quadratic Polynomials 

Nikol'skii ( 1 969) proved that, unlike the one-dimensional case, a 

high-order multidimensional approximation does not guarantee a higher 
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accuracy for the approximation . For interpolation, in particular, 

higher accuracy for high-or der polynomial interpolation is not 

guaranteed even in the one-dimensional case. An illustrative example is 

shown in Fig .. 5.1. A smaller interpolation region, however, makes the 

approximation more accurate. For an error bound on interpolation, see 

Sobolev (196 1a, 1961b) . A quadratic polynomial is the simplest 

polynomial which can have the curvature to bound a maximum, minimum or 

vertex .. 

In order to minimize the computational effort to obtain the 

quadratic polynomial approximation, the number of base points required 

will be chosen to be equal to the number of unknown coefficients, i.e . ,  

interpolation will be adopted. Replacing m by 2 in (5.4) the number of 

base points is 

N = (k+1) (k+2)/2 • 

Let Ri be the interpolation region defined by 

/). 
R .  = {! I o .  > 1 -- 1. - <p. <pi I , i = 1 ,  2 ,  . .. .  , k }  

( 5 .. 9) 

(5. 10) 

where °f is the center of the interpolation region and o .  · 1 2 l. '  1. = ' ' .. .. .. , 
k, are parameters defining the size of the interpolation region. The 

quadratic polynomial approximation can be expressed in terms of the 

monomials (5 .. 2) or (5.3) as 

( 5  .. 11) 



f 

quadrat i c  
interpolat ion 

J- - - 1 
.------.,,,,-

1 
I 
I 
I 
I 
I 
I 
I 
I 

------ interpolation region--........... 

f (cp) 

Fig. 5.1 Interpolation by first and second order polynomials .  

The errors within the interpolation region are �l 

and A2. 
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or 

p ( .! ) = b 1 <1>1 + b 2 <I>� + .. .. • + bk <I>� + bk+ 1 <I> 1 <I> 2 

+ bk+2 <1> 1 <1>3 + • • •  + bN-k-1 <l>k-1 <l>k 

+ bN-k <1>1 + bN-k+1 <1>2 + • • •  + bN-1  <l>k + bN' (5 . 1 2) 

where H is the Hessian matrix of the quadratic approximation and is 

given by 

(5 . 13) 

_a_ 
a <1> 1 

'v = _a_ (5. 1 4) a <1>2 

The relations between the coefficients in (5 . 1 1 )  and (5. 12) are given by 

bi = hii/2 

b = h . .  .I!, = j j!, l.J ' 

where N is given by (5.9) . 

' i = 1 ' 

i - i + I: 
p:1 

I: ,h · . <I> . 
l.J J 

j : 1  

2, .. . ..  ' k ' (5 . 1 5) 

(k-p+ 1 ) ,  i < j (5.1 6) 

i = 1 ,  2 ,  . .. . , k ,  (5. 17) 

(5 . 1 8) 
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If we have freedom in choosing the base points, we can save 

computational effort, particularly if the number of variables k is 

large. In general, the matrix of monomials in (5.8) is full, however it 

is possible to make it sparse by using the following choice of base 

points. Let 

where 

[4> 1 4> 2 
4> ] ' 

D is a k x k diagonal matrix with diagonal elements o . ,  
1 

}k is a k-dimensional identity matrix, 

Jk is a zero vector of dimension k, 

B is a k x L matrix having the structure 

B = 

UT I OT I OT I 
- k- 1 I - k-2 1 - k-3 I ---------�----------�--------� 

T 
- k- 1  

I T I T I 
I I Q I 
'-- _uk-2 ___ j __ - k-_l_j 

T - k-2 

I T .  I 
I U I 
I _k-3 I ---- , ----1 

I 
I 
I 
I 
I 

I 
. I 

I 
I Q  ' - k-2 

(5.19) 

(5.20) 
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where �j is a column vector of dimension j and having components uij 

such that 

o < I uij I s. 1 , i = 1 , 2, . .. . , j (5 .. 2 1 ) 

!j is a diagonal matrix of dimension j with diagonal elements T ij 

satisfying 

0 < I T ij I s. 1 , i = 1 , 2, • • •  , j (5 .. 22 ) 

and 

L = k(k-1 )/2 • (5. 23 ) 

According to this choice of base points it is clear that 

(5. 2 4 )  

The system of simultaneous linear equations is now the sparse system 

given in (5. 25 ), shown on next page, wh ere 

,.J_· = u � 
<:, l  

• • k • U • I ,  

J -1 ,  - 1  l 

Hence, solving (5 .. 25 ) reduces to the following 

i < j (5. 26 ) 

(5. 27 ) 

(5. 2 8 ) 
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[f ( <I> .fl,) f (  l )  ( q) 
2 h . . 

( r;;�) 
2 h . . 

h . .  = h . . = _ll 
1J J l 2 J 2 

- d ai - r;;3 aj J / r;;i r;;� 1 J ' (5 .. 29) 

where 

i 
= j - i + E ( k  - p + 1) ' j > i (5 .. 30) 

p:1 

Subsequently , the number of multiplications/div isions required to obtain 

the approximation is reduced to 5k2 - 2k instead of (N3 + 3N2 - N)/3 for 

Gauss elimination , where N is defined in (5 .. 9) .. 

Fig .. 5 .. 2 shows the choice of base_ points in two dimensions and 

three dimBnsions. 

If we are not completely free in choosing the base po ints , for 

example , if the function evaluation is expensive and some evaluations 

for parameter values inside the interpolation reg ion are known , the 

matrix of monomials can appropriately be arranged .. Assuming that the 

resulting matrix of monomials will not be singular , we replace the 

bottom rows of the matrix of monomials by the monomials of these known , 

n say , base points .. No singularity will result , for example , if the 

rows introduced are independent and full .. 

matrix of monomials is shown in Fig . 5 .. 3 .. 

This arrangement in the 

In solving the resulting 

system of simultaneous eq uations , we proceed with f inding the polynomial 

coefficients using ( 5 .. 27 )  , ( 5 .. 28) and ( 5 .. 29) until we come to the full 

par t of the ma tr ix , i .. e .. , the last n eq ua t io ns .. The unknow n 

coefficients beyond this point should be found by solv ing n simultaneous 



(a) 

(b ) 

Fig , 5 . 2  

"'2 

"c/, 5 

"' 

1 
cf,6 

Arrangement of the base points w. r .  t. the �c_enters 

of interpolation regions in ( a) two dimensions and 

(b) three dimensions. 
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X X 

X X 

X X 
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X X  X :  X X  X X X  X 

I 

X X  X ! X X  X X X  X 
I 

I 

I 

I 
.1 
1 
I 

X X  X I X X X X X  X 

Fig . 5.3  

I 

The arrangement of the matrix of monomials for 

a restricted selection of base points . 
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linear equations, for example, by Gauss elimination. 

5.4. 1 Example 

Consider the approximation of the function 

where 

t = 

The execution time using a CDC 6400 computer to evaluate the 

approximation using equations (5.27) , (5.28) and (5.29) is 0.005 s 

compared with 0.066 s using Gauss elimination. Using equal step size o 

for the interpolation region, the Euclidean norm of the errors in the 

coefficients of the approximating polynomial is plotted against o in 

Fig. 5.4 .  

5 . 5  Preservation of Parameter Symmetry 

If symmetry exists in the original problem it is preferable to 

keep it in the approximation . Generally, there is no guarantee that the 

approximation will be symmetric if the actual function is so unless the 

base points are specially chosen. 

A function f( <1> )  is said to be symmetrical with respect to a 

matrix S if 

( 5 . 3 1 ) 
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Fig . 5 .4 Errors in computing the coefficients of the quadratic approximation 

using dense and sparse matrix approaches . 
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where § is a kxk permutation matrix obtained by interchaning suitable 

rows of a unit matrix. It has exactly one entry of 1 in each row and in 

each column, all other entries being O. 

5 . 5. 1  Lemma 5 . 1  

The transformation S is a one to one maQQing, i . e . ,  

( i) if <Pa = s <Pc and <Pb = s <Pc then <Pa = <Pb 

(ii) if .!° = s !a and !° = s !b then !a = <Pb - -
Proof 

The proof of (i) follows directly from theory of linear algebra. 

To prove (ii) we have 

(5 .. 32) 

The inverse of S exists, since l det(§) I = 1 and is given by the 

transpose of S .  Thus, 

(5. 33) 

and 

(5. 34) 

Q .. E . D .. 
5. 5 .. 2 Corollary 5. 1 

Let !n, n = 1 ,  2, • • • , N, be N distinct vectors then S 1n , n = 

1,  2 ,  . . .  ' N, are N distinct vectors also .. The proof is obvious since S 
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is a one to one transformation. 

5. 5. 3 Theorem 5. 1 

If pn, n = 1, 2, • • • , N, are N degree-2 independent base points 

and if for each base point �n, S �n is a base point also, then P (t) will 

be symmetric with respect to S if f(1) is so. 

Proof 

Consider the system of simultaneous linear equations given by 

(5. 35) 

Knowing that H is symmetric and since the N base points are 

degree-2 independent, this system will have a unique solution a0, � and 

H. 

Replace <t>n by § <l>n in (5. 35) and using the previous corollary, we ... ... 
will have the following system of N simultaneous linear equations in a,0, 
a' and H'. 

where 

and 

ao' -- a • 'O 

H' = sT H S  

(5. 36) 

(5. 37) 

(5.39) 



Comparing (5.35) and (5.36) and knowing that 

the two systems should have a unique solution satisfying 

and 

a = sT a 

H = sT H s - - -
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(5.40) 

(5.41 ) 

(5.42) 

Therefore, the value of the interpolating polynomial P ($) at any point $ 

is given by 

(5.43) 

Now, 

(5.44) 

Using (5. 41) and (5.42) we obtain 

(5.45) 
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for any point !, i. e. , P (<I>)  is symmetric with respect to S. 

The requirements for the previous theorem ,ar� satisfied, for 

example, if in (5. 1 9) we have 

( 5 . 46 )  

S D  sT = !_> ,  ( 5 . 47 ) 

and 

S B . = - - l. �j ' ( 5 . 48 )  

where B . and B ·  are not necessarily distinct columns of B. Accordingly, - ]. _ J  
from (5. 1 9) we have 

i i 
= [ ,2 1 

<I> 2 4> NJ 

<1> ]  

(5. 49) 
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where i1, i2, • • •  , iN, are the corresponding permutations of 1, 2, • • •  

N. 

5 . 6  Preservation of One-dimensional Convexity 

As described in Chapter 2, one-dimensional convexity is the 

property which makes the vertices candidates for the worst case. Hence, 

it is essential to preserve this property in the approximating 

polynomial P (<P) if it already exists in the exact function f( 4>) . 

The following theorem indicates how to choose the base points in 

order to preserve one-dimensional convexity. 

5. 6. 1 Theorem 5. 2 

If there exist three distinct base points !1, 4>2 and 4>3 in the 

ith direction, i. e. ,  

4>j : 4> 1 + C • e . J -1. ' 
(5 . 50) 

where c j, j = 2, 3, are scalars and :i is the unit vector in the i th 

direction, then the interpolating polynomial P (4>) is one-dimensionally 

convex/concave in the ith variable if the interpolated function f( 4>) is 

so . 

Proof 

Assume that P (4>) is not one-dimensionally convex/concave, i . e. ,  
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( 5 . 5 1 ) 

where 

<l>b = ( 5 . 52 ) 

and where c is a scalar. 

Hence, 

( 5 . 53 )  

Expanding P (<l>a+ ( 1 -A) ce . )  and P (<l>a+ce . ) in Taylor series and knowing that 
... ..., l.  ... ... 1 

P (<I>) is a quadratic polynomial, we have 

Thus, 

but since O < ( 1 -A) < 1 ,  hence, 

T H � 0 • e .  e .  / 
... 1 _ ... 1 

( 5 . 54 ) 

( 5 . 55 )  

( 5 . 56 )  
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Without any loss of generality we can number the three base 

points such that 

and 

<j>3 : y <i> 1 + ( 1 -y) <i>2 , 0 < y < 1 • 

<i> 2 = <i> 1 + B e . 
- - J.  ' 

where a is a scalar. 

Then, 

= P (<i> 1 + ( 1 -y) B  e . ) - 1 ' 

= P (<j> 1 ) + ( 1 -y) B e1' ..... l V P (<j> 1 ) + .1 ( 1 -y) 2B 2 e1' H e· 
2 ..... l ..... .....  1 -

= yP (<j> 1 ) + ( 1 -y) [P (<j> 1 ) + B e+ V 
- ]. 

P (<j> 1 ) 1 e+ + 
-

a 2 
2 - l 

- ½<1 -r) s 2�I H ei + .1 (1 -r) 2a 2 e'!' H ei 2 - J. 

= yP (<i> 1 ) + ( 1-Y) P (<i>2) 1 , ' f32 - 2 Y � 1 -Y J 
T 

�i H �i 

(5.57) 

(5.58) 

' 

H e· ]  
- - l. 

' 



But, using (5.56) , 

and since f = P at the base points, then 

f ( ! 3 ) � y f ( 2 1 ) + ( 1 -y ) f ( 2 2 ) ' 
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(5.59) 

(5. 60)  

which contradicts the fact that f(� ) is one-dimensionally convex/concave 

in the ith variable. Hence, the assumption (5.51) is never true. 

5 .. 6 .. 2 Corollary 5. 2 

Q . E  .. D .. 

A quadratic polynomial is one-dimensionally convex/concave if and 

only if all of the diagonal elements of its Hessian matrix are 

nonnegative/nonpositive .. 

The proof follows since inequality (5.56)  is never true. 

The previous corollary allows an easy check on one-dimensional 

convexity of any quadratic function.. In addition, the choice of base 

points as given in (5.19) satisfies the requirement of locating three 

base points in each direction .. 
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5 . 7  Efficient Calculation of Polynomial and Gradients at Vertices 

5.7. 1 Theory 

During optimization the values of the polynomial approximations 

of the different constraints and their gradients ar� required. Hence, 

an efficient technique for these calculations is essential . 

The method used for computing the polynomial and its gradients at 

the vertices exploits simple properties of a quadratic approximation. 

Consider the following two equations relating the polynomial values and 

gradients at a vertex � r to the values at another vertex � s, 

(5.6 1 )  

and 

( 5 . 62 ) 

where H is the Hes sian matrix for the quadratic approximation and V is 

the vector of partial derivatives with respect to the components of � as 

defined in (5. 1 3) and (5. 1 4) ,  respectively. 

Let � r and � s be related as follows 

( 5 . 63 )  

where e . is the unit vector in the ith direction and E1. is the tolerance ... 1 

in the ith variable. 



Hence, we have 

r = s + 2i- 1 

according to the following vertex enumeration scheme: 

where 

k 
r = 1 + E 

i=1 2 
i-1 r 2 , µ i E { -1 , 1 } , 

92  

(5 .. 64) 

(5 .. 65) 

(5 .. 66) 

and where <l>O is the nominal parameter vector and E is a kxk diagonal 

matrix with diagonal elements set to Ei' i = 1, 2, .. .. . , k. 

Then (5. 61) and (5.62) reduce to 

(5.68) 

where Vi is the ith component of v ,  Hii is the ith diagonal element of H 

and Hi is the ith column of H. 
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If � r and � s fall into different interpolation regions, which is 

the case if e:i > oi (see Fig .. 5 .. 5 ) , ( 5  .. 67) and ( 5  .. 68) are no longer 

applicable because of the different polynomials .. 

Let N .  deno tes the number of interpolation regions and H 1, R, = 1 , 1n 

2, .. . ..  , Nin denote the Hessian matrices of the quadratic approximation 

at the different interpolation regions .. 

Define the set I as 

r ti { i  I e:i � 0i, i e {1, 2, .. .. ..  , k } }  • 

It is clear that if ni is the number of elements of I, then 

5 .. 7 .. 2 Algorithm 

k-n 
= 2 i 

( 5 .. 69 ) 

(5 .. 70) 

The efficient algorithm is described by the following steps .. 

Step 1 Compute P 1 ( $S) and V P 1 ( �S) for all s E S, where 

s = {s I s = k 
1 + E 

i:1 

µ� 
J. = 

s 
µ . +1 . 1 1 1--
2
- 2 ' 

{-1, 1} if 

s -1 µi = 

i ' I} .. 

i 
E p . -1 k µ �+1 . J 

R, = 1 + E _l._ 2 J =1 

i:1 2 

if i E: I 

(5 .. 71) 

(5. 72) 
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Fig. 5.5 Three situations created by certain step sizes o = o 1
= o2 

and tolerances. The different. interpolation regions and 

their centers are indicated. 
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Step 2 

Step 3 

if j e I 

if j � I 

and where R, identifies an interpolation region. 

Set J + I. 

If J is empty stop. 

Set i + i 1 where i 1 e1 J and i 1 � j for all j e J. 

Step 4 Find T = e;i + e;i • 

Step 5 

Step 6 

R, R, Find the vector �i = T ai for all t defined by (5.72) . 

For all s e;, S and for all R, calculate 
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(5.73) 

(5.74) 

(5.75) 

R, R, 
where Gii is the ith element of ;�1. and r is defined by (5.64) . 

Step 7 Set S + S U { r  I r = S + 2i-1 , s E' S} , 

J + J - { 1 , 2, • • •  , i} 

and go to Step 2. 

(5.76) 

(5. 77) 

This scheme is illustrated for different cases in Fig. 5.6. The 

computational effort required for considering all vertices compared to 

that required for one vertex only is shown in Table 5. 1 .  



(a) 

(b ) 

cp 1  

Fig. 5. 6 Illustration of the efficient technique for evaluation 

of the approximations and their derivatives. 

( a) n .  = 3 , N .  = 1 and initially s = { 1} 1 1 n 

(b ) n . = 2 ,  N .  = 2 and initially s = { 1 ,  3 }  1 1 n 
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TABLE 5.1 

COMPUTATIONAL EFFORT FOR EVALUATION OF THE QUADRATIC POLYNOMIAL 

AND ITS DERIVATIVES 

Description 

At one vertex only 

At all the vertices using 
original formula 

At all the vertices using 
the efficient scheme 

At all the vertices using 
the efficient scheme when 

n .  = k 
1 

Number of additions 

1 

2 k ( 3k + 5 )  

2k- l
k ( 3k + 5 )  

k- n . 1 n .  
1 1 2 [2k ( 3k+5 ) + ( k+2 ) ( 2  -l) ] +ni 

� ( 3k+7) + ( k+2 )  (2k-l) 

Number of multiplications 

3 
2 k ( k + 1) 

3 X 2k-l 
k ( k + 1) 

k-n . 3 n .  
1 1 2 [� ( k+l) +rti ( k+1) +2 -1] 

� ( k+1) + 2k-1 

\0 
'-J 
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The approximation procedure described permits exploitation of 

available analysis programs, whether they are efficiently written or not 

and whether or not they supply derivative information. Experimental 

data can also be handled, however, a least squares fit might be better 

in this case due to experimental errors. 

The efficient technique for calculating the approximation and its 

gradients can be implemented with a suitable large-change sensitivity 

algorithm, for example, see Leung and Spence (1975) . 

Although it was shown that one-dimensional convexity can be 

preserved in the approximation, convex approximation for a convex 

function is not guaranteed. A sufficient condition is to choose three 

base points along each of an infinite number of possible directions, 

which is unreasonable. 



6.1 Introduction 

CHAPTER 6 

DESIGN ALGORITHMS 

In this chapter, algorithms for worst-case design and for design 

with yield less than 1 00% are presented. The ideas and techniques of 

Chapters 4 and 5 are implemented in the algorithms. The aim of the 

worst-case design algorithm is to facilitate rapid and accurate 

determination of design solutions through a sequence of updated 

multidimensional approximations. The algorithm directs the 

approximations to be performed to critical regions where constraint 

violations might occur. Hence, approximations not only for accurate 

worst-case design but also for reliable yield analysis are to be 

expected. 

The algorithm attempts to minimize the number of evaluations of 

exact functions by collecting as many critical regions as possible 

within each interpolation region. When the yield drops below 100% the 

algorithm retains the approximations obtained during the worst-case 

design and employs the yield formulas presented in Chapter 4. It is 

shown how we can overcome the problem of overlapping nonfeasible 

hypervolumes defined by different constraints. 

Two-section transmission-line transformer and lowpass filter 

examples illustrate the algorithms. 
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6.2 Worst-case Design Algorithm 

Approximation is only done for complicated functions (objective, 

responses or constraints) or functions for which gradient information is 

not available. 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Step 7 

Step 8 

Step 9 

Step 1 0  

Phase 1 :  Updated approximations for a single interpolation 

region .. 

Choose initial values for cp o, E and o .. 

Un ti 1 o i 2. E i , i = 1 , 2, .. .. , k , set o i + 4 o i • 

Set 4>, the center of the interpolation region, to cpo .. 

Choose base points to satisfy (5. 19) and such that cpn 
€ R . ,  n = 

l. 

1 ,  2, .. .. . , N, where R .  is defined in ( 5 .. 1 0) .  
l. 

For each approximated function, interpolation is carried out by 

solving (5.25) .. 

Set cp O and E to values obtained by solving the nonlinear 

programming problem, resulting from worst-case design problem 

described in Chapter 3, and employing the approximations .. 

If l et>� - �1 1 > 1 .. 5 oi for any i, go to Step 2 .. 

Stop if o is sufficiently small. 

Set o + o/4 .. Go to Step 3 if oi 2. Ei for all i .. 

If o . < £ . for any i, go to Phase 2 .. 
l. l. 



6.2.2 

Step 1 

101 

Phase 2 :  Updated approximations in more than one interpolation 

region. 

Interpolation is carried out by solving (5.25) around the 

centers of interpolation (see Fig. 5.5) regions given by 

-;1 E {$ I $ = $o + P E  µ
s , µ � E {- 1 , 1 } ,  i = 1 , 2, . • • , k} , ( 6 .  1 ) 

where 1 = 1 ,  2, ... , Nin 
identifies the interpolation region 

and is given by (5. 72) ,  P is a kxk diagonal matrix with 

elements p .  defined by ( 5 .  73 ) and where base points $n 

J 
satisfy (5. 1 9) and 

Step 2 Set $O and E to values obtained by worst-case design. 

Step 3 Let the set of candidates for active vertices be 

Step 4 

Step 5 

Step 6 

· (6.3) 

where 1 is given by (5.72) , P � is the quadratic approximation 
J 

of the jth constraint at the 1th interpolation region and oav 

is a small positive number for defining the candidates. 

If, for any vertex p
s e Rave' I $� - $f I > 2 �i for any i, 

where 1 and s are related through (5.72) , go to Step 1 .  

Stop if o is sufficiently small. 

Set o + o/4. Go to Step 1 .  
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Comment The procedure can be made more efficient by interpolating a 

constraint gj ( �) , say, in the 1th interpolation region only if 

there exists a vertex <l>s € R1 which has been detected as a 

candidate for being active w . r. t. that constraint after the 

previous optimization. 

6.3 Introduction of Tuning 

The centers of interpolation regions given by (6. 1 )  will not be 

suitable for accurate location of the boundary of the constraint region 

R
0 when tuning is considered .. This boundary is still more important 

than the boundary of the tunable constraint region Rct • 

candidates for active vertices is given by 

R = {_<l>
s 

ave -1) < o } - av , 

The set of 

( 6 . 4 )  

where U is the least pth function defined by (3  .. 1 )  .. Pj is the quadratic 

approximation of the jth constraint at the 1th interpolation region, oav 

is a small positive number for defining the candidates, 

A 
J = { 1, 2, • • •  , m

0
} (6.5) 

and m
0 

is the number of constraints at the vertex <l> s .. The suggested 

centers of interpolation are 

( 6  .. 6)  
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where <I> 
s e; Rave and p * is the optimum of 

(6 .. 7 ) 

Efficiency in finding the approximations can be improved by collecting 

more than one of these suggested centers in one interpolation region, 

for example, let 

min ½ ) , i = 

S€'S9., 

1 ,  2 ,  . .. .  , k ,  ( 6  .. 8) 

where the sets S9., ' 9., = 1 ' 2, .. . .  ' N .  1.n ' are constructed using the 

following steps. 

Step 1 

Step 2 

Step 
3 

Step 4 

Step 5 

Set R + 0 and let N .  = o . in 

Stop if the set (Rave - R) is empty. 

For an s, such that ct> s E. (Rave - R) , if 

;s e {ct> l 2o . > 1 <1> - -<l> r:' I 
- 1. - l. 1. 1.. -- f 11 · S1 } 1, 2, • • • , k, or a r f  , ( 6 . 9 )  

for any Jl. = 1 ,  2 ,  • • • , N .  in ' 
9., 9., set S + S U {s} and go to Step 5. 

Set N· + N · +1 and S in = {s} .  1.n in 

Set R = R U {!s} and go to Step 2. 

Finally, N
in will be the number of interpolation regions. It is 
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to be observed that this construction of the sets s1 , R. = 1, 2, .. .. ..  ' 
N . t . 

in, is no unique .. It depends upon the numbering of the vertices .. 

6 .. 4 Design for Yield Less than 1 00%  

If the yield is relaxed to be less than 100% an accurate 

approximation for the boundary in small interpolation regions may be 

inappropriate. Preferably, the interpolation regions should cover those 

parts of the boundary where violations occur. The active vertices for 

worst-case design identify probable locations where constraints are 

violated if a high but less than 1 00% yield is acceptable .. The 

approximations are, therefore, ultimately centered on active vertices .. 

Based upon the expected yield, a rough estimate for the size of the 

interpolation region is given in the following subsection. 

6. 4 .. 1 Estimation of the Size of the Interpolation Region 

Consider the illustrative two-dimensional example shown in Fig. 

6. 1 ..  Assuming equal nonfeasible hyper volumes determined by the 

candidates for active vertices, defined in ( 6 .. 3) , during a worst-case 

design procedure, we have 

k 
_1_ <1 - y ) 2k n Nav ex i:1 

k 
_1 2k

n � k !  i= 1 
( 6 .. 10) 

where Nav is the number of candidates and Yex is the expected yield. 

Hence, 

k E .  N 
n ( 1 + ...J:.) � 

--=a�v __ 
i= 1 ° i k ! (1 -Yex) .. (6 . 1 1 ) 



expect e d  vertex 

active vertex 

Fig. 6.1 Estimation of a suitable interpolation region 

size according to an expected yield. 
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Assuming a fixed ratio e: .  /o .  ·, i = 1 ,  2 ,  . . .  , k ,  then l l 
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(6 . 12)  

The estimate given in  (6 . 12 ) is only applicable if the resulting oi 

satisfy 

o < oi < e:i , i = 1 ,  2 ,  • • .  , k .  (6 . 13 )  

Otherwise , w e  choose 

oi 2. Ei , i = 1,  2 ,  . • •  , k . (6 . 14) 

6 . 4 . 2  Algorithm 

Step 1 Ex ecute Phase 1 and Phase 2 (if necessary)  of the worst-case 

design algorithm using a consistent stopping o as found in 

Subsection 6 . 4 . 1 . 

Step 2 Find the set of candidates for reference vertices given by 

s = { s I P� < <1> 
s ) < o l . ave J - - av (6 . 15)  

Se e (6 . 3 ) for definition of terms . 

C omment The set of reference vertices Save is the set of candidates for 

worst-case and hence it is available after the worst-case 

Step 3 

design process . 

For each s E Sav e construct the constraint 

gs ( ! ) = U (Pj ( � ) ,  JS , p ,  - 1 )  2. 0 , 

where U is given by ( 3 . 1 ) , p > 1 and 

(6 . 16 )  



Step 4 

Step 5 
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(6.17) 

Choose factors Ki > 1 by which each tolerance is expected to 

increase, i.e., set ei + KiEi' i = 1, 2, . • .  , k. 

Find optimal values for � O and e using the wors t-case nominal 

and the tolerances obtained in Step 4 as starting values for 

the op timization pr oces s . Yield and yie ld sensitivities 

required during optimization are calculated according to the 

constraints g
s

(� ) � O, s E Save · 

Comment The yield and its sensitivities are calculated using updated 

linear cuts as described in Section 4. 8. If the method of 

intersections is used we apply the following steps to avoid 

problems arising from having less than k intersections. 

(a) Obtain default cuts by linearizing g
s (1 ) at 1 s, s e 

at the worst-case design. 

s ave 

( b) Update the sth linear cut using the k intersections if 

they exist, otherwise keep the latest sth linear cut 

fixed, for all s E S • ave 

6. 5 Examples 

6.5.1  Two-section Transmission-line Transformer 

Consider the two-section 10: 1 quarter-wave lossless transmission-

line transformer used by Bandler and Macdonald ( 1969a) . The specifi-

cations and results of the wors t-case tolerance optimization problem of 

the characteristic impedances z1 and z2 over 100% bandwidth are shown in 

Table 6.1 for two different objective functions. The constraint region 



· TABLE 6 . 1 

WORST-CASE DESI GN OF THE TWO-SECTION 10 : 1  QUARTER-WAVE TRANSFORMER 

Cost zo zO 
0 o ,  CDC 

e::1/Zl Ei/Z2 0 N . O . F . E � Time Function 1 . 2  
(%) (%) (sec) 

2 . 5637 5 .. 5 048 14 . 678 9 . 007 O s 4 1 8  7 � 2 13  

cl 2 . 5234 S . 4379 14 . 988 9 . 081 0 . 1 24 9 . 533  

2 . 1515  4 . 7350 12  .. 715 12 . 697 0 . 4  12  2 . 468 

c2 2 . 1494 4 . 7305 12 . 687 12 . 700 0 . 1 1 8  2 . 959 

Starting values Z� = 2 . 2361 ., Z� = 4 . 472 1 , e::1 = 

Frequency points used O .. 5 ., 0 .  6 ,  . . .  , 1. 5 GHz 

0 . 2 and e:2 = 0 . 4 

Ob . . f
. . . • 

C 1 l J ect1ve cost unctions 1 
= -. - + ·-. 

El  Ez 

zo zo . I 2 · C = - + ·-' . · 2  e: e: l 2 

Reflection coefficient specification . f p I < 0 .  55 

*N . O . F . E e  denotes the number of function evaluations 
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and the resulting optimum solutions in two cases are shown in Fig. 6.2 

and Fig. 6.3. An equal value of o 1 and o2 was used. The figures show 

the interpolation regions and the resulting approximations for the 

constraint boundary. The results obtained are contrasted with the 

results obtained by Bandler, Liu and Chen ( 1 975) . 

Subsequently, the approximations obtained at the two active 

vertices for the worst-case problem having the objective function c 1 , 

shown in Table 6. 1 and Fig. 6.2, were used for yield optimization. This 

problem is denoted PO. A rough estimate of o = 0. 1 was obtained using 

(6. 12)  and was used for solving the following two problems: 

minimize 1/E 1 + 1/E2 , 

P l  

subject to 

Y 2. 90% , 

P2 minimize ( 1/E l + 1/E2)/Y 

assuming a uniform distribution of outcomes between tolerance extremes. 

The optimum solutions for P l  and P2 are shown in Table 6.2 and 

contrasted with the worst-case solution PO in Fig. 6. 4. The program 

FLNLP2 by Chu ( 1 974) was used for solving the resulting nonlinear 

programming problem. Since a convex constraint region appears in this 

problem, the v·a1ues of yield obtained are lower bounds for the true 

yields. 



6.5----------------:,,------------, 

6.0 

5.5 

5.0 

4.5 

4.0 

max lp l  S 0.55 

fina l region 
r - -

1 · -- · -- · -- • -- · 1 initial 
solution 

I 

I 
I 

init ial nominal 

•final nominal 

L ____ · ·- . � f inal r ­
solut ion '----------�' � 1 

, - - - - 1  
Lf � J  final region 

I I 

I m inimax I 

, . 
• o pt i mum , ini t ial 

I r L _ _  _ 

region 

--.exact funct ions 

-·- init i al approx imation 
__ .:._ final approxim at ion 

3.5L----------L-L_;__ ____ _.__ ______ ..__ ____ __ 
1 .5 2.0 2.5 3.0 

. Z 1  
Fig. 6. 2 Minimization of 1/ e:1+ 1/ e:2 for the two-section transformer . 

3.5 
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max lp l � 0.55 
6.0 

5.5 
f i n a l  I 

. -·-· - . rin it ia l  solut i on  

fi n a l  solut ion 

5.0 i n i t ia l  
nom i na l  

!1  
--

f i na I 
l • nomina l  

I 
I . .  4.5 
I 

m in i m a x  

L. 
. .  

opt i m u m  
I 
I 

· -- ·  
I 

L: _ _  . : J \ 
=-=-:j-

-- - .exact fu nctions 
-·- i n i t i a l  a pproximation 
- -- fi na l appro.x i rnat ion 

3.5,L-----L-..L-�-----'------L-------' 
1 .5 2.0 2.5 3.0 3.5 

Fig. 6 . 3 Minimization of 



TABLE 6 . 2 

YIELD DETERMINATION AND OPTIMIZATION OF THE TWO-SECTION 
10 :1 QUARTER-WAVE TRANSFORMER 

Problem zo 
1 zo 

2 

. 0 E/Zl 
0 E/Z2 Obj ective Yield 

(%) (%) ( %) 

Pl* 2 . 5273 5 . 3998 21. 09 13 . 51 3.2465 90.0 

P2**  2. 5 290 5 . 1513 31 .44 22.13 3.2597 65.5  

* Minimize l/ E1 + l/ E2 subj ect to yield � 90% 

* *  Minimize (1/ El+ 1/ E2) /Y 
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6 5 ,...---------·---·---�- -----·-----.. . 
max lp l  s 0.55 

6.0 

5.5
r 

PO 

• P 1  

. p2 

5.0 PO ---

P1  

P2 

-exact functi o ns 

3.s-1 ---____J_ .5 2.0 2.5 3.0 
z ,  

Fig , 6.4 The optimum tolerance regions and nominal values for the 

worst-case, 90% yield and optimum yield designs. 
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6 . 5 . 2  Three-component LC Lowpass Filter 

A normalized three-component lowpass ladder network, terminated 

with equal load and source resistances of 1 n is shown in Fig . 6 . 5 . The 

circuit was considered for worst-case design by Bandler, Liu and Chen 

( 1 975 ) . Al though this filter is symmetric a three-dimensional 

approximation was required in order to perform the yield technique 

described before . 

Using equal step size o for all components, a worst-case design 

was first obtained with final o = 0 . 0 1 . The base points used are given 

by ( 5 .  1 9) with 

[ 

0 . 5  

B = -0 . 5  

0 . 8  

-0 . 5  

0 . 5  

0 . 8  

consistent with the vector of components 

<I> = 

1 . 0 

1 . 0 

1 . 0 

This choice of base points should preserve symmetry as indicated in 

Section 5 . 5 .  The specifications and the objective function are given in 

Table 6 . 3. The convergence of the quadratic approximation coefficients 

as the step size o is reduced is shown in Fig . 6 .  6 for the insertion 

loss constraint at the frequency point 2 . 5  rad/s .  The coefficient b4 is 

not shown in the figure .  Its value is close to zero and hence the 



1 C 1 

Fig. 6 .5  The circuit for the LC lowpass filter example. 
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Yield 
(%) 

100 

96 

TABLE 6. 3 

WORST-CASE AND YIELD CONSTRAINED RESULTS OF 
THE LC LOWPASS FILTER 

1. 999 

1. 997 

1. 998 

1. 997 

0 . 9058 

0 . 9033 

9. 88 

11. 23 

9 . 89 

11. 23 

7. 60 

12.46 

Frequency points used 0 . 45 ,  0 . 5 ,  0 . 55 ,  1. 0 in the passband and 

2 . 5 in the stopband 0 0 Ll L2 CO 

Obj ective cost function is - + - + -

E l  E 2  EC 

I nsertion loss specification _::_ 1. 5 dB in the passband and > 25 dB 

in the stopband 
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Fig. 6 . 6 C_onvergence of the quadratic 
U) 
Cl) approximation to the insertion 
::, -
C loss constraint at 2 .5 rad/s. > 
C 
C: 

i;:: 
. ·  2.0 

C> 
C: 

,::, 
C: 
0 a. phase  1 phase 2 u, 
CD '-._ 
0 
0 

+! a.: 
3 

1 .5 
U) .... 
C: 
(l) ·-
0 

i+:: r---change in 1.t 
0 bg for same 8 0 

"'C 

·- ,,/ -. 

C 
E 1 .0 - ·-._ 
0 b3 C: 

b ro I b ,  ,b2 

I 
I 

0.5 I 
I >• 

0.64 0.16 0.04 0.01 0.0025 

step size 8 
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normalized value is highly oscillatory. At the worst-case optimum, 

given in Table 6.3, the active frequency point constraints are 0. 55, 1.0 

and 2 .. 5 rad/s. 

Now, consider the problem given by 

subject to 

Y 2. 96% . 

The quadratic approximation with o = 0.04, which was used in this 

problem, is shown in Table 6. 4 after and before averaging symmetric 

coefficients. The diagonal elements of the Hessian matrix, as defined 

by the coefficients of the approximating polynomial, suggest a one­

dimensionally convex constraint region. Symmetry between L1 and L2 was 

used to reduce computation in finding the values and the gradients of 

the intersections between the or thotope edges and the quadratic 

constraints. The results are shown in Table 6.3 and in Fig. 6.7 .. The 

tolerance for the capacitor ec was approximately doubled, with respect 

to its value for the worst-case design, by allowing the yield to drop to 

96%. 

In order to check the results, a uniformly distributed set of 

10, 000 points was generated inside the tolerance region. The results 

are shown in Table 6. 5. Also shown is the computational time saving 

when the approximation is used for statistical analysis instead of the 

exact constraints. 



TABLE 6.4 

COEFF ICIENTS OF THE QUADRATIC  APPROXIMATION AROUND ACTIVE VERTICES 

Freq . State L
2 

L
2 c2 

L1L
2 L1C L

2
C Ll L

2 
C point 1 2 

before - 0 . 06847  - 0 . 06847 - 0. 57056 . 33 010 0. 92 247 0 . 93855 -1. 67845 -1. 6918 2 - 0.46249  3 . 83750 
0. 55  

after - 0 . 06847 - 0 . 06847  - 0 . 57056  . 33010 0 . 93051 0. 93051 ... 1. 68513 -1. 68513 -0. 46249 3 . 83750 

before - L 12188 -1. 167 02 - 9 . 9 812 2  . 21439 -8 . 16357 - 8 . 30295 10. 21440 10.51832 44 . 18607 - 33. 86206 
1. 00  

after -1. 14445 - L  14445 - 9 . 9812 2  . 21439  - 8 . 23326 - 8 . 23326 10 . 36637 10 . 36637 44. 18607 - 33 . 86 206 

before - L  38601 -1. 422 28 - 9 . 90167 . 39487 - 0 . 92910 - 0. 94732 10.1914 2 10. 32736 3 2. 94001 -46. 93184 
2 . 5 0 

after -1.40414 -1. 40414 -9 . 90167 . . 39487 - 0 . 938 21 � 0. 93821 10. 25939 10. 25939 32. 94001 -46 � 93184 

Coefficients of the quadratic approximations obtained at active . vertices with a step o =  0 . 04. The table  shows 

the _coefficients obtained by the algorithm and the coefficients used for yield determination after averaging 

symmetric coefficients. 

J-1 
J-1 
\.0 



worst - case 
tolerance region 

tolerance 
region for ----t 

96% y ie ld 

C 

Fig. 6.7 The tolerance regions for the worst-case design and the 96% 

yield for the LC filter . The linear cuts shown are based on 

the intersections of the active quadratic constraint approxi­

mations with edges of the tolerance orthotope for 96% yield . 

120 



TABLE 6 .5  

COMPARISON OF METHODS OF YIELD ESTIMATION 
FOR THE LC LOWPASS FILTER 

Description 

Exact constraints 

Approximate constraints 

Yield 
(%)  

96. 59 

96.58 

CDC Time 
( sec) 

20 . 98 

10 .43  

Yield estimation using a set of 10 , 000 uniformly distributed points 
inside the tolerance region for the case of 96% yield according to 
the linear cut. All of the five frequency points were used. 
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6 . 6  Conclusions 
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The alg or ithm for w orst- case des ig n  pr ov i des re l iable 

approximations at critical reg ions where constraint violations might 

occur . For low yield, however, violation by unexpected constraints 

might occur . The relevant approximations may requ ire updating if the 

or ig inal appr ox imations were carr ie d  out far fr om the respect ive 

boundaries of these constraints . 

Final ly, an inexpensive estimate of production yield might be 

checked at a proposed solution by performing _the Monte Carlo analysis in 

conjunction with the final approximations . 



7 .. 1 Introduction 

CHAPTER 7 

PRACTICAL EXAMPLES 

Techniques and algorithms presented in Chapters 4, 5 and 6 are 

now applied to realistic design problems .. 

The first circuit is the Karafin (1971) bandpass filter, which is 

subjected to a statistical analysis .. Yield is estimated assuming 

different probability distribution functions of production outcomes, 

namely, the uniform distribution, the bimodal distribution and the 

normal distribution .. The results obtained are contrasted with the Monte 

Carlo method .. 

Nonlinear programming is used to obtain worst-case designs for 

two-section and three-section inhomogeneous, non ideal waveguide 

transformers .. These structures were previously considered by Bandler 

(1969) , whose analysis program (Bandler / and Macdonald 1969b) was used to 

calculate the required responses .. 

A current switch emitter follower circuit (Ho 1971) is 

investigated in some detail .. An optimal worst-case design and a design 

which maximizes production yield for assumed correlations beetween 

, transistor model parameters are obtained .. 

The examples in this chapter, involving nonlinear programming, 

are solved by transforming the nonlinear program into an unconstrained 

minimax problem by the Bandler-Charalambous ( 197 4 )  technique.. The 

123 
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resulting minimax problem is solved by finding the minimum of the least 

pth objective (Bandler and Charalambous 1 972) using Fletcher's 

unconstrained optimization method (Fletcher 1 972) . 



PA RT I 

YIELD A NALYSIS 

7 . 2 The Karafin Bandpass Filter 

The low-frequency bandpass filter, shown in Fig . 7 .  1, was used 

for verification of the yield formula . This filter was studied in 

various ways by Butler (1971), Karafin (1971, 1974) ,  Pinel and Roberts 

( 1972) and by Bandler and Liu ( 197 4a) .. The insertion loss specifica­

tions are shown in Table 7 .  1 .  All filter components were assumed 

subject to statistical variations, i .e .. , 

L1 

C2 

L3 

{j) 
C4 

L5 

c6 

L7 

C8 

The values of the quality factor Q for each inductor are those 

suggested by Karafin (1974) .. They are associated with nominal values of 

corresponding components taken from Bandler and Liu (1974a) .  ( See Table 

7 .  1 for these and the remaining nominal values .)  

corresponding resistances are 

125 

Accordingly, the 



L1 

1200 

C2 C4 L3 

1200 

Cs --'- . · ·  · Y l I � .  • o---.. 

Fig , 7 ._ l Karafin ' s bandpass fi lter . 

I-' 
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TABLE 7.1 

SPECIFICATIONS FOR THE BANDPASS F ILTER 

Frequency range (Hz) Relative insertion loss ( dB) 

0 - 240 

360 - 490 

700 - 1000 

35 

3 

35 

127 

Type 

lower ( stopband) 

upper ( passband) 

lower ( stopband) 

Reference frequency 420 Hz ( fixed, therefore, ripples higher than 3 dB 
are to be expected in the passband) 

0 0 . -8  0 0 8 Nominal values L1=3 . 0142 , c2=4. 975 x 10 , L3=2.902 , c4=5.0729  x 10- , 

0 0 -7 0 0 -7 Ls=0.82836, C6=5 . 5531 x 10 , L7=0.30319 and Cs=l.6377 x 10 
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RL = 474 .. 27 Q ' 
1 

RL = 127 .. 98 g , 

RL = 47 .. 47 S'2 

5 

and 

RL = 456 . 62 S'2 .. 
7 

7 .. 3 Yield Estimation for the Karafin Filter 

The adjoint network technique of Director and Rohrer (1969) was 

used for evaluating first-order sensitivities and, hence, linearizing 

the constraints at each frequency point in order to obtain the linear 

cuts .. The results produced by Bandler and Liu, as acknowledged by them, 

violate the specifications at certain unconsidered frequency points .. 

The linearization, taking note of this fact, was done for each 

constraint at the worst violating vertex, i .. e . ,  the vertex which gives 

the most negative value for the particular constraint .. All 

linearizations were carried out at worst-case design vertices proposed 

by Bandler and Liu (1974a) , for which 

100 e: I <l>o 
1 1 = 6 .. 99 

100 e:2/ <l>g = 6 .. 52 

100 0 6.97 E:3/ <1>3 = 

100 e:4/ <l>g = 6 .. 55 

100 E:5/ <1>g = 4 .. 36 
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100 €6/ <1>g = 5. 69 

100 €7/<1>9 = 6. 80 

100 €8/<l>g = 5 .. 25 

7., 3. 1  The Uniform Distribution 

A uniform distribution of outcomes inside the tolerance orthotope 

was assumed. The yields obtained by the approach presented in Chapter 4 

and applying the Monte Carlo method with the nonlinear constraints are 

shown in Table 7. 2 for different values of parameter tolerances. Also 

shown are the execution times using a CDC 6400 computer for the approach 

of Section 4. 7 and the Monte Carlo method. The linearization time is 

included in the execution time for calculating the yield. More 

frequency points were considered for larger tolerances. 

additional points provide new linear cuts which do not overlap. 

1.3.2 The Bimodal Distribution 

These 

The parameters were  assumed independent with uniform 

distributions, but with accurate components r emoved. Such a 

distribution was observed by Pinel and Roberts (1972) and used by Pinel 

and Singha! (1977) . According to the approach presented in Chapter 4, 

the following weights for each parameter will result in 

Wi ( 1 ) : 0 . 5 

Wi ( 2 ) :  0 .. 0 

Wi ( 3 ) = 0 . 5 



TABLE 7.2 

COMPARISON WITH THE MONTE CARLO ANALYSIS FOR UNIFORM 
DISTRIBUTION BETWEEN TOLERANCE EXTREMES 

Tolerances ( %) Sample points Yield ( % ) 

0 0 0 0 0 0 0 0 (Hz )  

£/L1 £/C2 £iL3 £/C4 £5/L5 £6/C6 £/L7 £8/C8 Approx. M.C . 

6. 99 6 .52  6. 97 6. 55 4 . 36 5.69 6. 80  5.25 188 , 700 , 876 100.00 99.75 

7.00 7 . 00 7 . 00 7 . 00 5 . 00 6.00 7 . 00 6. 00 188 , 700 , 876 100.00 99.65 

r

8 8 ,  700 , 876 99.99 99.60 

8 . 00 8 . 00 8 . 00 8 . 00 6. 00 7 . 00 8 . 00 7.00 190 , 240 ,  360 , 99.94 99.35 
480 , 490 , 700 , 
860 

10 . 00 10 . 00 10 . 00 10 . 00 10 . 00 10 . 00 10 . 00 10.00 190 , 240 , 360 , 92 . 62 93 . 00 
480 ,  490 ; 700 ,  
860 

CDC time for selecting frequency points = 7 . 65 sec 

* This time includes the linearization time 

* *  2000 points were used in Monte Carlo (M . C . ) analyses with the nonlinear constraints 

CDC Time ( sec) 

Approx.* 

0.67 

0.66 

0.67 

1.56 

1.67 

M.C.** 

24.0 

24.2 

24.4 

52.4 

51.4 

1-l w 
0 
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The problem is equivalent to 28 disjoint orthotopes. The results are 

shown in Table 7.3 and are contrasted with the Monte Carlo method. 

1 . 3.3 The Normal Distribution 

The joint probability distribution function of a normal 

distribution is (Neuts 1973 ) 

F ( <1>) 1 1 ·( 1 ( O) T(C V) ,-1 ( 0) ) = exp --2 <I>- <I> 0 ,1 <I>- <I> , 

(2 ,r)
k/2 /1c�v I - - - - -

where k is the number of parameters, <l>O is the vector of mean values of 

the parameter vector 1 and COV is the covariance matrix. 

If the parameters are uncorrelated, COV is a diagonal matrix 

given by 

cov = 

where o .  is the standard deviation of the ith parameter. Hence, 
1. 



0 
c/> .  - <P .  l 1 

cp? 
1 

[ - 10 , - 5 ] , 

TABLE 7 , 3 

COMPARISON WITH THE MONTE CARLO ANALYSIS FOR 
BIMODAL DISTRI BUTION 

Yield (% )  CDC Time (sec) 
(%) 

Approx . M . C .  Approx .  M . C .  

[ 5 , 10] 68 . 9  71 . 0  4 . 9 .45 . 6 

Frequency points used are 190 , 240 , 360 , 480 , 490 , 700 and 860 Hz 
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F ( 4>) 1 1 
[ 

k 0 2 2
) = ------ exp - E ( 4> . - 4> . )  /2o.  · •  

(2 1Tl/2 11 (Ji ' i:1 1. 1. 1 

i:1 
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The distribution was discretized in the interval (<!>� _ 2 cri, 4>� + 2 cri) 

for each parameter into three equal subintervals. The weights were 

obtained in the following manner. Let (Abramowitz and Stegun 1965) 

11 = 

2 1TCJ . 
1. 

exp (- ( 4> . - 4>? ) 2 
/2 CJ� J d <I> • = 

1. 1. 1, 1. 

(- ( 4> . - 4>� > 2120: J· d4> . = 
1. 1. 1 1. 

0. 2298, 

0. 4950, 

0. 2298. 

Considering a probability of unity for finding 4>i in the interval 

( 4>� _ 2 cri, 4>� + 2 cri) , i. e. , a truncated distribution, the weights for 

each interval are given by 

Wi(1) : 0. 2298/(11 + 12 + 13) : 0. 2407, 

Wi (2) = 0. 4950/(I1 + 12 + I3) = 0. 5186, 

Wi(3) = 0. 2298/(11 + I2 + I3) = 0. 2407. 
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Fig. 7. 2 shows the truncated and the discretized normal distributions. 

The yields obtained are shown in Table 7. 4 ..  Equal standard 

deviations for the eight parameters and for two values, namely, 5% and 

6% of the nominal values were considered. 

Table 7. 5 shows the execution times and the resulting yields for 

different numbers of Monte Carlo analyses applied to the linearized 

constraints. As expected, the yield is affected by changing the number 

of Monte Carlo analyses. 

7. 4 Discussion 

Excellent agreement with the Monte Carlo method validates the 

yield estimates obtained. Thus, a rough solution to a worst-case 

centering and tolerance assignment problem which provides critical 

regions for approximating the boundary of the constraint region can be 

recommended. This allows only essential constraints to be considered 

and justifies a worst-case solution even if less than 100% yield is 

subsequently contemplated. 
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(J .  

<p? 
1 

5 . 0 

6. 0 

TABLE 7.4 

COMPARISON WITH MONTE CARLO ANALYSIS FOR 
NORMALLY DISTRIBUTED COMPONENTS 

(J .  Yield (% ) CDC Time (sec) 1 
(%) <p? Approx. M .  C. Approx. M. C. 1 

5 . 0  96.5  95 . 1  4 . 9  69. 2 

6. 0 88 . 4  87 . 0  7.4 68. 0  

TABLE 7.5 

EFFECT OF NUMBER OF MONTE CARLO ANALYSES ON THE YIELD 
BASED UPON THE LINEARIZED CONSTRAINTS 

( %) N . O . M . P . * Yield ( % )  CDC Time (sec) 

l 
2000 94 .4  24. 6 

500 94 . 2  7 . 0 

200 91. 5  2. 8 

l 
2000 86. 6 24. 3 

500 85 . 2  6. 9 

200 84. 0 2. 8 

N . O. M . P. denotes the number of Monte Carlo points used 
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PART II 

WORST-CASE DESIGN 

7. 5 Two-section Waveguide Transformer 

The two-section waveguide transformer, investigated for a minimax 

( equal-ripple) response by Bandler ( 1969) , was selected to perform a 

tolerance assignment. The general configuration of such a structure is 

illustrated in Fig. 1. 3. A design specification of a reflection 

coefficient of O. 05 over 500 MHz bandwidth centered at 6. 175 GHz was 

chosen. Table 7. 6 shows the dimensions of the input and output 

waveguides and the widths of the two sections. 

The program developed by Bandler and Macdonald (1969b) is used to 

obtain the reflection coefficient. No sensitivities are provided by 

this program. An equal absolute tolerance e: is assumed for the heights 

and the lengths of the two sections. The assumption seems reasonable if 

they are machined in the same manner. 

The objective is to maximize the absolute tolerance e:. The 

optimum nominal point and associated tolerance, given in Table 7. 7, were 

obtained by the worst-case design algorithm presented in Section 6 .  2. 

The program FLOPT4 (Bandler and Sinha 1977) was used for solving the 

nonlinear program: 

subject to 

maximize e: 

R c: R 
V C 
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Fig. 7.3 Illustrations of an inhomogeneous waveguide transformer. 
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TABLE 7 . 6 

FIXED PARAMETERS AND SPECIF ICATIONS FOR THE 
TWO-SECTION WAVEGUIDE TRANSFORMER 

Description Width Beight 
(cm) (cm) 

Input guide 3 .. 48488 0 .. 508 

First section  3 .. 6 variable  

Second section  3 . 8 variable 

Output guide 4 . 0386 . 2 . 0193 

Frequency points used 5 . 925 , 6 .. 175 , 6 . 425 GHz 

Reflection coefficient specification I P  I � 0 . 05 

Minimax solution (no tolerances ) I P I = 0 . 00443 
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Length 
(cm) 

00 

variable 

variable 

00 



TABLE 7.7 

. flESULTS CONTRASTING THE TOLERANCED SOLUTION AND 
THE MINIMAX SOLUTION WITH NO TOLERANCES FOR THE 

TWO-SECTION WAVEGUIDE TRANSFORMER 

bl b2 ,Q,1 
Description ( cm) ( cm) ( cm) 

Toleranced o .. 728 1 2  1 .  42432 1. 55409 optimum 

Minimax: o .  71315 1.39661 1 . 56044 optimum 

Equal absolute value of tolerance = 0 . 02013 cm 

Number of complete response evaluations = 45  

CDC time ( approximation and optimization) = 33 s 

R,2 

( cm) 

1 ., 51153 

1 .  51621 
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Due to ill conditioning, early results (Bandler and Abdel-Malek 

1977a) were not the best possible. Shifting by a constant value the 

level of all functions involved in the minimax formulation, a tolerance 

of 0.02013 cm was obtained. The number of actual response evaluations 

to reach the optimum starting from the minimax optimum (no tolerances) 

is shown in Table 7 .. 7 ..  The execution time shown includes both 

approximation and optimization times. 

The minimax, nominal and the upper envelope of worst-case 

responses are shown in Fig. 7 .. 4. The numbering scheme of the vertices 

is that given by (2 .. 9) with the parameter vector 

<I> = 

Vertices which fall within the worst-case upper envelope are not 

indicated in Fig .. 7 .. 4. It was observed, however, that vertices 2, 6, 10 

and 14 are either active or almost active w .. r .. t. the reflection 

coefficient constraint at band center . Furthermore, vertices 3, 7, 11 

and 15 are either active or almost active near the band extremes .. 

Hence, when b1 is at its positive extreme while b2 at its negative 

extreme, the frequency point at the center of the band is more likely to 

be violated .. The edges of the band are critical frequency points when 

b1 is at its negative extreme while b2 is at its positive extreme .. 

Retaining the approximations obtained by the worst-case design 
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procedure subsequently facilitates inexpensive Monte Carlo analyses. 

Hence, different statistical distributions of outcomes may be assumed 

and estimates of corresponding yields obtained. Assuming E = 0. 03 cm, 

for example, while keeping the worst-case nominal obtained, 5 00  

uniformly distributed Monte Carlo analyses were conducted with the 

approximation and with the actual functions. The approximation yields 

excellent results 12 times faster as shown in Table 7. 8. 

7. 6 Three-section Waveguide Transformer 

The three-section transformer with ideal junctions for which a 

minimax optimum was obtained by Bandler (1969 ) is considered for 

tolerance assignment. Specifications and dimensions of input and output 

waveguides are given in Table 7. 9. 

Nonideal junctions were assumed and the widths of the three . 

sections were fixed for convenience, so that the step changes are equal 

from one section to the next . An equal tolerance in the heights and 

lengths of the three sections was maximized for the reason given in 

Section 7. 5. 

Starting at the minimax optimum with equal steps of 0. 02 for the 

interpolation region the results shown in Table 7. 10 were obtained. The 

program FLOPT4 (Bandler and Sinha 1977) was used for solving the 

nonlinear programming problem formulated for the worst-case design. 

Fig. 7. 5 shows the upper envelope of worst-case responses as well as the 

nominal design response. Although the envelope shows one vertex which 

is active at the lower frequency edge of the band, several other 

adjacent vertices, which restricted the increase in tolerance, are 



TABLE 7. 8 

COMPARISON OF METHODS OF YIELD ESTIMATION FOR THE 
TWO-SECTION WAVEGUIDE TRANSFORMER 

Number 
of points 

500 

Tolerance 

0 . 03 

Yield ( %) -------
Approx . Actual 

87 . 6  88 . 6  

CDC Time ( sec) 

Approx . Actual 

0 . 4  5 
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TABLE 7 . 9  

t FIXED PAR.Ai�ETERS AND SPECIFICATIONS FOR THE 
THREE-SECTION WAVEGUIDE TRANSFORMER 

Description Width Height 
( cni) (cm) 

Input guide 3 0 48488 0 .. 762 

First section 3 . 30581 variable 

Second section 3 .12674 variable  

Third section 2 . 94767 variabl e  

Output guide 2 . 76860 1. 60325-

Frequency points used s· . 7 ,  6 .. 1, 6 .  45 , 6 .  8 ,  7 .  2 GHz 

Length 
(cm) 

00 

variable  

. variable 

variable  

co 

Reflection coefficient specification I P I _::. 0 .. 050 (nonideal junctions} 

Minimax sol ution ( no tolerances) ( p I = O_ . 017 (ideal j unctions) 

' 
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TABLE 7 . 10 

RESULTS CONTRASTING THE TOLERANCED SOLUTION AND THE MINIMAX SOLUTION 
WITH NO TOLERANCES FOR THE THREE-SECTION WAVEGUIDE TRANSFORMER 

Description bl b2 b3 ,Q,l !l 2 t . 

( cm) ( cm) ( cm) ( cm) ( cm) (cm} 

Toleranced 0 . 91034 1 .. 36526 · 1. 70189  1 . 45242 1. 53875 . 1 . 63253. optimum 

Minimax 0 . 90318 1 . 37093 1 .  73609 1. 54879 1 .  58375 1. 64590 optimum 

Equal absolute value of  tolerance = 0 . 01383  cm 

Number of complete response evaluations = 56 

CDC time ( approximation and optimization) = 167. s 



..... 
C 
Q) -u . ......  � 
G) 
0 
0 

C 
0 -.,._ 
0 
(1> 

;;:: 
Q) .... 

.07 

.06 
\ \ 

specificat ion  

\ \11// / / / / / / / / / / / / / /  
.05 

.04 · · 

.03 

I \ 39 numbers identify vertices 

.02 

.0 1 

Q r..----_x; __ __,___ _____ _,,__ _____ ___._ _____ _ 
5.5 6.0 6.5 7.0 

frequency GHz 
Fig . 7 ,5 Nominal and upper envelope of worst-case responses 

for the three-section waveguide transformer. 

7.5 

I-' 
+="' 
'-I 



148 

almost active .. This appears to explain the fact that the envelope is 

substantially lower than the specification at other frequencies. 

In order to show the benefits of retaining the approximations 

developed by the worst-case design algorithm, a Monte Carlo analysis was 

conducted with the actual functions and with the approximations. An 

equal tolerance of O. 02 cm was assumed around the worst-case nominal 

design and 500 uniformly distributed points were generated .. The 

resulting yields and execution times are contrasted in Table 7.11 .. 

7.7 Discussion 

Optimal assignment of tolerances on the physical dimensions of 

multisection inhomogeneous waveguide transformers has been successfully 

investigated . It is evident how the design centering scheme provides 

reliable approximations facilitating subsequent inexpensive statistical 

analyses . 

A check on the goodness of an approximation at each frequency 

point considered was done by comparing it with the final actual 

worst-case response. An agreement of at least three significant figures 

was obtained in these transformer examples, which is well suited to 

current fabrication and measurement capabilities for these waveguide 

structures. 



Number 
of points 

5 00 

TABLE 7 .11 

COMPARISON OF METHODS OF YIELD ESTIMATION FOR 
THE THREE-SECTION WAVEGUIDE TRANSFORMER 

Tolerance 
£ 

Yield (%) CDC Time ( sec) 

0 . 02 

Approx . Actual Approx . 

96 . 4  96 . 0  1 

Actual 

1 1 . 5  
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PART III 

YIELD OPTIMIZATION 

7 .. 8 Optimal Design of a Nonlinear Switching Circuit 

Statistical design is appl ied to a current switch emitter 

follower (CSEF) circuit which was previously investigated by Ho (1971) 

in the context of sensitivity calculations. 

The circuit is shown in Fig .. 7 .. 6 .. The decoupled equivalent 

circuit of the transmission line is used (Calahan 1972) .. Considering a 

lossl ess transmission line and the charge-control model of the 

transistors as well as the diode the circuit is shown in Fig .. 7 .. 7 .. The 

following two equations are used for the transmission line model .. 

ui(t) = [ e0 (t-f) + z0 io (t-i ) J U (t-i) + \ Ct) , 

ur Ct) = [ e2( t- -r) + Zo i2(t-t J ]  U (t--r) + 4>r (t) , 

where Z0 and -r are the characteristic impedance and the delay time of 

the transmission line, respectively, U is the step function given by 

U (t- -r) = { 
0

1 

t ( T 

t L T 

The parameter 4> represents the initial voltage distribution stored on 

the transmission line .. Thus, we take 

for t 2. -r .. 
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The original circuit parameters and model parameters are given in Table 

7.12. The state equations are formulated as described in Appendix A .. 

The Subroutine DVOGER (IMSL Library 1975) ,  based on Gear's 

integration algorithm (Gear 1971a) , was used .. The algorithm has a 

variable step and hence interpolation was used to find the values of 

Ui(t) and ur (t) if t - T falls between time steps .. Alternatively, Tin, 

where n is an integer can be used as a fixed step, however, integration 

will be expensive .. 

7 .. 9 Worst-case Design of the CSEF 

The parameter vector considered for a worst-case design (see Fig .. 

7 .. 7) is 

! = 

The corresponding tolerances are denoted by £1, £2, £3 and E4 .. Fig .. 7 .. 8 

shows the input voltage E 1 and the time point constraints used .. The 

response obtained with the parameter values in Table 7 .. 12 are also 

shown .. The circuit is initially at equilibrium with E1 = -0 .. 776 V .. 

The optimal worst-case nominal parameters and tolerances are 

shown in Table 7 .. 13 .. Two approximations according to Phase 1 of the 

worst-case design algorithm (Subsection 6 .. 2 .. 1) were required and hence 

30 response evaluations .. The nominal design response as well as the 



8 

TABLE 7.12 ( a) 

CIRCUIT PARAMETER VALUES 

Rl 281.  33 Q 

R2 75 . 00 Q 

R3 78 . 24 Q 

R4 50 . 00 Q 

E2 4 . 03 V 

E3 1 .13 V 

E4 1. 70 V 

co 1. 50 pF 

TABLE 7 ,12 ( b) 

DIODE MODEL PARAMETERS 

diode saturation current 

depletion layer capacitance 

transit time 

inverse of thermal potential 

ID
= ISD ( exp ( 8VD) - l ) 

dID CD
= CJD + TTD dV 

D 

-9 0. 6 x 10 A 

0. 12 pF 

0. 01 ns 

38. 668 v-1 
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ci 

TT 

e 

IE 

IC 

CE 

= 

= 

= 

TABLE 7 ,12( c) 

TRANSISTOR MODEL PARAMETERS 

saturation current 

common base current gain 

base resistance 

collector j unction capacitance 

emitter j unction depletion 
layer capacitance 

base transit time 

inverse of thermal potential 

IS ( exp ( 8V BE ) -1) 

a. IE dIE CJE + TT --
dVBE 

0 6 10-9  A • X 

0 . 99 

so . o n 

0 . 5  pF 

0 . 12 pF 

0 . 01 ns 

38. 668 v-1 

RB and CC are assumed zero for transistor 'T3 

'[ 

TABLE 7 ,12 ( d) 

TRANSMISSION LINE PARAMETERS 

characteristic impedance 

delay time 

so n 

0 . 25 ns 
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TABLE 7 .13 

WORST-CASE DESIGN FOR THE CSEF CIRCUIT 

EO 

4 zo 

0 RO 

4 
(V) ( n) en) 

1.655 92.004 45.533 

4 
Obj ective cost function I 

i=l  

Number of complete response 

CDC modeling time = 48 s 

CDC time ( approximation and 

co 0 
0 8l/E4 

( pF) 

1. 248 

0 
<l> . Is . 

l l 

(%) 

4.46 

evaluations = 

optimization) 

30 

= 

0 sz!Zo 

(%) ·  

8.29 

103 s 

157 

0 
8iR4 

0 s/C
o 

(%) (%) 

13 . 77 14.00 
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responses for the active vertices are also shown in Fig. 7 .. 8 ..  The 

output capacitor c0 was constrained such that 

cg _ E4 2.. 1 .0 pF. 

This constraint was designed to prevent an unrealistic nominal value. 

7 .. 1 0 Statistical Design of the CSEF 

The output section of the CSEF circuit was optimally designed to 

provide maximum yield. The statistical distributions of the circuit 

parameters and the transistor model parameters were assumed to be fixed. 

The nominal values of the output circuit parameters were optimized in 

order to obtain maximum yield. 

The statistical distr ibutions of the transistor T3 model 

parameters are based upon results published by Butler ( 1 97 4) and by 

Balaban and Golembeski (1 975).  The transistor current gain a was 

assumed to have a triangular probability distribution function with a 

peak at a = 60 and 40 .s. a .s. 1 00. Correlation between transistor model 

parameters ( see Table 7. 1 2  ( c) ) was established according to the 

following equations 

IS = 0.006 1  a ( 1  + 0.35 1 6  xr 1 ) x 1 0-9 A , 

CJE = (0.1 44 - 0. 242 X 1 0-3$) (1  + 0. 2  Xr2) pF ' 

TT = o .. 0 1 ( 1  + 0 .. 2 Xr3) ns , 

where Xri are independent uniformly distributed random numbers over the 
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range 

-1 s. xri s. 1 ,  i = 1, 2, 3. 

The numerical coefficients in each of these equations were obtained by 

preserving the . ratios of the corresponding coefficients of Balaban and 

Golembeski (1 975) and, at the same time, ensuring that they lead to the 

same nominal values we have. According to these distributions the 

weights and intervals for the discretized distribution were determined 

and are shown in Table 7. 14. 

The circuit parameters were assumed to have the distributions 

where, again, 

E4 = E� + 0. 1 632 Xr4 , 

Zo = zg + 9. 5  Xr5 

R4 = Rg + 4. 4 Xr6 

CO = cg + 0.27 Xr7 , 

-1 s. xri s. 1 , i = 4, 5, 6, 7 • 

The yield was maximized and constraints on the output capacitance c0 as 

well as on the transmission line char acteristic impedance were 

introduced. These constraints are 

cO o 2. 1 . 27 pF , 
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TABLE 7 .14 

RESULTING WEIGHTS DUE TO CORRELATION BETWEEN 13 , IS AND C JE 

a* ** 
e:I i S' 

IS 
-9 = 0.2 2lxl0 A 

CJE 
**  

e:C  i = 0.0218 pF 
JE ' 

E: • 
13 , 1

13 

w E: a , i w 
a 

wl w2 w3 wl w2 w3 
-

20.0 0.3333 0.0080 0. 3333 0.8320 0.1680 0.0000 0. 2345 0.4084 0. 3571 

20.0 0.5000 0.0041 0.5000 0.3599 o .  6113 0.0288 0.3174 0.4258 0.2568 

20.0 0.1667 0.0024 0 . 1667 0.0744 0.5731 0.3525 0.4059 0.4472 0.1469 

* a = 13/ (13+1) 
* *  Equal intervals for IS and CJE are considered 

-9  Lower extremes of the parameters are 13 = 40.0 , a = 0.9756, IS = 0.1582xl0 A 

and CJE = 0.0958 pF 

t-,l °' 
0 
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zg � Zou ' 

where Zou is an upper bound on the characteristic impedance of the 

transmission line. The specifications considered are 

Vo (t) � -L 45 V, t = 0. 3 ns, 

v0 (t) 2. -0. 85 V, t = 0. 62, o. 69, 0 .. 8 ns 

V0 (t) � -1 . 40 v , t = 1. 02, 1. 09, 1 . 2 ns 

According to these specifications and the assumed statistical 

distributions the yield was maximized allowing the nominal parameter 

vector 

q> = 

to vary. The yield and yield sensitivities were obtained using linear 

cuts obtained from the quadratic approximations as described in 

Subsection 4. 8. 2. The interpolation region size and center are shown in 

Table 7. 1 5. 

The results obtained for two different upper bounds on the 

characteristic impedance zo are shown in Table 7. 1 6. In order to check 

the results, 1000 Monte Carlo points were generated according to the 

assumed statistical distribution in conjunction with the quadratic 

approximations. The resulting yields are also tabulated in Table 7. 1 6. 
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8 

E4 

(V) 

zo 
(n) 

1 . 632 95 . 0 

0 . 170  1 5 . 0  

TABLE 7 . 1 5  

INTERPOLATION REG ION S IZE  AND CENTER 

FOR THE CSEF EXAMPLE 

R4 

(Q) 

44 . 0  

1 0 . 0 

co 
(pF) 

1 . 35 

0 . 45 

a,3 IS3 

(10 -9A) 

CJE3  

(pF ) 

TT3 

(ns ) 

0 . 98285 0 . 49135 0 . 1285  0 . 0100 

0 . 00786 0 . 34400 0 . 0380 0 . 0025 

t-' °' 
N 
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Description 

Starting values 

Optimum for 
Zou = 100 Q 

Optimum for 
z0u = 105 Q 

TABLE 7 .16 

RESULTS FOR THE MAXIMIZATION OF YIELD 

FOR THE CSEF C IRCUIT 

EO 
z

o RO co Optimization 4 0 4 0 time 
(V ) (Q) ( Q) (pF) ( sec) 

1. 632 95 . 00 44 . 00 1. 35 -

1.595 100 . 0 0  51. 15 1. 27 67 . 8  

1. 638 105 . 00 53 . 07 1.  27 40 . 6  

CDC modeling time = 74 s 

CDC time required for M . C .  employing approximation � 5 s 

Yield ( % ) 

Linear cut 

25 . 7  

58 . 6  

85 . 6  

M . C .  

39 . 4 

68 . 9  

89 . 1 

I-' °' w 
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It has been indicated that constraints may be required to bound 

the nominal parameter values. Otherwise, unrealistic parameter values 

can be obtained, for example, zero output capacitance. 

For the worst-case design obtained the power dissipated in the 

output circuit is 0. 1854 mW at the nominal solution. It is 0 . 365 mW for 

the original design at equilibrium when E1 = -0. 776. This saves power 

and limits fluctuations in chip temperature. 

Other integration techniques, different from Gear's method, were 

tried for simulating the circuit response. It seems that the state 

equations we have are stiff differential equations and hence the 

Runge-Kutta and Adams methods were not successful (Gear 1971b, Chua and 

Lin 1975) . 

A single interpolation region was found to be satisfactory. The 

difference between the predicted responses at vertices according to the 

approximations and the actual responses subsequently checked by 

integration was, over the sample points used, less than 2%. A Monte 

Carlo analysis was not conducted with the response calculated by 

integration since each such simulation on a CDC 6400 computer takes 

about 1 . 7  execution seconds. 



CHAPTER 8 

CONCLUSIONS 

In this thesis, the problem of design centering, tolerancing and 

tuning for both restricted and unrestricted production yield have been 

considered. The equivalent tolerance problem allows us to deal only 

with the optimal assignment of design tolerances. The concept of a 

tunable constraint region, resulting from the equivalent tolerance 

problem, permits the estimation of production yield by calculating 

weighted hypervolumes even if the design employs tunable parameters .. 

The analytical approach to calculating production yield 

facilitates the evaluation of yield sensitivities. As far as the author 

is aware, the only available method which provides yield sensitivities 

and hence permits the use of efficient optimiz_ation techniques is that 

presented in Chapter 4 .. The method is general enough to be applied with 

any statistical distribution and not necessarily for electrical 

circuits .. The idea of evaluating yield based on linear cuts has been 

thought of independently by Spence*. In principal, the technique 

approximates the integration of the PDF over the constraint region or 

the tunable constraint region. 

A multidimensional approximation procedure designed to suit the 

toler ance problem has been presented. The procedure not only 

facilitates efficient use of any simulation program but also provides 

* R .. Spence, Dept. of Electrical Engineering, Imperial College, London, 

England, private communication, April 1977. 
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reliable approximations to be used for calculating production yield 

through linear cuts. The cuts provided by the quadratic approximations 

are not fixed but dynamic depending upon the location of the tolerance 

orthotope relative to the approximate constraint boundary. 

Alternative methods for evaluating production yield have been 

indicated. For a fixed nominal point, statistical analysis may be 

performed based upon fixed linear cuts or Monte Carlo analysis in 

conjunction with the actual constraints. The former method proved to be 

less expensive. If a design center is being sought use is recommended 

of a method which pr ovides reliable �ppr oximations. These 

approximations facilitate subsequent inexpensive statistical analyses. 

Hence, manufacturing yield may be maximized for a fixed distribution of 

production outcomes or unit cost may be minimized for unrestricted yield 

efficiently by employing the approximations. 

Promising directions for further research have been revealed by 

this work. 

( 1) Modification of the hypervolume formula in order to obtain the 

exact hypervolume in the case of overlapping linear cuts inside 

the tolerance orthotope. 

(2) The evaluation of production yield for circuits having responses 

which can be expressed as biquadratic functions of the parameter 

of interest. Since finding the intersections of these responses 

with the orthotope edges reduce to solving quadratic equations, 

linear cuts based upon these intersections as described in 

Subsection 4.8.1 can be obtained. 

(3) An implementation of the efficient technique for evaluating the 
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quadratic approximation in a discrete problem. Large savings are 

expected by employing the quadratic approximation in the branch 

and bound technique (Dakin 1966) . 

( 4 )  The selection of candidates for worst cases in order to reduce 

the number of constraints in the nonlinear program is not yet 

optimally automated. Fast detection of worst cases still 

requires further investigation (Tromp 1977) . 



APPENDIX A 

TOPOLOGICAL FORMULATION OF THE STATE EQUATIONS 

FOR THE CSEF CIRCUIT 

The basic steps required in the formulation of the state 

equations for nonlinear networks are sketched out. For further details 

see Chua and Lin (1975) .  

Step 1 Formation and characterization of network branches 

Step 2 

Step 3 

This step involves the characterization of linear and 

nonlinear elements, controlled and independent sources and tree 

and cotree (link) branches. The choice of the tree branches is 

based upon 

(i) all independent and controlled voltage sources, 

(ii) as many capacitors as possible, 

(iii) as many resistors as possible, 

(iv) as few inductors as possible, 

(v) no independent current sources. 

Solving the resistive nonlinear subnetwork 

We solve for the voltages across the nonlinear resistors 

in the tree as well as the currents in the nonlinear resistors 

in the cotree. 

Solving the loops which include capacitors only and the outsets 

which include inductors only 

In this step we express the currents in the cotree 
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Step 4 
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capacitors and the voltages across the tree inductors in terms 

of the derivatives (w.r. t .  time) of the tree capacitor voltages 

and the cotree inductor currents. Also, they may well be 

functions of the derivatives of voltages of the tree inde­

pendent voltage sources and derivatives of currents of cotree 

independent current sources (if these derivatives exist) . 

Collecting relationships derived so far to formulate the state 

equations .. 

Regarding the CSEF circuit shown in Fig. 7. 7, the input and 

output circuits can be treated independently. 

A. 1 Formulation of the State Equations for the Input Circuit 

The tree chosen according to the priorities mentioned before is 

shown in Fig. A. 1. According to this tree, the set of independent KCL 

equations is 

where 

D i = 0 

!ET 

!cT 
i = !RT 

!RL 

!JL 

(A. 1) 

(A. 2) 



Fig. A. I Directed graph of the input circuit and branch 

numbering . 

- Tree chosen 

- - -- Link 
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A 
*.ET = 

kT 

fRT 

kRL 

!JL 

and where 

1 

D = 

r 1 

Tree voltage source currents 
I2 = 

� 

A 
= 

A = 

A 

Tree capacitor currents 

Tree resistor currents 

Link resistor currents 

Link current sources 

I -1 
I 
I 

-1 
-1 -1 

-1 

I5 

I6 = 
I7 

I3 

= [ I9] 

r 1 0  

I 1 1  

= 1 1 2  

1 1 3  

1 1 4  

1 1 5 

1 1 6  = 
1 1 7  

I 1 a 

-1 

I -1 I 

I3 

I4 

' 

. i--------------------J-------------
1 I 

l -1 1 l 
l 1 -1 -1 l 1 

-1 

: -1 -1 I 1 
I 1 I -1 
l--------------------J-------------
1 I 

1 l -1 1 -1 -1 -1 I 
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( A . 3 )  

(A.4) 

( A . 6 )  

(A.7) 

(A.8) 
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Hence, we can write (A .. 1) as 

!ET 

[ 
!211 Q 12 IcT 

1t !221 1222 !RT = Q (A .. 9 ) -9 

�31 !232 IRL 

!JL 

where 

= [ - 1 
-1 

�11 1 -1 -1 - 1 l ' 
(A.10) 

-1 
-1 

�12 = Q ' (A. 11) 

= [ - 1 
-1 

_ ; ] · !221 1 -1 (A .. 12) 
-1 

r , 
-1 

_J �22 = ' (A.13) 

l 
1 

�31 = [ -1 1 -1 -1 -1] ' (A.14) 

�32 = � (A .. 15) 

and !9 
is the identity matrix of order 9 .. 
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The KVL equations can be written as 

�ET 

[ �; 
1 T DT I 

l 
�CT 

�21 - 31 I = 0 

T T I -!g YRT 
�12 �22 �32 1 

�RL 

(A  .. 16) 

�JL 

where superscript T denotes transposition .. 

It is required to represent the link currents 
�RL in terms of YET 

and YcT "  

where 

We have 

�RL = �L !RL 

= T 
�11 YET 

R2 

�L = 

T 
+ �21 YcT 

R3 
RB1 

Using (A .. 9) and (A .. 15) we can write 

Thus, 

T + �31 YRT ' 

RB2 zJ 

�RT = �T !RT = - �T �31 !RL , 

(A  .. 17) 

(A .. 1 8) 

(A  .. 19) 

(A  .. 2 0) 
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where 

(A .. 21) 

Substituting for �RT in (A.17) and with some manipulations, we obtain 

where 

From (A.5) ,  we have 

Substituting for !RL from (A.22),  the state equations are 

More explicitly, they can be written as 

Cc1 dVc1/dt E1 Vc1 116 

CE1 dVBE1l dt 
R-1 

��1 
E2 

+ �] 1 
VBE1 -115 

-1221 CE2 dVBE2/dt E3 VBE2 -117 

Cc2 dVc2/dt Ur Vc2 118 

where 

(A.22) 

(A.23) 

(A.24) 

(A.25) 



A . 2  Formulation of the State Equations for the Output Circuit 
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(A . 29) 

(A . 30) 

(A . 31) 

(A.32) 

Figure A.2 shows the chosen tree and branch numbering. The set 

of independent KCL equations is 

where 

D i = 0 

1 - 1 
1 - 1 

= 1 1 - 1 - 1 
1 - 1 1 - 1 

1 - 1 - 1 1 

i = 

� 
-- [ rI21 ] ' 

lET = Tree voltage source currents 

(A . 33) 

(A . 34) 

(A.36) 



/ 
aIE3 / . ) /9 

I 
I 

____ _,,,,,,,,,,. 

/ 
6 /  � 
H4 

F_ig , A .  2 Directed graph of the output circuit and branch numbering . 

- Tree chosen 

- - - - Link 
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Hence, 

where 

/). 
!CT Tree capacitor currents = I4 

/). Link resistor currents 

!a 

I - 5  

!JL � Link current sources = !9 

� 1 0  

The KVL equations are 

- 1 1 
- 1 - 1 - 1 

1 
- 1 - 1 

- 1 
� 1  - 1 

- 1 
- 1 - 1 

1 - 1 

= �11 �ET + ��1 �CT , 

� = [ 
R4 zJ 

� 1 1  = [
- 1 

- 1] , 

177  

( A .  37 ) 

( A .. 38 ) 

( A  .. 39 )  

�ET 

�CT = 0 (A  .. 40) 
�RL 

YJL 

(A.41) 

(A.42) 

( A  .. 43 ) 



�21 -- [ 
1 

Thus, 

From (A.33) , we have 

and 

-1 
l -1 .. 

-1 
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(A .. 44) 

(A. 45) 

(A. 46 ) 

(A . 47) 

Substituting for !RL from (A.45) into (A .. 47) , the state equations are 

Or, more explicitly, the state equations are 

Co dV0/dt 

CE3 dVBE/dt = 

CD dVn/dt 

where 

[
1/ R4 ] -P21 

1/Zo 

T T [p 11 P21 J 

(A. 48) 

E4 

ui lg 

Vo + Ig-18 , (A. 49) 

VBE3 , lg-I 10 

VD 

(A .. 50) 

(A .. 51) 

(A. 52) 
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I9 = a Ia ' (A. 53) 

I10 = Iso (exp( e Vo) -1) (A. 54) 

If the diode is similar to the transistor base emitter junction, 

then 

(A. 55) 

and 

I10 = Ia . ( A . 56 )  

Hence, the three state equations (A. 49) can be reduced to the following 

two equations 

Co dVo/dt 1/R4 -1 1 

f1 � 1 + 

CE3 dVBE3/dt 1/Zo -1 -1 

l 

-2J 

E 4 

Ui 

Vo 

I9 

+ (A.57) 

I9-Ia 
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SUBJECT INDEX 

Adjoint network, 128 

Approximation, 

Chebyshev, 2 
multidimensional, 4, 69 etseq. 
nominal, 2 
quadratic, 4, 69, 71 etseq. 
simplicial (see simplicial approximation) 

Base points, 69-70, 75 etseq. 

Biquadratic function, 166 

Branch and bound, 167 

Constraints, 4, 10 etseq. 

active, 31 
linear, 50 
quadratic, 52 

Convexity, 13, 15 
one-dimnesional, 11-14, 31, 69, 87-90 

Correlation, 123, 158 

Cost function, 19 

Design, 

examples of, 20, 108 
unit , 2 O, 109 

centering, 1, 4, 13 etseq. 
statistical, 3 
outcome of, 8 
worst-case (100% yield) , 2, 5, 30-32, 100-102 
yield less than 100%, 5, 104-107 

Distributions, 8 

arbitrary, 34, 56-68 
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SUBJECT INDEX (continued) 

bimodal, 123, 129 
normal, 24, 123, 131-136 
uniform, 30, 34, 36-55, 109, 118, 123 

Equivalent tolerance problem, 5, 25 etseq. 

Hypervolume, 30, 34, 36 etseq. 

sensitivities, 30, 39 
weighted, 35, 58 

Importance sampling, 22 

Interpolation (see also approximation) , 

center of, 72, 100-104 
region, 69, 72, 100-104 

Least pth function, 25-26 

Least squares, 2 

Linear cut, 34, 36 

Linear programming, 15, 18 

Minimax, 2, 3, 32, 123 

Monomials, 70 

Monte Carlo method, 7, 21-22 etseq. 

Nonlinear programming, 4, 7, 18 etseq. 

Objective function (see cost function) 

One-dimensional search, 15 

One-way tuning, 10 

Orthocell, 35 
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SUBJECT INDEX (continued) 

Orthotope , 9 

tolerance (see regions) 

Overlapping , 50 , 99 

Performance contour , 13-16 

Polynomials (see also approximation) , 

quadratic , 5 ,  70 

Polytope , 15 

Regionalization , 

space , 22-24 

Regions , 

constraint , 10 
tolerance , 8-9 
tunable constraint , 27 
tuning , 10 

Sensitivity , 2 

first-order , 2 
large-change , 13 , 98 
measures , 21 
minimization , 2-3 , 21 

Simplicial approximation , 4 ,  7,  15-18 , 21 

Sparsity , 75-81 

State equations , 168 

Statistical (see also yield analysis) , 

analysis , 2 ,  21-24 
distributions (see distributions) 

Symmetry ,  69 , 81-87 , 114 

Systematic exploration , 22 
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SUBJECT INDEX (continued) 

Tolerance assignment, 4, 18 

Tolerance-tuning problem, 4, 19, 25, 102-104 

Vector, 

nominal, 7-8 
tolerance, 7-8 
tuning, 7-8 

Vertices, 

active, 31 
complementary, 41 
definition, 9 
numbering scheme, 9, 92 
reference, 36 

Worst-case (see also design) , 

centering, 2, 32 

Yield, 28-30, 34 etseq. 

analysis, 123 etseq. 
optimization, 150 etseq. 
potential, 11, 30 
production, 1, 4, 11, 30 
sensitivities, 5, 34, 50, 60 etseq. 
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