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ABSTRACT 
 
 

This thesis concerns itself with advances in Space Mapping optimization of microwave 

circuits and with the developments in Parameter Extraction. 

Space Mapping (SM) optimization aims at efficiently optimizing microwave circuits 

using the accurate and time-intensive electromagnetic simulators.  Such simulators represent 

“fine” models of the circuit under consideration.  SM exploits the existence of a less accurate but 

fast “coarse” model, e.g., an empirical model.  A mapping is established between the parameter 

spaces of the coarse and fine models.  The fine model design is the inverse mapping of the optimal 

coarse model design.  A crucial step for any SM-based optimization algorithm is Parameter 

Extraction (PE).  In this step a coarse model point that corresponds to a given fine model response 

is obtained through an optimization process.  The nonuniqueness of PE can lead to divergence or 

oscillation of the optimization iterates. 

We introduced the Trust Region Aggressive Space Mapping (TRASM) algorithm.  This 

algorithm integrates a trust region methodology with SM optimization.  The iterate is confined to 

a trust region in which the utilized linearization can be trusted.  TRASM also exploits a recursive 

multi-point parameter extraction step to enhance the uniqueness of PE. 

The Aggressive Parameter Extraction (APE) algorithm addresses the optimal selection of 

parameter perturbations used to increase trust in PE uniqueness.  We establish an appropriate 

criterion for the generation of these perturbations.  The APE algorithm classifies possible 

solutions for the PE problem.  Two different approaches for obtaining subsequent perturbations 

are utilized based on a classification of the extracted parameters.  The algorithm is demonstrated 

through parameter extraction of microwave filters and transformers. 

The Hybrid Aggressive Space Mapping (HASM) algorithm addresses the case of a poor 

coarse model.  HASM utilizes SM optimization as long as it is converging.  Otherwise, it 
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switches to a direct optimization phase.  We developed a relationship that relates the established 

mapping and the first order derivatives of the coarse and fine models.  This relationship is 

utilized in switching between the SM phase and the direct optimization phase. 

We also present a Surrogate Model-based Space Mapping (SMSM) optimization 

algorithm.  SMSM integrates two approaches for efficient optimization: SM optimization and 

surrogate model optimization.  It exploits a surrogate model in predicting new iterates.  This 

model is a convex combination between a mapped coarse model and a linearized fine model.  

The mapped coarse model exploits a frequency-sensitive mapping.  During the optimization 

iterates, the coarse and fine models are simulated at two different sets of frequencies.  Utilizing a 

frequency sensitive mapping is shown to enhance the uniqueness of PE.  It also overcomes severe 

frequency misalignments between the responses of both models. 
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1
INTRODUCTION

1.1 MOTIVATION

During the past three decades, several robust optimization techniques [1-26] have been

developed.  These techniques supplied designers with strong and reliable tools necessary for the

complex and demanding needs of modern circuit design.  They utilize the circuit responses and

possibly derivative information in the optimization loop.

Recently, commercial software packages, for example [27-29], have been developed that

solve Maxwell’s equations for circuits of arbitrary geometrical shapes.  Such simulators are

denoted as Electromagnetic (EM) simulators.  They utilize different methods of the analysis of

microwave circuits such as the Finite Element Method (FEM), the Method of Moments (MoM),

etc,  These simulators are accurate but they require intensive CPU time.  The models presented

by these simulators are denoted as “fine” models.

Utilizing EM simulators for optimizing microwave circuits can be formidable.  The

initial use of these simulators was limited to validating designs obtained through traditional

optimization of empirical/analytical models.  Over the years, empirical and circuit theoretic

models of many microwave circuits have been developed and accumulated.  The empirical and

circuit-theoretic models are denoted as “coarse” models.  Advances in the technology of

workstations and PCs enabled traditional EM optimization of simple structures.  However, the

increasing complexity of microwave circuits still makes traditional EM optimization a formidable

task.

Space Mapping (SM) optimization aims at solving this problem.  It combines the

computational efficiency of empirical/circuit-theoretic models with the accuracy of the EM
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simulator.  A mathematical link (mapping) is established between the spaces of the parameters of

the empirical and EM models.  This approach directs the bulk of the required CPU time to the

fast model while preserving the accuracy and confidence supplied by few EM analyses.  The first

SM algorithms were introduced in [30, 31].

An essential step of SM optimization is Parameter Extraction (PE).  In this step, the

coarse model parameters corresponding to a given fine model response are obtained.  In general,

PE is formulated as an optimization problem.  The solution of this problem may be nonunique.

This nonuniqueness may affect the convergence of SM optimization [32].

1.2 CONTRIBUTIONS

The author contributed substantially to the following original developments presented in

this thesis

(1) An algorithm that integrates a trust region methodology with Aggressive Space Mapping.

(2) An algorithm for the selection of perturbations utilized in enhancing the uniqueness of

parameter extraction.

(3) A hybrid algorithm that utilizes both Space Mapping optimization and direct

optimization.

(4) A new formulation of Space Mapping optimization as a general optimization problem.

(5) The integration of frequency-sensitive mappings in Space Mapping optimization.

(6) An algorithm that integrates Space Mapping optimization and surrogate model-based

optimization.

1.3 OUTLINE OF THESIS

The objective of this thesis is to review recent developments in SM optimization and in

PE approaches.  These developments include the Trust Region Aggressive Space Mapping
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(TRASM) algorithm [33-37], the Hybrid Aggressive Space Mapping (HASM) algorithm [38-40],

the Aggressive Parameter Extraction (APE) algorithm [41-42] and the Surrogate Model-based

Space Mapping (SMSM) optimization [43].

In Chapter 2 we review some concepts of the field of circuit optimization.  We show how

the design problem is formulated as an optimization problem.  The different norms and their

properties are briefly reviewed.  The motivation for SM-based optimization is discussed.  Two of

the previously developed SM algorithms, the original SM algorithm and Aggressive Space

Mapping (ASM), are reviewed.  The limitations of these algorithms are discussed.

Chapter 3 addresses the Trust Region Aggressive Space Mapping (TRASM) algorithm.

TRASM integrates a trust region methodology with the Aggressive Space Mapping (ASM)

technique [31].  The trust region methodology utilized by the algorithm is explained.  To improve

the uniqueness of the extraction phase we developed a recursive multi-point parameter extraction.

TRASM was successfully used to design a number of microwave circuits.  The examples

addressed include the EM optimization of a Double-Folded Stub (DFS) filter and of a High-

Temperature Superconducting (HTS) filter using Sonnet’s em [27].  The proposed algorithm was

also used to design two-section, three-section and seven-section waveguide transformers

exploiting Maxwell Eminence [28].  The design of a three-section waveguide transformer with

rounded corners was carried out using HP HFSS [29].

Chapter 4 presents the Aggressive Parameter Extraction (APE) algorithm.  APE

addresses the optimal selection of parameter perturbations used to increase trust in parameter

extraction uniqueness.  The appropriate criterion for the generation of these perturbations is

reviewed.  APE classifies possible solutions for the parameter extraction problem.  Two different

approaches for obtaining subsequent perturbations are utilized based on a classification of the

extracted parameters.  These two approaches are discussed and their theory is explained.  A

number of examples illustrate the APE algorithm.  The examples include the parameter
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extraction of a decomposed electromagnetic model of an HTS filter.  Also, the parameter

extraction of an empirical model of a DFS filter is carried out.

In Chapter 5, we review the Hybrid Aggressive Space Mapping (HASM) optimization

algorithm.  HASM exploits both the TRASM strategy and direct optimization.  We start by

illustrating the motive for a hybrid algorithm.  A lemma that enables switching from TRASM

optimization to direct optimization is explained.  This lemma relates the mapping and the fine

and coarse model derivatives.  The approach utilized by the HASM algorithm for choosing a

good starting point for the parameter extraction is also reviewed.  HASM has been tested on

designs of several microwave filters and transformers.  The examples include a three-section and

a seven-section waveguide transformer as well as the design of an H-plane waveguide filter and

an DFS filter.

Chapter 6 presents a Surrogate Model-based Space Mapping (SMSM) optimization

algorithm.  It draws upon recent developments in both surrogate-based optimization [44-48] and

modeling of microwave devices [49, 50].  It integrates two different approaches for efficient

optimization; SM and surrogate model-based optimization.  SM optimization is formulated as a

general optimization problem of a surrogate model.  We start this chapter by giving a comparison

between SM formulation and surrogate model formulation.  The construction of the utilized

surrogate model is explained in detail.  The utilization of a frequency-sensitive mapping by the

algorithm is also addressed.  This approach is shown to be especially powerful if significant

response shift exists.  SMSM is illustrated through a number of examples.

We conclude in Chapter 7 along with suggestions for further research.
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2 
 

REVIEW OF SOME CONCEPTS IN 
CIRCUIT OPTIMIZATION 

 
 

2.1 INTRODUCTION 

The target of circuit optimization is to determine a set of values for the circuit parameters 

such that certain design specifications are satisfied.  These specifications represent constraints on 

the circuit responses.  Usually, a model of the physical circuit is utilized in simulating and thus 

optimizing the circuit. 

Traditional optimization techniques [1-26] utilize the simulated circuit responses directly 

and possibly available derivatives.  Engineering models used in simulating the circuit responses 

vary in accuracy and speed.  Usually, accurate models are computationally expensive and less 

accurate models are fast.  In some engineering problems, applying traditional optimization using 

the accurate models directly may be prohibitively impractical.  On the other hand, applying 

optimization using the less accurate models may indicate feasibility of the design but could lead 

to unreliable results.  These results must be validated using the accurate models or even using 

measurements.  It follows that alternative optimization approaches must be utilized. 

Space Mapping (SM) establishes a mathematical link (mapping) between the spaces of 

the parameters of two different models of the same physical circuit.  The accurate and time-

intensive model is denoted as a “fine” model.  The less accurate but fast model is denoted as a 

“coarse” model.  For example, a fine model may be a time-intensive finite element solution of 

Maxwell’s equations while the coarse model may be a circuit-theoretic model with empirical 

algebraic formulas. 
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All the SM-based optimization algorithms we will review in this Chapter utilize two 

steps.  The first step optimizes the design parameters of the coarse model to satisfy the original 

design specifications.  The second step establishes a mapping between the parameter spaces of 

the two models.  The space-mapped design is then taken as the mapped image of the optimal 

coarse model design. 

The first SM-based optimization algorithm was introduced in [30].  This method assumes 

a linear mapping between the parameter spaces.  This assumption may not be accurate if 

significant misalignment exists between the two spaces.  An initialization overhead of fine model 

simulations is required. 

Aggressive Space Mapping (ASM) [31] eliminates the simulation overhead required in 

[30].  It exploits a quasi-Newton step in predicting the new iterates.  The algorithm does not 

assume that the mapping is necessarily linear.  However, the nonuniqueness of the parameter 

extraction step may lead to divergence or oscillations of the process [32]. 

 

2.2 DESIGN SPECIFICATIONS AND ERROR FUNCTIONS 

The performance of the circuit is described in terms of some measurable quantities.  We 

denote these measurable quantities as the circuit response functions.  The response functions are 

manipulated by adjusting certain designable parameters.  For example, the electrical response of 

a microstrip line can be adjusted by changing the physical width and length of the strip.  Usually, 

some or all physical parameters are selected as designable parameters and thus can be optimized.  

We denote the vector of designable parameters by x. 

Each response function is also dependent on some other independent parameters, such as 

frequency, time and temperature [51].  In some cases we are confronted with response functions 
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that are dependent on a number of independent parameters.  We denote the ith response function 

by ),( ξx i
i  R , i=1, 2, …, Nr , where ξ i  is the vector of associated independent parameters. 

The desired performance of the circuit is expressed by a set of specifications.  These 

specifications represent constraints on the responses that are functions of some of the 

independent parameters.  In practice, only a discrete set of samples of the independent parameters 

is considered [51, 52].  Satisfying the specifications at these sampled values implies satisfying 

them almost everywhere. 

Let µi be the number of discrete samples of the ith response.  We define ℜ∈ ×1mR as the 

vector of sampled response functions.  The kth component of R is given by 

  RR j
i

i
k ),( ξx=                                                             (2.1) 

where   N,  i   j  µk r

i

p p K,2,1for
1

1
=+∑=

−

=
and j=1, 2, …, µi.  Here ξ j

i  is the jth sample of ξ i  and 

m is the total number of sampled response functions. 

An error function defines the difference between the specification and the corresponding 

response.  In some problems the specifications define a target response that should be reached.  

These types of specifications are denoted as single specifications [51].  In other problems, 

specifications define upper and lower bounds on the respective response.  For the case of single 

specifications the error functions are given by 

ΓRwe kkkk −=                                                           (2.2) 

where Γk is the kth specification, { }k  k kKk Ncs ,,, 21 K=∈ , the set of indices for the constrained 

responses, wk is a nonnegative weight and Nc is the number of specifications. 

In the case of upper and lower specifications, we classify the constraints on the response 

functions.  We denote by Γuk and Γlk the kth upper and lower specification, respectively.  Here, 

the error functions are given by 
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( )ΓRwe ukkukk −= , k∈Ku                                                    (2.3) 

and 

( )RΓwe klklkk −= , k∈ Kl                                                                                   (2.4) 

where Ku and Kl are sets of indices for the constrained responses and wuk and wlk are nonnegative 

weights.  It is worth mentioning that simultaneous upper and lower specifications can be imposed 

on the same sampled response function, i.e., Ku and Kl may not be disjoint.  Here Ku+Kl=Nc 

and   denotes the set cardinality.  We denote by e the vector whose components are the error 

functions given by (2.2) or by (2.3) and (2.4). 

It is clear from (2.3) and (2.4) that upper and lower specifications are meaningful only in 

the case of a real response while (2.2) is valid in general for complex responses.  Also, a positive, 

negative or zero value of an error function indicates that the corresponding specification is 

violated, exceeded or just satisfied, respectively.  A set of designable parameters for which e is 

nonpositive is denoted a feasible design.  The set of all feasible designs defines a feasible region 

in the space of designable parameters.  Fig. 2.1 illustrates the concepts of error functions, feasible 

design and feasible region. 

The error vector e is evaluated for a given x using the vector of sampled responses R.  R 

may be obtained by measuring the circuit responses.  However, this approach is expensive and 

time consuming.  Alternatively, R may be obtained by using a model of the circuit.  This model 

utilizes the knowledge available about the physical processes taking place within the circuit.  

Usually, different models exist for the same circuit.  These models vary in their accuracy and the 

speed with which R is obtained.  In the discussion that follows we assume that the responses are 

obtained through simulation. 
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Fig. 2.1. Illustration of some basic engineering optimization concepts; (a) the responses at a 
feasible design x1 and an infeasible design x2, (b) the error functions at sampled values 
of the independent parameter ω  and (c) a possible location of the two designs with 
respect to the feasible region for a two-dimensional case. 
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2.3 NORMS AND OPTIMIZATION METHODS 

The problem of circuit design can be formulated as 













= )(* x
x

x U minarg                                                       (2.5) 

where U(x) is a scalar objective function that is dependent on the error functions.  U(x) should 

offer a measure of the specifications’ violation or satisfaction.  A possible choice of U(x) is the 

l p  norm [53], Huber norm [54, 55] or the generalized l p  function [25, 56].  The l p  norm of e is 

given by 






∑=
=

Nc

k
k

p
p

p e
1

/1

e                                                         (2.6) 

The most commonly used norm is the l2  norm, i.e., p=2.  This norm is widely used because of its 

differentiability and its statistical properties.  A large number of optimization techniques exist for 

least-squares optimization [9].  Solutions obtained using least-squares optimization can be altered 

significantly by the existence of a few wild data points. 

Setting p=1 we have the l1  norm  

∑=
=

Nc

k
ke

11e                                                               (2.7) 

This norm is robust to outsiders.  It finds wide application in data-fitting in the presence of gross 

errors [21], in analog fault location [57] and device modeling [24]. 

Setting p=∞ we have the l∞  norm 

e k
k

max=∞e                                                            (2.8) 

which considers only the worst violated error function.  Many circuit design problems can be 

formulated as a minimax optimization problem [12]. 
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The l1  and l∞  norms are both nondifferentiable.  Corresponding optimization algorithms 

are more involved than least-squares algorithms.  In general, the algorithms used to minimize the 

l1  and l∞  norms follow similar strategies.  These algorithms solve the minimization problem in 

an iterative way.  In [10, 11], the problem is formulated as a nonlinear program.  Some methods 

utilize first-order derivatives of the error functions to construct linearization of the nonlinear 

program.  Such methods are denoted as first-order methods.  For example, in [19, 23] the 

linearization is used to construct a linear program that returns a suggested search direction.  A 

line search is then executed in that direction.  A trust region methodology [58] is integrated with 

the linear program formulation in [59].  Some of the first-order methods assure global 

convergence to a stationary point, for example [59].  However, they may become very slow in the 

neighborhood of a solution if the problem is singular [60]. 

Another class of methods for the minimization of l1  and l∞  norms utilizes approximate 

second-order information.  These methods solve the first-order optimality conditions using quasi-

Newton methods [5, 6, 9].  They are usually fast in the neighborhood of a solution.  However, 

pure second-order methods do not guarantee convergence from a bad starting point.  Hybrid 

methods [12, 21] combine both first-order and second-order methods.  A first-order method is 

used far from the solution.  Once the solution is approached, a switch to a second-order method is 

executed.  Several switches can take place between the two methods. 

Another norm that can be utilized as an objective function is the Huber norm [54, 55].  

This norm is a hybrid combination between the l1  and l2  norms.  It is defined by 

)(
1

∑=
=

N c

k
kH eψ βe                                                          (2.9) 

where 
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2

if2)(
2

2

                                   (2.10) 

where β  is a threshold called the Huber threshold.  This norm treats small errors in the l2  sense 

while it treats large errors in the l1  sense.  Huber optimization [26] is more robust against gross 

errors than least-squares optimization.  It also offers less biased designs than those obtained using 

l1  optimization [26]. 

The previously discussed norms, can be used to minimize the error functions towards 

zero.  A design that corresponds to a zero error vector would be satisfactory if it were not for 

manufacturing tolerances.  These tolerances are inevitable and may cause the manufactured 

circuit to violate the specifications.  It follows that optimization should continue to center the 

design within the feasible region [61-63].  The yield is defined as the percentage of the 

manufactured circuits that satisfy the design constraints.  Fig. 2.2 Illustrates the concepts of 

design centering and yield.  Several algorithms have been developed with the aim of maximizing 

the yield [64-66]. 

The generalized l p  function [25, 56] was developed to enable optimization towards a 

better centered design.  It makes use of the one-sided functions 





∑=+

k
k

p
p

p e
/1

l , ∀ek ≥ 0                                           (2.11) 

and 

( ) 



∑ −−= −

−
−

k
k

p
p

p e
/1

l , ∀ek < 0                                       (2.12) 

The generalized l p  function is equal to (2.11) if at least one of the specifications is violated.  

Otherwise, it is equal to (2.12). 
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Fig. 2.2. Illustration of design centering and yield for a two-dimensional problem with 
manufacturing tolerances of ∆x1 and ∆x2.  Three different designs are shown; a 
centered design where all possible outcomes are feasible (yield=1), an infeasible 
design where possible outcomes are infeasible (yield=0) and non centered feasible 
design where possible outcomes may be feasible or infeasible (0<yield<1). 
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feasible region 

∆x1 

∆x2 

yield=0 
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We denote the optimization algorithms discussed thus far as ‘direct optimization’ 

algorithms.  They utilize simulations of the optimized circuit and can be applied if the model 

simulation time is not extensive.  Otherwise, direct optimization becomes formidable and 

alternative methods should be used.  SM optimization was introduced as such an alternative. 

 

2.4 SPACE MAPPING OPTIMIZATION: THE BASIC CONCEPT 

We refer to the vectors of fine model parameters and corresponding coarse model 

parameters as ℜ∈ n
fx and ℜ∈ n

cx , respectively.  The optimal coarse model design x*
c  is 

obtained using only coarse model simulations.  The corresponding response is denoted by R*
c .  A 

minimax algorithm [12], if appropriate, may be used. 

SM establishes a mathematical link (mapping) P between the two spaces [31] 

)(xPx fc =                                                           (2.13) 

such that 

εccff ≤− )()( xRxR                                                 (2.14) 

The mapping P is valid over a region in the parameter space.  It is established in an iterative way.  

We denote by P )(i  the available approximation to P at the ith iteration.  The corresponding 

design is given by 

)( *1)()1( xPx c
ii

f
−+ =                                                       (2.15) 

If it satisfies a certain termination criterion, it is accepted as the space mapped design x f .  

Otherwise, the mapping is updated and a new design is calculated. 

 

2.5 THE ORIGINAL SM OPTIMIZATION ALGORITHM [30] 

At the ith iteration, the algorithm utilizes a set of fine model points S i
f

)(  defined by 
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{ }xxx )()2((1))( ,,, mi
fff

i
f     S K=                                                 (2.16) 

where Sm i
fi

)(= .  The fine model response for every point in the set S i
f

)(  is simulated.  A 

corresponding set of coarse model points S i
c

)( defined by 

{ }xxx )()2((1))( ,,, miccc
i

c     S K=                                                 (2.17) 

is then constructed.  The points S i
c

j
c

)()( ∈x , j=1, 2, …, mi are obtained through the Single-Point 

Extraction (SPE) process (see Fig. 2.3) 













−= )()( )()( xRxR
x

x cc
j

ff
c

j
c minarg                                        (2.18) 

P )(i  is then obtained using S i
f

)( and S i
c

)( .  Here, every coarse model parameter is expressed as a 

linear combination of some predefined and fixed functions )(x fkϕ , k=0, 1, …, Nϕ.  It follows 

that 

)()( )()( xAxPx f
i

f
i

c ϕϕϕϕ==                                                  (2.19) 

where ℜ∈ +× )1()( Nni ϕA  is a matrix of constant coefficients and )(x fϕϕϕϕ is given by 

)(x fϕϕϕϕ =





















)(

)(
)(

1

0

x

x
x

fN

f

f

ϕ

ϕ
ϕ

ϕ

M
                                                         (2.20) 

Relation (2.19) must be satisfied for every pair of corresponding points in S i
f

)( and S i
c

)( .  It 

follows that A )(i should satisfy 

[ ] Axxx )()()2((1) imi
ccc     =K [ )()()( )()2((1) xxx mi

fff     ϕϕϕϕϕϕϕϕϕϕϕϕ K ]                             (2.21) 

In [30] it is assumed that the mapping between the two spaces is linear, i.e., 

cxBxPx )()()( )( i
f

i
f

i
c +==                                               (2.22)
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Fig. 2.3.  Illustration of the SPE procedure. 
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where ℜ∈ ×nniB )(  and ℜ∈ ×1)( nic .  The linear mapping (2.22) is equivalent to (2.19) with 

[ ]BcA )()()( iii =  and x k ffk ,)( =xϕ , k=1, 2, …, n, the kth component of the vector x f , 

1)(0 =x fϕ  and Nϕ=n.  It follows that (2.21) can be written as 

[ ] 







=

xxx
Axxx )()2((1)

)()()2((1)
111
mi
fff

imi
ccc     

K

K
K                                  (2.23) 

A least-squares solution for A Ti)(  is thus given by 

( ) XDDDA TTTi 1)( −=                                                     (2.24) 

where 









=

xxx
D )()2((1)

111
mi
fff

T

K

K
                                              (2.25) 

and 

[ ]xxxX )()2((1) mi
ccc

T    K=                                                  (2.26) 

Once A )(i  is obtained, the suggested space-mapped design is 

( )cxBxPx )(1)(1)(1)( )( i*
c

i*
c

imi
f −== −−+                                        (2.27) 

Here, the mapping is assumed to be one to one.  The new point x )1( +mi
f  is taken as an 

approximation to the optimal fine model design x*
f  if the condition 

ε*
cc

mi
ff ≤−+ )()( 1)( xRxR                                              (2.28) 

is satisfied.  In this case, we take xx 1)( += mi
ff .  Otherwise, the set S i

f
)(  is augmented by x )1( +mi

f  

and the set S i
c

)(  is augmented by x )1( +mic  obtained using (2.18).  The algorithm steps using (2.23)- 
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 (2.28) are then repeated using the augmented sets.  Fig. 2.4 illustrates one iteration of the 

algorithm. 

This algorithm is simple but it suffers from a number of drawbacks.  First, to have the 

algorithm started an initial set of fine model points S f
(0)  must be created.  The points in S f

(0)  are 

localized in the vicinity of a reasonable candidate for the fine model design.  In [30] it was 

suggested that 1(0) +≥ nS f .  Simulating S f
(0)  represents a significant overhead for the algorithm.  

The mapping is assumed to be linear, which may not be true for significantly misaligned models.  

Also, coarse model points are obtained through SPE.  Nonuniqueness of the extracted parameters 

may lead to an erroneous mapping estimation and divergence of the algorithm.  These drawbacks 

led to the development of the ASM algorithm [31]. 

 

2.6 THE ASM ALGORITHM 

The space-mapped design x f  is a solution to the system of nonlinear equations 

=−= xxPf *)( cf 0                                                   (2.29) 

ASM solves (2.29) in an iterative manner.  Let x )(i
f  be the ith iterate in the solution of (2.29).  

The next iterate x 1)( +i
f  is found by a quasi-Newton iteration 

 
hxx )()()1( ii

f
i
f +=+                                                    (2.30) 

where h )(i  is the solution of 

fhB )()()( iii −=                                                     (2.31) 

where xxPf *
c

i
f

ii −= )( )()()( .  B )(i is an approximation to the Jacobian Jm of  f  with respect to x f  

at x )(i
f .  Jm is defined by
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Fig. 2.4. Illustration of the original SM optimization algorithm; (a) a new point x 1)( +mi
f is

obtained using the current mapping P )(i , (b) the point x 1)( +mi
f  does not satisfy the

stopping criterion and the sets S i
f

)(  and S i
c

)(  are augmented by x 1)( +mi
f  and x 1)( +mi

c ,

respectively, and (c) a new mapping P )1( +i  is estimated and is used to obtain a new
iterate x )2( +mi

f . 
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
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

∂
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=
=

x
xf

xx
xJ

f

f
T T

i
ff

i
fm

)(
)(

)(

)(                                          (2.32) 

If the mapping between the two spaces is linear, similar to (2.22), the matrix Jm is constant.  

Otherwise, it is a function of the fine model parameters.  The initial approximation to Jm is taken 

as IB =)0( , the identity matrix.  B )(i  is updated at each iteration using Broyden’s update [6] 

 h
h h

hBf f
+ B= B + Ti

iTi

iiii
ii )(

)()(

)()()()1(
)(1)( −−+

                                 (2.33) 

The formula (2.33) can be simplified using (2.31) to 

 h
hh

 f
+ B= B + Ti

iTi

i
ii )(

)()(

)1(
)(1)(

+

                                                (2.34) 

The error vector f )(i  is obtained by evaluating )( )()( xP i
f

i , which is done indirectly through SPE.  

The algorithm terminates if f )(i  becomes sufficiently small.  A complete iteration of the 

algorithm is shown in Fig. 2.5. 

The ASM algorithm solves the problem of the overhead encountered in the original SM 

optimization algorithm.  Also, while (2.23) assumes that the mapping is linear, ASM does not 

make this assumption.  The output of the ASM algorithm is the space-mapped design x f and the 

matrix B , which approximates the Jacobian Jm at x f .  However, the nonuniqueness problem of 

the SPE process remains.  An incorrect value for the vector )( )()( xP i
f

i  may cause the algorithm to 

diverge or exhibit oscillatory behavior. 

Two interesting, intuitive, variants of the ASM algorithm are suggested in [67, 68].  The 

basic idea of both algorithms is essentially the same.  The iterate is given by (2.31) with the 

matrix B )(i  fixed at B )(i =I.  Here, Broyden’s updating formula is not utilized.  These “steepest- 
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Fig. 2.5. Illustration of ASM; (a) a new iterate x 1)( +i
f  is obtained, (b) by applying parameter 

extraction we find that the stopping criterion is not satisfied ( f )1( +i >ε) and (c) the 

updated matrix B )1( +i  is used to predict a new iterate x )2( +i
f . 
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descent” approaches may succeed if the mapping between the two spaces is substantially 

represented by a shift. 

 

2.7 THREE-SECTION MICROSTRIP TRANSFORMER 

An example of ASM optimization is the three-section microstrip impedance transformer 

[69].  The filter structure is shown in Fig. 2.6.  The fine model utilizes a full-wave 

electromagnetic simulator (Sonnet’s em [27]).  The coarse model utilizes the empirical microstrip 

line and microstrip step models available in the circuit simulator OSA90/hope [70].  The coarse 

model is shown in Fig. 2.7.  The design specifications are 

S11 ≤ 0.11  for 5 GHz ≤ ω ≤ 15 GHz                                             (2.35) 

The designable parameters are the width and physical length of each microstrip line.  Here, the 

reflection coefficient S11  is used to match the two model responses.  ASM terminated using only 

9 fine model simulations.  The initial and final designs are shown in Table 2.1.  The 

corresponding responses are shown in Figs. 2.8 and 2.9, respectively.  Simulating the fine model 

requires about one hour of CPU time on an HP workstation model 715/33.  The coarse model 

simulation time is a fraction of a second. 
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Fig. 2.6.  The three-section 3:1 microstrip impedance transformer. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.7.  The coarse model of the three-section 3:1 microstrip impedance transformer. 
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TABLE 2.1 
THE INITIAL AND FINAL DESIGNS FOR THE THREE-SECTION 

MICROSTRIP IMPEDANCE TRANSFORMER 
 

 
Parameter x )0(

f  x f  

W1  0.38145  0.35760 

L1  2.78208  2.97243 

W2  0.15126     0.14241 

L2  3.00255  3.04148 

W3  0.04227  0.04215 

L3 3.08801 3.08122 

all value are in mm 
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Fig. 2.8. The optimal coarse model response () and the fine model response (ο) at the initial 

design for the three-section microstrip transformer. 
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Fig. 2.9. The optimal coarse model response () and the fine model response (ο) at the space-

mapped design for the three-section microstrip transformer. 
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2.8 CONCLUSIONS 

In this Chapter we reviewed some of the basic concepts in circuit optimization.  We 

showed how a nominal circuit design problem can be formulated as an optimization problem.  A 

general formulation that minimizes a suitable norm is reviewed.  This norm is a measure of the 

errors between the given specifications and the related responses.  We addressed different types 

of models that can be used in the design problems.  These models vary in their accuracy and 

speed.  Applying traditional optimization approaches using time-intensive models is shown be 

formidable. 

The concept of Space Mapping (SM) optimization was also presented.  Two of the first 

SM-based optimization algorithms are reviewed.  We showed that SM optimization can be 

efficient in optimizing circuits using time-intensive simulators.  The Parameter Extraction (PE) 

problem is an essential step in SM optimization.  We reviewed the formulation of this problem as 

an optimization problem.  A microwave transformer example was used to illustrate ASM 

optimization. 
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3 
 

THE TRUST REGION AGGRESSIVE 
SPACE MAPPING ALGORITHM 

 
 

3.1 INTRODUCTION 

Space mapping (SM) optimization aims at aligning two different simulation models: a 

coarse model, typically an empirical circuit simulation and a fine model, typically a full wave 

EM simulation.  SM combines the accuracy of the fine model with the speed of the coarse 

model.  Parameter Extraction (PE) is a crucial part of the technique.  In this step the parameters 

of the coarse model whose responses match the fine model responses are obtained.  The 

nonuniqueness of PE may lead to divergence or oscillation of SM optimization. 

Multi-Point parameter Extraction (MPE) concept was proposed [32] to enhance the 

uniqueness of the extraction step at the expense of an increased number of fine model 

simulations.  The selection of points was arbitrary, not automated and no information about the 

mapping between the two spaces was taken into account. 

The Trust Region Aggressive Space Mapping (TRASM) algorithm, the main focus of 

this chapter, integrates a trust region methodology [58] with the ASM technique.  The step taken 

in each iteration is constrained by a suitable trust region.  TRASM also automates the selection 

of fine model points used for the MPE process.  A Recursive Multi-Point parameter Extraction 

(RMPE) procedure utilizes all the fine model points simulated since the last successful iteration.  

Also, the current approximation to the mapping between the two spaces is integrated into this 

extraction step. 
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The TRASM algorithm is applied to a number of examples.  The EM solver em [27] is 

used successfully to optimize the design of an HTS filter and a Double-Folded Stub (DFS) filter.  

Maxwell Eminence [28] through Empipe3D [71] is used as a fine model to design two-section, 

three-section and seven-section waveguide transformers.  HP HFSS ver. 5 [29] is used to carry 

out the optimization of a three-section waveguide transformer with rounded corners.  The coarse 

models for these examples exploit either a coarse grid EM model or circuit-theoretic/analytical 

models.  The different types of models used illustrate the flexibility of selection of coarse and 

fine models. 

The required number of fine model simulations to obtain the final design, as 

demonstrated by the examples, is of the order of the problem dimension.  Such designs would 

otherwise be obtained by computationally very expensive direct optimizations of the fine 

models.  

 

3.2 TRUST REGION METHODOLOGIES IN OPTIMIZATION [58] 

One of the goals of modern nonlinear programming algorithms is to achieve global 

convergence.  By global convergence we mean the mathematical assurance that the optimization 

iterates produced by the algorithm, starting from an arbitrary initial iterate, will converge to a 

stationary point or local minimizer of the problem.  Trust region strategies can be used to 

achieve this property. 

Assume that it is required to minimize a scalar function f(x).  In the ith iteration, an 

approximate model )()( xL i  is used to approximate f(x).  This model may be a linearized or 

quadratic approximation of f(x).  It is expected to approximate well the behavior of f(x) in the 

neighborhood of the current iterate x )(i .  Consequently, the step taken using )()( xL i  model is 

confined to a region in which the approximate model can be trusted, whence the name “trust 



 
 
 
3.2  TRUST REGION METHODOLOGIES IN OPTIMIZATION  29 

 

region”.  This is done by adding a constraint on the length of the step allowed, resulting in the 

trust region subproblem 

)(minimize )()()(

)(
hx

h
iii

i
L +                                                 (3.1) 

Subject to δ )()( ii ≤h                                                   (3.2) 

Where δ )(i  is the trust region size.  In (3.2) different types of norms may be used.  Also, scaling 

can be applied to some of the parameters to improve the conditioning of the problem. 

The step h )(i  obtained by (3.2) is accepted if it satisfies 

)()( )((i))( xhx ii ff <+                                                   (3.3) 

In this case, we set hxx )()()1( iii +=+ .  Otherwise, we set xx )()1( ii =+ . 

The trust region size is adjusted at the end of each iteration based on how well the actual 

reduction in the objective function compares to the expected reduction.  If there is good 

agreement between both reductions we conclude that )()( xL i  is a good approximation of  f(x) in 

the vicinity of x )(i .  In this case, the trust region size can be increased to allow for larger steps 

and thus faster convergence.  Similarly, the trust region size is shrunk if there is poor agreement 

between both reductions.  In this case, )()( xL i  is not a good approximation of  f(x). 

 

3.3 THE TRASM ALGORITHM 

At the ith iteration, the residual vector xxPf *
c

i
f

i  −= )( )()( defines the difference 

between the vector of extracted coarse model parameters x )(i
c = )( )(xP i

f  and the optimal coarse 

model design.  The space-mapped design is reached if this residual vector is driven to zero.  It 

follows that ( )if  serves as a measure of the misalignment between the two spaces. 
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TRASM [33-37] integrates a trust region methodology [58] with the ASM technique.  

Similar to ASM, TRASM aims at solving (2.29).  However, instead of utilizing a quasi-Newton 

step the problem is solved as a least-squares problem.  In the ith iteration, the objective of 

TRASM is to minimize f )1( 2

2

+i  within a certain trust region.  To achieve this, TRASM utilizes 

a linearization of the vector f )1( +i .  The linearized objective function is thus given by 

hBfhx )()()( 2

2
)()()( )( iiiiiiL +=+                                             (3.4) 

The suggested step is obtained by solving 













+= hBf
h

h )()( 2

2
)( iii minarg                                              (3.5) 

subject to δ ii )()(
2

≤h                                                    (3.6) 

where δ i)(  is the size of the trust region.  The solution of (3.5)-(3.6) is obtained by solving [72, 

73] 

fBhIBB )()()()()( )( iTiiiTi  −=+ λ                                            (3.7) 

where ( )iB  is an approximation to the Jacobian (2.32) at the ith iteration.  The parameter λ is 

selected such that the step obtained satisfies ,)()(
2 δ ii ≤h  where δ )(i  is the size of the trust 

region.  This is done utilizing the iterative algorithm suggested in [74].  The point suggested for 

the next iteration is .)()()1( hxx ii
f

i
f  +=+   SPE is then applied at the point x )1( +i

f  to 

get .)( *)1(1)( xxPf c
i
f

+i −= +   The point x )1( +i
f is accepted and the matrix ( )iB is updated using 

Broyden’s formula [6] if a success criterion related to the reduction in f is satisfied.  In our 

implementation, this success criterion is given by 

( ) ( )( ) ( 1) ( ) ( ) ( ) ( ). .i i+ i i i  if f f f B h− > − +0 01                                (3.8) 
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The success criterion (3.8) ensures that the ratio between the actual reduction in the 2l norm of f 

and the predicted reduction is greater than a certain value.  Otherwise, the validity of the 

extraction process leading to ( )i+1f  is suspect.  The residual vector ( )i+1f  is then used to 

construct a candidate point from the point x 1)( +i
f  by using (3.7).  This candidate point is then 

added to the set of points employed for MPE at the point x 1)( +i
f : a new value for ( )i+1f  is 

obtained by solving 

)())(( 1)()( xRxxBxR
x

ff
i

ff
i

cc
c

 minimize −− ++ ,                                (3.9) 

simultaneously for all ,Vf ∈x  where V is the set of fine model points used for MPE.  This multi-

point parameter extraction step differs from that suggested in [32] in one important aspect.  A 

perturbation in the fine model space of x∆ f  corresponds to a perturbation in the coarse model 

space of xB ∆ f
i)( .  This is logical since ( )iB  represents the most up-to-date approximation to the 

mapping between the two spaces.  Thus, the available information about the mapping between 

the two spaces is exploited. 

The new extracted coarse model parameters either satisfy the success criterion (3.8) or 

they are used to obtain another candidate point which is then added to the set V and the whole 

process is repeated.  See Fig. 3.1.  This RMPE process is expected to improve the uniqueness of 

the extraction step.  This may lead to the satisfaction of (3.8) or the step is declared a failure.  

Failure is declared in one of two cases: either the vector of extracted parameters approaches a 

limiting value with (3.8) not satisfied, or the number of fine model simulations since the last 

successful iteration has reached n+1.  In the first case, the vector ( )i+1f  is trusted and the 

accuracy of the linearization used to predict ( )ih  is suspected.  Thus, to ensure a successful step  
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Fig. 3.1. Illustration of the RMPE procedure; (a) the current state at the ith iteration, (b) initial 

parameter extraction at the suggested point x 1)( +i
f  and (c) parameter extraction fails; an 

additional point x (1)
t  is obtained and multi-point parameter extraction is carried out to 

sharpen the solution. 
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from the current point x )(i
f , δ )(i  is shrunk and a new suggested point x )1( +i

f is obtained.  In the 

latter case, sufficient information is available to obtain an estimate for the Jacobian of the fine 

model responses with respect to the fine model parameters.  This is done by solving the system 

of linear equations 
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where t
k( )x is the kth candidate point used for MPE and t

k( )g is the corresponding error between 

the fine model response and the optimal coarse model response.  This matrix is then used to 

obtain a step ( )ih  in the parameter space by solving the system of equations 

gJhIJJ )()()( iT
f

i
f

T
f  −=+ λ ,                                            (3.11) 

varying the parameter λ until .)()( δ ii ≤h   If there is no reduction in the 2l  norm of the vector 

function g, the trust region is shrunk and (3.11) is resolved.  This is repeated until either the size 

of the trust region has shrunk significantly and hence the algorithm terminates or a successful 

step is taken.  The successful step is then used instead of the step obtained by (3.7). 

At the end of each iteration, the ratio between the actual reduction in the 2l norm of the 

vector f and the predicted reduction using linearization is used to check the accuracy of the 

linearization.  The criterion 

( ) ( )( ) ( 1) ( ) ( ) ( ) ( ).i i+ i i i  i f f f f B h− ≥ − +080                                  (3.12) 

was used to check how accurate the linearization is.  If (3.12) is satisfied then we exploit the 

accuracy of the linearization and increase the size of the trust region.   
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In the initialization phase we assign xx *
cf =(0)  and IB =(0) , the identity matrix.  Also, 

we assign values to the two parameters fδ  and ε.  These two parameters are used to determine 

the termination condition of the algorithm. 

To ensure the uniqueness of ( )0f , the multi-point parameter extraction at the first point 

is repeated for an increasing number of points in the set V until it approaches a limiting value.  

This limiting value can then be trusted and the algorithm proceeds.  For any iteration i > 0, the 

basic steps taken are as follows. 

Step 0  Given x )(i
f , ( )if , ( )iB and  i( )δ .  Set  i+( )1δ =  i( )δ .  

Step 1  Obtain h )(i by solving (3.7).  Let ( )
2

( )i i+ =1δ h . 

Step 2 If  i( + )1δ ≤ fδ  stop else evaluate x 1)+(i
f using (2.30) and set }{ 1)(x += i

fV . 

Step 3 Apply multi-point parameter extraction using the points in the set V to obtain ( )i+1f . 

Step 4 If the success criterion (3.8) is satisfied go to Step 9. 

Step 5 If V  is equal to one go to Step 8. 

Comment  V  denotes the cardinality of the set V. 

Step 6 Compare f )1( +i obtained using V  fine model points with that previously obtained 

using V −1 fine model points.  If f )1( +i  is approaching a limiting value shrink the 

trust region size  i( )+1δ and go to Step 1. 

Step 7 If V  is equal to n obtain the Jacobian J f , shrink the trust region size  i( )+1δ , evaluate 

a new step ( )ih by solving (3.11) with δ =  i( )+1δ for a suitable value of λ that results in 

the reduction in the 2l norm of the vector g and go to Step 2. 

Comment  The trust region is shrunk to ensure a successful step. 
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Step 8 Obtain a temporary point using x )1( +i
f , ( )i+1f and  i( )+1δ .  Add this point to the set V and 

go to Step 3. 

Step 9 Update the matrix B )(i to B )1( +i using Broyden’s formula [6].  

Step 10 If ε≤−+ )()( )(1)( xRxR i
ff

i
ff  stop. 

Step 11 Increase the trust region size  i( + )1δ if (3.12) is satisfied. 

Step 12 Let i=i+1.  Go to Step 0. 

 
The algorithm terminates if the condition  i( )+1δ ≤ fδ  is satisfied or if there is no 

significant change in the fine model responses in two consecutive iterations.  The algorithm 

produces two main results.  These results are the space-mapped design x f and the matrix B  

which represents the mapping between the two spaces. 

In our implementation, proper scaling is applied to the optimizable parameters to make 

them of the same order.  The initial trust region size is taken as 2% to 10% of the ∞l  norm of 

the vector of scaled parameters. 

 

3.4 EXAMPLES 

3.4.1 Double-Folded Stub Filter 

We consider the design of the DFS microstrip structure shown in Fig. 3.2 (Bandler et al. 

[30]).  Folding the stubs reduces the filter area w.r.t. the conventional double stub structure 

(Rautio [75]).  The filter is characterized by five parameters : W1 , W2 , S, L1 and L2  (see Fig. 

3.2).  L1, L2 and S are chosen as optimization variables.  W1 and W2 are fixed at 4.8 mil.  The 

design specifications are given by S21≥ -3 dB in the passband andS21≤ -30 dB in the 

stopband, where the passband includes frequencies below 9.5 GHz and above 16.5 GHz and the 
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stopband lies in the range [12 GHz, 14 GHz].  The structure is simulated by Sonnet’s em [27] 

through Empipe [76].  The coarse model is a coarse-grid em model with cell size 4.8 mil by 4.8 

mil.  The fine model is a fine-grid em model with cell size 1.6 mil by 1.6 mil.  Other parameters 

are summarized in Table 3.1. 

Fig. 3.3 shows the response )(xR *
cf  along with the optimal coarse model response.  The 

time needed to simulate the structure (coarse model) at a single frequency is only 5 CPU seconds 

on a Sun SPARCstation 10.  This includes the automatic response interpolation carried out to 

accommodate off-grid geometries. 

It is clear from Fig. 3.3 that the fine model response violates the design specifications at 

the starting point.  The TRASM algorithm required only two iterations to reach the final design.  

The algorithm’s progress is shown in Table 3.2.  The number of fine model points needed is 5.  

Linear response interpolation was enabled to simulate the off-grid fine model points.  The fine 

model response )(xR ff  is shown in Fig. 3.4.  The CPU time needed for the fine model is 

approximately 70 seconds per frequency point. 

 

3.4.2 HTS Filter 

We consider optimization of a high-temperature superconducting (HTS) filter [31,77].  

This filter is shown in Fig. 3.5.  The specifications areS21≥ 0.95 in the passband and S21≤ 

0.05 in the stopband, where the stopband includes frequencies below 3.967 GHz and above 

4.099 GHz and the passband lies in the range [4.008 GHz, 4.058 GHz].  The design variables for 

this problem are L1, L2, L3, S1, S2 and S3.  We take L0 = 50 mil and W = 7 mil.  The coarse model 

exploits the empirical models of microstrip lines, coupled lines and open stubs available in  
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TABLE 3.1 
MATERIAL AND PHYSICAL PARAMETERS FOR THE COARSE  

AND FINE em MODELS OF THE DFS FILTER 
 

 
Model Parameter 

 
Value 

 
substrate dielectric constant 

 
9.9 

substrate thickness (mil) 5 
shielding cover height (mil) ∞ 
conducting material thickness 3.0E-6 
substrate dielectric loss tangent 2.0E-3 
resistivity of metal (Ωm) 1.72E-8 
magnetic loss tangent 0 
surface reactance (Ω/sq) 0 
lower frequency limit (GHz) 5 
upper frequency limit (GHz) 20 
frequency increment size (GHz)  0.25 

 
 
 
 
 

TABLE 3.2 
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION 

FOR THE DFS FILTER  
 

 
Parameter 

 
x(0)

f  
 

x )1(
f  

 
x )2(

f  
 

L1 
 

88.8 
 

89.5 
 

94.3 

L2 84.1 84.6 85.4 
 

S 
 

3.9 
 

4.7 
 

4.7 

all values are in mils 
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Fig. 3.2.  The DFS filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3. The optimal coarse model response () and the fine model response (ο) at the starting 
point for the DFS filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.4. The optimal coarse model response () and the space-mapped fine model response 
(ο) for the DFS filter. 
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OSA90/hope (see Fig. 3.6).  The fine model employs a fine-grid em simulation.  The material 

and physical parameters values used in both OSA90/hope and in em are shown in Table 3.3.  

The coarse model is first optimized using the OSA90/hope minimax optimizer. The fine model 

response )(xR *
cf  is shown in Fig. 3.7. 

Fig. 3.8 shows how two of the extracted coarse model parameters change with the 

number of points used for parameter extraction in the first iteration.  The first point (1) is 

obtained using SPE.  These extracted values would have caused the original ASM technique to 

diverge.  TRASM automatically generates a candidate point which is then used together with the 

original point to carry out a Double-Point parameter Extraction (DPE) and the second point (2) is 

obtained.  To confirm that this point is the required one a third candidate point is generated.  

Three-point extraction is then carried out to obtain the third extracted point (3).  The second and 

third extracted points show that the extracted vector of coarse model parameters is approaching a 

limiting value and can thus be trusted.  The coarse model responses corresponding to the three 

extracted points of Fig. 3.8 are shown in Fig. 3.9. 

For the remaining iterations, single point parameter extraction worked well.  The fine 

model responses and the coarse model responses for the corresponding extracted points are 

shown in Fig. 3.10.  The space-mapped fine model design was obtained in 5 iterations which 

required 8 fine model simulations.  The final fine model design is given in Table 3.4.  The fine 

model response at this design is shown in Fig. 3.11.  The passband ripples are shown in Fig. 

3.12. 

In the original space mapping approaches [30, 31] this example required significant 

manual intervention to successfully complete the parameter extraction phase.  Furthermore, 

without such intervention the previous approaches would not work. 
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TABLE 3.3 
MATERIAL AND PHYSICAL PARAMETERS 

FOR THE HTS FILTER 
 

 
Model Parameter 

 
OSA90/hope 

 
em 

 
 
substrate dielectric constant 

 
23.425 

 
23.425 

substrate thickness (mil) 19.9516 19.9516 
shielding cover height (mil) ∞ 250 
conducting material thickness 1.968E-2 0 
substrate dielectric loss tangent 3.0E-5 3.0E-5 
resistivity of metal (Ωm) 0 4.032E-8 
surface roughness of metal 0  
magnetic loss tangent  0 
surface reactance (Ω/sq)  0 
x-grid cell size (mil)  1.00 
y-grid cell size (mil)  1.75 

 
 
 
 
 

TABLE 3.4 
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL 

FOR THE HTS FILTER 
 

 
Parameter 

 

x(0)
f  

 

x )5(
f  

 
L1 

 
188.33

 
181.43 

 

L2 
 

197.98 
 

200.51 
L3 188.58 180.49 
S1 21.97 19.44 
S2 99.12 80.52 
S3 111.67 83.41 

all values are in mils 
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Fig. 3.5.  The structure of the HTS filter. 
 
 

 
Fig. 3.6.  The coarse model of the HTS filter. 
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Fig. 3.7. The optimal coarse model response () and the fine model response (ο) at the starting 

point for the HTS filter. 
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Fig. 3.8.  The variation of two of the extracted coarse model parameters in the first iteration with 
the number of points used for parameter extraction where (1) is obtained using a  
single fine model point, (2) is obtained using two fine model points and (3) is obtained 
using three fine model points.  
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Fig. 3.10. The coarse model response () at the extracted point and the fine model response (ο) 

corresponding to (a) the second iteration, (b) the third iteration, (c) the fourth 
iteration and (d) the fifth iteration. 
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Fig. 3.11. The optimal coarse model response () and the final fine model response (ο) for the 

HTS filter. 
 

 
Fig. 3.12. The optimal coarse model response () and the final fine model response (ο) for the 

HTS filter in the passband. 

S
21

d
B

 

3.901 3.945 3.989 4.033 4.077 4.121 4.165

frequency (GHz)

-60

-50

-40

-30

-20

-10

0
S

21
d

B
 

3.967 3.989 4.011 4.033 4.055 4.077 4.099

frequency (GHz)

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0



 
 
 
46            Chapter 3  THE TRUST REGION AGGRESSIVE SPACE MAPPING ALGORITHM 

 

3.4.3 Waveguide Transformers 

Three designs, of two, three and seven-section waveguide transformers were considered.  

The two-section waveguide transformer is shown in Fig. 3.13.  These examples are classical 

microwave circuit design problems [78].  Two different sets of models were used.  The first set 

exploits two empirical models: an “ideal” analytical model which neglects the junction 

discontinuity and a more accurate “nonideal” analytical model which includes the junction 

discontinuity effects [78].  The second set uses the ideal analytical model of the first set as the 

coarse model while Maxwell Eminence [28] is used as the fine model.  The designable 

parameters for these design problems are the height and length of each waveguide section. 

The two-section transformer is optimized using the two analytical models.  The optimum 

ideal model response is shown in Fig. 3.14 along with the nonideal model response at the same 

point.  TRASM terminated in three iterations, requiring 5 fine model simulations.  The final 

nonideal model design is given in Table 3.5.  The corresponding nonideal model response is 

shown in Fig. 3.15.  This example is known to have more than one minimum for the parameter 

extraction step [32].  However, our new algorithm converged successfully.  The number of 

simulations needed to align the two models is smaller than that reported in [32].  The same 

transformer is then optimized using Maxwell Eminence and the ideal analytical model.  Nine 

adaptive passes were allowed for Maxwell Eminence with allowable delta S set to 0.0001.  The 

initial fine model response is shown in Fig. 3.16.  The space-mapped design is obtained in three 

iterations which required five Maxwell Eminence fine model simulations.  This is one half the 

number of fine model simulations reported in [32].  The Maxwell Eminence fine model design is 

shown in Table 3.6 and the corresponding fine model response is shown in Fig. 3.17. 

The previous steps were repeated for the three-section waveguide transformer.  The 

initial fine model response is shown in Fig. 3.18.  Using the two analytical models the final  
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TABLE 3.5 
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION FOR  

THE TWO-SECTION WAVEGUIDE TRANSFORMER 
USING TWO ANALYTICAL MODELS 

 
 

Parameter 
 

x(0)
f  

 

x )1(
f  

 

x )2(
f  

 

x )3(
f  

 

b1 
 

0.712 
 

0.715 
 

0.716 
 

0.716 

b2 1.395 1.400 1.402 1.402 
 

L1 
 

1.657 
 

1.591 
 

1.560 
 

1.560 
 

L2 
 

1.590 
 

1.541 
 

1.518 
 

1.518 
all values are in cm  

 

 
 
 
 

TABLE 3.6 
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION FOR 

 THE TWO-SECTION WAVEGUIDE TRANSFORMER USING  
MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL 

 
 

Parameter 
 

x(0)
f  

 

x )1(
f  

 

x )2(
f  

 

x )3(
f  

 

b1 
 

0.712 
 

0.713 
 

0.719 
 

0.716 

b2 1.395 1.397 1.408 1.402 
 

L1 
 

1.657 
 

1.595 
 

1.565 
 

1.567 
 

L2 
 

1.590 
 

1.535 
 

1.517 
 

1.517 
all values are in cm  
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Fig. 3.14. The optimal response of the ideal analytical model () and the response of the 

nonideal analytical model (ο) at the starting point for the two-section waveguide 
transformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.15. The optimal response of the ideal analytical model () and the final response of the 

nonideal analytical model (ο) for the two-section waveguide transformer. 

Fig. 3.13.  A typical two-section waveguide transformer.
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Fig. 3.16. The optimal response of the ideal analytical model () and the response of Maxwell 

Eminence (ο) at the starting point for the two-section waveguide transformer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.17. The optimal response of the ideal analytical model () and the final Maxwell 

Eminence response (ο) for the two-section waveguide transformer. 
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design was obtained in four iterations which required six fine model simulations.  This final 

design is shown in Table 3.7.  The corresponding fine model response is indistinguishable from 

the optimal coarse model response as shown in Fig. 3.19. 

The design of the three-section transformer is then repeated using Maxwell Eminence 

and the ideal analytical model.  We allowed only five adaptive passes with the same value of 

allowable delta S as before.  The initial Maxwell Eminence fine model response is shown in Fig. 

3.20.  The algorithm terminated in two iterations with a total number of nine fine model 

simulations.  Most of these fine model simulations were used to shrink the trust region around 

the final design.  The final design is shown in Table 3.8.  The corresponding Maxwell Eminence 

fine model response is shown in Fig. 3.21. 

The design of a seven-section waveguide transformer was also considered.  Using the 

two analytical models, the final design was obtained in three iterations which required six fine 

model simulations.  The initial fine model response is shown in Fig. 3.22.  The fine model 

response corresponding to the final design is almost identical to the optimal coarse model 

response as shown in Fig. 3.23.  Table 3.9 shows the space-mapped design. 

Finally, the design of the seven-section transformer was carried out using Maxwell 

Eminence and an ideal analytical model.  We allowed ten refinement passes with allowable delta 

S of 0.001.  The algorithm terminated in three iterations which required eleven Maxwell 

Eminence fine model simulations.  The initial Maxwell Eminence response is shown in Fig. 3.24. 

The final fine model response is shown in Fig. 3.25.  Table 3.10 shows the corresponding 

Maxwell Eminence fine model design. 
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TABLE 3.7 
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION  

FOR THE THREE-SECTION WAVEGUIDE 
TRANSFORMER USING TWO ANALYTICAL MODELS 

 
 

Parameter 
 

x(0)
f  

 

x )1(
f  

 

x )2(
f  

 

x )3(
f  

 

x )4(
f  

 
b1 

 
0.903 

 
0.905

 
0.881 

 
0.891 

 
0.892 

 

b2 
 

1.371 
 

1.363
 

1.298 

 

1.325 
 

1.325 
b3 

 

1.736 
 

1.718
 

1.692 
 

1.701 
 

1.702 
L1 

 

1.549 
 

1.500
 

1.500 
 

1.489 
 

1.489 
L2 

 

1.584 
 

1.575
 

1.575 
 

1.575 
 

1.577 
 

L3 
 

1.646 

 

1.768 
 

1.880 
 

1.853 

 

1.850 

 

all values are in cm 
 

 
 

TABLE 3.8 
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION FOR  

THE THREE-SECTION WAVEGUIDE TRANSFORMER 
 USING MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL 

 
 

Parameter 
 

x(0)
f  

 

x )1(
f  

 

x )2(
f  

 
b1 

 
0.903 

 
0.898

 
0.893

 

b2 
 

1.371 
 

1.340
 

1.327 

b3 
 

1.736 
 

1.707
 

1.703
L1 

 

1.549 
 

1.514
 

1.495
L2 

 

1.584 
 

1.566
 

1.568
 

L3 
 

1.646 

 

1.810 
 

1.848 
 

all values are in cm 
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Fig. 3.18. The optimal response of the ideal analytical model () and the response of the 
nonideal analytical model (ο) at the starting point for the three-section waveguide 
transformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.19. The optimal response of the ideal analytical model () and the final response of the 
nonideal analytical model (ο) for the three-section waveguide transformer. 
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Fig. 3.20. The optimal response of the ideal analytical model () and the response of Maxwell 

Eminence (ο) at the starting point for the three-section waveguide transformer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.21. The optimal response of the ideal analytical model () and the final Maxwell 

Eminence response (ο) for the three-section waveguide transformer. 
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TABLE 3.9 

VALUES OF DESIGNABLE PARAMETERS AT THE INITIAL AND FINAL  
DESIGNS FOR THE SEVEN-SECTION WAVEGUIDE TRANSFORMER  

USING TWO ANALYTICAL MODELS 
 

 
Parameter 

 

x(0)
f  

 

x )3(
f  

 

b1 
 

7.86732 
  

7.87152 
b2 6.61888 6.64855 
b3 4.68540 4.74039 
b4 2.91987 2.96613 
b5 1.81412 1.83659 
b6 1.27658 1.28401 
b7 1.06847 1.06967 
L1 7.10588 7.24590 
L2 7.12201 7.08753 
L3 7.11760 6.91817 
L4 7.12331 6.90979 
L5 7.12815 6.98383 
L6 7.12154 7.03845 
L7 7.12945 7.07431 

 

all values are in cm 
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TABLE 3.10 

VALUES OF DESIGNABLE PARAMETERS AT THE INITIAL AND FINAL DESIGNS 
FOR THE SEVEN-SECTION WAVEGUIDE TRANSFORMER USING 
 MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL 

 
 

Parameter 
 

x(0)
f  

 

x )3(
f  

 

b1 
 

7.86732 
 

7.87494 
b2 6.61888 6.65247  
b3 4.68540 4.74347  
b4 2.91987 2.97030  
b5 1.81412 1.84134  
b6 1.27658 1.28891  
b7 1.06847 1.07201 
L1 7.10588 7.18744  
L2 7.12201 7.03537 
L3 7.11760 6.89166 
L4 7.12331 6.89697  
L5 7.12815 6.98825  
L6 7.12154 7.05869 
L7 7.12945 7.12572  

 

all values are in cm 
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Fig. 3.22. The optimal ideal analytical model response () and the response of the nonideal 
analytical model (ο) at the starting point for the seven-section waveguide 
transformer. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.23. The optimal response of the ideal analytical model () and the final response of the 

nonideal analytical model (ο) for the seven-section waveguide transformer. 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

frequency (GHz) 

1.00 

1.01 

1.02 

1.03 

1.04 

1.05 

V
SW

R
 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

frequency (GHz) 

1.00 

1.01 

1.02 

1.03 

1.04 

1.05 

V
SW

R
 



 
 
 
3.4  EXAMPLES   57 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.24. The optimal response of the ideal analytical model () and the response of Maxwell 
Eminence (ο) at the starting point for the seven-section waveguide transformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.25. The optimal response of the ideal analytical model () and the final Maxwell 

Eminence response (ο) for the seven-section waveguide transformer. 
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3.4.4 A Three-section Waveguide Transformer with Rounded Corners [79] 

In this example we considered the design of a three-section transformer with rounded 

corners.  The designable parameters for this problem are the height and length of each 

waveguide section.  The specifications are S11≤ -30 dB for a range of frequencies extending 

from 9.5 GHz to 15 GHz.  The fine model of this circuit exploits HP HFSS ver. 5 [29].  The 

coarse model exploits an ideal empirical model that does not take into account the rounding of 

the corners.  One quadrant of the transformer is shown in Fig. 3.26.  We exploited the 

geometrical symmetry of the problem to reduce the required CPU time of HP HFSS. 

Each time a new HP HFSS simulation is requested by the algorithm a new project is 

created using the new values for the length and height of each section.  To facilitate this process, 

a MATLAB ver. 5 [80] program was developed that converts the values of the designable 

parameters into the corresponding HP HFSS drawing commands with the appropriate values.  

This approach accelerates the generation of new HP HFSS projects and eliminates the possibility 

of wrong dimensions. 

The initial fine model response at the optimal coarse model design is shown in Fig. 3.27.  

Clearly, the specifications are slightly violated at this point.  Only one iteration was needed to 

reach the final fine model design.  The required number of HP HFSS simulations is seven.  The 

first three of these simulations were needed to trust the parameter extraction at the first point. 

The other fine model points were needed to contract the size of the trust region to the 

termination size.  The final HP HFSS fine model design is given in Table 3.11.  The 

corresponding fine model response is shown in Fig. 3.28. 
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Fig. 3.26.  The simulated part of the three-section waveguide transformer with rounded corners. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.27. The optimal response of the ideal analytical model () and the response of HP HFSS 
(ο) at the starting point for the three-section waveguide transformer with rounded 
corners. 
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Fig. 3.28. The optimal response of the ideal analytical model () and the final HP HFSS 

response (ο) for the three-section waveguide transformer with rounded corners. 
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TABLE 3.11 
VALUES OF DESIGNABLE PARAMETERS AT EACH ITERATION FOR THE THREE-
SECTION WAVEGUIDE TRANSFORMER WITH ROUND CORNERS USING HP HFSS 

AND AN IDEAL ANALYTICAL MODEL 
 

 
Parameter 

 

x(0)
f  

 

x )1(
f  

 
b1 

 
0.33276 

 
0.32971

 

b2 
 

0.26551 
 

0.26396
b3 

 

0.21186 
 

0.20978
L1 

 

0.32556 
 

0.33208
L2 

 

0.32640 
 

0.32335
 

L3 
 

0.32556 

 

0.32192 
 

all values are in inch 
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3.5. MONTE CARLO ANALYSIS USING SPACE MAPPING 

The final matrix B obtained by the TRASM algorithm represents the best available 

information about the mapping between the two spaces.  A perturbation of x f∆  in the fine 

model space is mapped to a perturbation of xc∆ in the coarse model space by 

xBx fc ∆=∆                                                          (3.13) 

The perturbations in the coarse model space and fine model space are with respect to x*
c  and 

x f , respectively.  The established mapping can be used to perform a space-mapped Monte Carlo 

analysis [31] for the problem under consideration.  The random points generated in the fine 

model space are mapped to the coarse model space using (3.13).  Coarse model simulations are 

then used instead of the CPU intensive fine model points.  This statistical analysis should enjoy 

the speed of the coarse model and the accuracy of the fine model. 

To demonstrate this approach we carried out a Monte Carlo analysis of the three-section 

waveguide transformer with rounded corners.  The fine model parameters are assumed to be 

uniformly distributed with tolerances of 1%, 2% and 5%.  The corresponding responses are 

shown in Figs. 3.29, 3.30 and 3.31.  The estimated yields for these tolerances are 39%, 4% and 

0%. 
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Fig. 3.29. Monte Carlo analysis for the three-section waveguide transformer with rounded 
corners assuming 1% uniformly distributed parameters. 

 
Fig. 3.30. Monte Carlo analysis for the three-section waveguide transformer with rounded 

corners assuming 2% uniformly distributed parameters. 
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Fig. 3.31. Monte Carlo analysis for the three-section waveguide transformer with rounded 

corners assuming 5% uniformly distributed parameters. 
 

 
 
 

 

 

 

 

 

9 10 11 12 13 14 15

frequency (GHz)

-70

-60

-50

-40

-30

-20

-10

S
11

d
B

 



 
 
 
3.6  CONCLUSIONS   65 

 

3.6 CONCLUSIONS 

In this Chapter, we reviewed the Trust Region Aggressive Space Mapping (TRASM) 

optimization algorithm.  TRASM integrates a trust region methodology with the Aggressive 

Space Mapping (ASM) technique.  It improves the uniqueness of the parameter extraction step, 

the most critical step in the space mapping process, and exploits all available fine model 

simulations.  A Recursive Multi-Point parameter Extraction (RMPE) procedure is utilized by the 

algorithm.  This procedure makes use of the available information about the mapping between 

the two spaces.  TRASM is successfully illustrated through the design of a number of microwave 

circuits.  The examples include the design of a High Temperature Superconducting (HTS) filter 

and the design of an Double Folded Stub (DFS) filter.  Also, the design of a number of 

waveguide transformers was also considered.  A space-mapped Monte Carlo analysis of a 

waveguide filter illustrates the statistical analysis applications of SM.  We showed that the 

number of fine model simulations needed is of the order of problem dimensionality. 
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4 
 

THE AGGRESSIVE PARAMETER 
EXTRACTION ALGORITHM 

 
 

4.1 INTRODUCTION 

In previous chapters we discussed three of the SM-based optimization algorithms.  The 

importance of the Parameter Extraction (PE) step for SM optimization was illustrated.  Usually, 

PE is formulated as an optimization problem.  Optimization approaches to PE often yield 

nonunique solutions.  We showed that this nonuniqueness may cause SM optimization to diverge 

or exhibit oscillatory behavior. 

In this chapter, We discuss the PE extraction problem in more detail.  We present an 

“aggressive” approach to parameter extraction.  While generally applicable, the algorithm 

presented is discussed in the context of SM technology.  We assume the existence of a fine 

model that generates the target response and a coarse model whose parameters are to be 

extracted. 

Several authors have addressed nonuniqueness in parameter extraction.  For example, 

Bandler et. al. [24] proposed the idea of making unknown perturbations to a certain system 

whose parameters are to be extracted.  Later Bandler et al. [32] suggested that Multi-Point 

Extraction (MPE) be used to match the first-order derivatives of the two models to ensure a 

global minimum.  The perturbations used in that approach are predefined and arbitrary.  The 

optimality of the selection of those perturbations was not addressed.  A Recursive Multi-Point 

Extraction (RMPE) procedure was presented in Chapter 3 in the context of the TRASM
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algorithm [33].  This procedure employs a mapping between the two models to enhance 

uniqueness. 

The algorithm presented in this chapter aims at minimizing the number of fine 

simulations used in the MPE process.  This is done by utilizing perturbations that significantly 

improve the uniqueness in each iteration.  Consequently, the algorithm is designated as an 

Aggressive Parameter Extraction (APE) algorithm.  Each perturbation requires an additional fine 

model simulation which could be very CPU intensive.  We classify the different solutions 

returned by the MPE process and, based on this classification, a new perturbation that is likely to 

sharpen the result is suggested. 

 

4.2 THE PARAMETER EXTRACTION PROBLEM 

The objective of parameter extraction is to find a set of parameters of a model whose 

response matches a given set of measurements.  The Single Point Extraction (SPE) procedure is 

given by (2.18).  Here, the coarse and fine models are matched using the response of a single 

point.  The solution to this problem may be nonunique.  SPE was illustrated by Fig. 2.3. 

An MPE procedure [32] was suggested to improve the uniqueness of the step.  The 

vector of extracted coarse model parameters xe
c  corresponding to a fine model point xf is 

obtained by solving 













= TT
N p

TT

c

e
c minarg ][ 10 eee

x
x L                                       (4.1) 

where  

)()(0 xRxRe ffcc −=                                                        (4.2) 

and  
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)()( )()( xxRxxRe i
fff

i
cci c ∆+−∆+=                                           (4.3) 

The set of perturbations in the coarse model space is represented by Vp
i

c ∈∆ x )( , where i=1, 2, 

. . . , N p  and NV pp = .  x )(i
f∆  is the corresponding perturbation in the fine model space.  The 

perturbations x )(i
c∆  and x )(i

f∆  in this MPE procedure [32] are related by  

xx )()( i
f

i
c ∆=∆                                                            (4.4) 

It follows that its solution simultaneously matches the responses of a set of corresponding points 

in both spaces.  The number of fine model points needed for this process is arbitrary.  There is 

no clear way of how to select the set of perturbations.  Also, the available information about the 

mapping between the two spaces was not utilized. 

The RMPE procedure [36] suggested that the perturbations utilized in (4.1)-(4.3) should 

satisfy 

xBx )()( i
f

i
c ∆=∆                                                         (4.5) 

The matrix B approximates the mapping between the two spaces.  The TRASM algorithm 

generates the perturbations used for the RMPE process.  These perturbations are not guaranteed 

to result in significant improvement in the uniqueness of the extracted parameters.  A large 

number of additional fine model simulations may be needed to ensure the uniqueness of the step. 

For both (4.4) and (4.5) the set V of fine model points utilized in MPE is  

{ } { }V  V p
i

c
i
fff ∈∆∀∆+∪= xxxx )()(                                          (4.6) 

Fig. 4.1 illustrates the MPE procedure.   
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Fig. 4.1.  Illustration of the MPE procedure. 
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4.3 THE SELECTION OF PERTURBATIONS 

The vector of target coarse model responses RT used to match the two models is given by 























∆+

∆+
=

)(
.
.

)(
)(

)(

(1)

xxR

xxR
xR

R

N p
ccc

ccc

cc

T
                                                      (4.7) 

The dimensionality of RT is mT, where mT =(Np+1)m and m is the dimensionality of both Rc and 

Rf.  Vector xe
c  is labeled locally unique [57] if there exists an open neighborhood of xe

c  

containing no other point xc  such that )()( xRxR e
cTcT  = .  Otherwise, it is labeled locally 

nonunique.  It was shown in [57] that local uniqueness is equivalent to the condition that the 

Jacobian of RT has rank n where n is the number of parameters. 

To achieve local uniqueness, it was suggested in the context of system identification 

[24] that increasing the number of perturbations enhances the possibility that the Jacobian matrix 

JT of RT becomes full rank.  The perturbations suggested by Daijavad [24] were unidentified 

perturbations and thus result in an increase in the number of the optimizable parameters.  

However, it was pointed out that the improvement in the rank of JT outweighs the increase in the 

number of parameters. 

In a later work, the idea of using known perturbations to achieve global uniqueness of 

parameter extraction was introduced [32].  By global uniqueness we mean that there exists only 

one minimum xe
c  for the MPE problem.  It was also pointed out in [32] that using MPE is 

equivalent to matching the first-order derivatives of the coarse and fine models. 
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We suggest two types of perturbation depending on whether the solution of the MPE is 

locally unique or locally nonunique.  If the solution obtained is locally nonunique we choose a 

perturbation that is likely to make the new extracted parameters locally unique. 

Assume that a locally nonunique minimum xe
c  is obtained using the current set of coarse 

model perturbations Vp.  Here, the rank of the Jacobian JT( xe
c ) is ϑ  where ϑ < n.  We suggest a 

perturbation x∆  that attempts to increase the rank of the Jacobian of the responses 

corresponding to the augmented set { }x∆UVp  at xe
c  by at least one.  This is achieved by 

imposing the condition that the gradients of n−ϑ  of the coarse model responses in the new 

response vector Rc( xe
c + x∆ ) be normal to a linearly independent set of gradients of cardinality ϑ 

of the responses in the vector RT at the point xe
c .  We denote the set of linearly independent 

gradients by S where 

{ }yy )((1) ., ϑϑϑϑ., .   S =                                                         (4.8) 

We denote the set of the gradients of the newly selected n−ϑ responses in Rc( xe
c +∆x) by Sa, 

where 

{ }yy n
aaa  ,. . .  S ,1)( += ϑ                                                       (4.9) 

Each of these gradients is approximated by 

xGyy ∆+= )()()( iii
a ,       i=ϑ+1, . . . , n                                    (4.10) 

where y )(i is the gradient of the ith response at the point xe
c  and G )(i is the corresponding 

Hessian.  The imposed condition on the perturbation is that  

S     S    a
i

a
jjTi

a ∈∀∈∀= yyyy )()()()( and0                                 (4.11) 

Using (4.10) and (4.11), the perturbation x∆ is obtained by solving the system of linear 

equations 
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cxZ y
T −=∆                                                         (4.12) 

where the matrix Z is given by 

Z=[ yGyGyG )()((1))((1))1( ϑϑ nn   . . .  . . .+ ]                                    (4.13) 

and the vector cy is given by 







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

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



=

+

yy

yy

yy

c

)()(

(1))(

(1))1(

.
ϑϑϑϑ

ϑϑϑϑ

Tn

Tn

T

y

.
                                                      (4.14) 

It should be noted that the system of linear equations (4.12) may be an over-determined, under-

determined or well-determined system of equations depending on ϑ and n.  The pseudoinverse of 

the matrix ZT obtains the solution with minimum l2  norm in all cases.  The fact that this solution 

is a minimum length solution is of importance since (4.12) is based on a linear approximation of 

the gradients which can only be trusted within a certain trust region.  If the perturbation x∆  is 

outside this trust region, it is rescaled. 

If the minimum obtained by the MPE is locally unique we still have to ensure that this is 

the true solution to the extraction problem.  The following lemma leads to a robust way to 

weaken any other existing locally unique minimum. 

Lemma 

Assume that there exist two locally unique minima x ,1e
c  and x 2,e

c  for the MPE problem 

obtained using least squares optimization and a set of perturbations Vp.  A possible perturbation 

∆x that can be added to the set Vp and can be used to weaken one of these minima as a solution 

for the MPE is in the direction of an eigenvector for the matrix H1 – H2 where H1 and H2 are the 

Hessian matrices for the l2  objective function at the points x ,1e
c  and x 2,e

c , respectively. 
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Proof 

We denote by Q(x,V) the value of the l2  objective function of the MPE problem at a 

coarse model point x using a set of fine model points V, where V is given by (4.6).  The quadratic 

approximations of Q(x,V) in a neighborhood centered at the two locally unique minima x ,1e
c  and 

x 2,e
c , respectively are given by 

xHxxx ∆∆+=∆ 1
,1

1 5.0),(),( Te
c VQVq                                        (4.15) 

xHxxx ∆∆+=∆ 2
,2

2 5.0),(),( Te
c VQVq                                       (4.16) 

The perturbation x∆ that results in the maximum difference between the two quadratic models 

(4.15) and (4.16) for a specific trust region δ  is obtained by formulating the Lagrangian 

)()(5.0)),(),((),( 2
12

1,,2 δθλ −∆∆+∆−∆+−= xxxHHxxxx TTe
c

e
c VQVQL           (4.17) 

Taking the derivative with respect to ∆x gives 

xxHH ∆=∆− θ2)( 21                                                    (4.18) 

It follows that x∆ is an eigenvector of the matrix H1 – H2.  x∆  provides a direction that 

maximizes the difference between the quadratic models.  In other words, it provides a 

perturbation that maximizes the contrast between the changes of the coarse model responses at 

these two minima.  It follows that the true minimum is the one whose response changes match 

better the changes of the fine model responses obtained using the perturbation x∆ . 

A similar result to (4.18) can be obtained using a different approach.  A perturbation x∆  

results in a perturbation of the coarse model responses at the two minima by  

xxJR ∆=∆ )( 1,
1

e
cc                                                     (4.19) 

and 

xxJR ∆=∆ )( 2,
2

e
cc                                                     (4.20) 
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Where )(xJ cc  is the Jacobian of the coarse model response Rc.  We impose the condition that 

the difference between the l2  norms of these two response perturbations be maximized subject 

to certain trust region size.  Therefore, the following Lagrangian can be formed 

)()()()()(),( 22,2,1,1, δθλ −∆∆+∆∆−∆∆=∆ xxxxJxJxxxJxJxx Te
cc

e
cc

TTe
cc

e
cc

TTL       (4.21) 

Using a similar approach to that used in deriving (4.18) it can be shown that the perturbation x∆  

is obtained by solving the eigenvalue problem 

xxxJxJxJxJ ∆=∆− θ))()()()(( 2,2,1,1, e
cc

e
cc

Te
cc

e
cc

T                                (4.22) 

The two perturbations (4.18) and (4.22) can be shown to be almost identical by writing the 

Hessian matrix of Q(x,V) in terms of the Jacobian of the coarse model responses [81].  However, 

the perturbation calculated in (4.22) is more computionally efficient than that of (4.18). 

There is one substantial difficulty in the exact evaluation of the perturbation given by 

(4.22).  Once a locally unique minimum is reached the Hessian of Q at this point can be obtained 

while no information is available about the Hessian at the other locally unique minima that may 

exist.  In such a case, a reasonable assumption is to take H2=I, the identity matrix or alternatively 

take )()( 2,2, xJxJ e
cc

e
cc

T
 as the identity matrix in (4.22).  This assumption implies that no 

information is available about the curvature of the objective function at the other minima.  It 

follows that x∆ is an eigenvector of the matrix )()( 1,1, xJxJ e
cc

e
cc

T
. 

The perturbation given by (4.22) is a suggested perturbation in the coarse model space.  

The new fine model point that should be added to the set V is xx ff ∆+ where x f∆  is obtained 

by solving the system of linear equations  

xBx f∆=∆                                                         (4.23) 
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The relation (4.23) is used if some information is available about the mapping between the two 

spaces.  However, in most cases we make the assumption that B=I. 

The scheme that we utilized for the selection of points in (4.22) is as follows.  First, the 

eigenvalue problem is solved.  The eigenvector v(1)  with the largest eigenvalue in modulus is 

initially selected as the candidate eigenvector.  The suggested perturbation in this case is 

xc∆ = v
v

(1)
(1)

δ                                                      (4.24) 

where δ is the current size of the trust region.  This perturbation is tested to see whether it 

belongs to the current set of perturbations.  It follows that ∆xc is rejected if the condition 

)1(2

)(
ε−>

∆
∆∆
x

xx

c

i
c

T
c                                                  (4.25) 

is satisfied for a perturbation ,)( Vp
i

c ∈∆x  where ε > 0 is a small number.  In this case the 

alternative perturbation 

xc∆ = v
v

(1)
(1)

δ−
                                                           (4.26) 

is tested against the condition (4.25).  If it also fails, we switch to the eigenvector with second 

largest eigenvalue in modulus and repeat steps (4.24) – (4.26).  This is repeated until either a 

perturbation is found such that condition (4.25) is not satisfied or all the eigenvectors are 

exhausted for perturbations of length δ.  In this case the trust region size δ  is scaled by π s  where  

π s >1.0.  The perturbation is then taken in the direction of eigenvector with largest eigenvalue in 

modulus.
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4.4 THE APE ALGORITHM 

In this section we present the APE algorithm for the MPE process.  This algorithm is 

based on the two methods discussed in the previous section.  It is given by the following steps. 

Step 0 Given x f , δ  and n.  Initialize { }x(1)(1)
fV = , where xx ff =(1)  and set i=1. 

Comment  The set V i)(  contains the points used for the MPE in the ith iteration.  The index i is 

equal to V i)( , the cardinality of V i)( . 

Step 1 Apply MPE using the set V i)(  to get x )(i e
c . 

Comment  The point x )(i e
c is the solution to the MPE problem obtained using the set V i)( . 

Step 2 If )( )(xJ i e
cT  has full rank, go to Step 4. 

Step 3 Obtain a new perturbation x∆ using (4.12), use (4.23) to get x∆ f  and let 

{ }x 1)()()1( ++ ∪= i
f

ii VV , where xxx ff
i
f ∆+=+1)( .  Set i=i+1 and go to Step 1. 

Comment  The perturbation x∆ is rescaled to satisfy the trust region condition δ=∆x . 

Step 4 If V i)( is equal to one, go to Step 6. 

Step 5 If εi e
c

i e
c ≤− −xx )1()( , stop. 

Step 6 Obtain a new perturbation x∆ using (4.22) and use (4.23) to get x∆ f .  Update δ and 

let { }x 1)()()1( ++ ∪= i
f

ii VV , where xxx ff
i
f ∆+=+1)( .  Set i=i+1 and go to Step 1. 

Comment  In Step 6 the eigenvalue problem is solved and the perturbation x∆  is selected 

according to the scheme discussed in the previous section.  This scheme may result in 

updating the trust region size.  The algorithm terminates if the vector of extracted 

coarse model parameters obtained using i fine model points is close enough in terms 
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of some norm to the vector of extracted parameters obtained using i−1 fine model 

points.  

Fig. 4.2 illustrates the relationship between the generated sets V i)( , the fine model points 

x )(i
f  and the extracted coarse model points x )(i e

c .  A flowchart of the APE algorithm is shown in 

Fig. 4.3. 

 

4.5 EXAMPLES 

4.5.1 The Rosenbrock Function 

The first example utilizes the famous Rosenbrock function [81].  The coarse model for 

this problem is given by 

)1()(100 1
22

12
2

uu  uRc −+−=                                             (4.27) 

The fine model is another “Rosenbrock” function but with a shift applied to the parameters 

))2.0(1())2.0(0.2)((100 1
2

1
2

2
2

−−+−−+= uu  uR f                            (4.28) 

It is required to extract the coarse model parameters corresponding to the fine model point 

]0.10.1[     T .  The result of the SPE at this point is ]91728.021541.1[(1)     Te
c =x .  The contours of 

Q(x,V (1) ) are shown in Fig. 4.4.  It is clear from the contour plot that the minimum obtained is a 

locally nonunique minimum.  The algorithm detects this and generates a perturbation that 

attempts to improve the rank of the Jacobian of RT in the Double Point Extraction (DPE) using 

(4.12).  Utilizing a trust region size of 0.25 the set V )2( is given by 

[ ] [ ]{ }0833.17643.0,0.10.1(2) T T  V =                                         (4.29) 

The contours of Q(x,V )2( ) are shown in Fig. 4.5.  It is clear that by using only one additional fine 

model simulation the uniqueness of the problem has improved dramatically.  Actually, the only  
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 x (1)
f   V (1)  x(2)

f   V (2)
•  •  •   x )(k

f  V k )(
 

PE PE PE 

 x (1) e
c   x )2( e

c   x )(k e
c  

Fig. 4.2. Illustration of the relationship between the generated sets V i)( , the fine model points 
x )(i

f  and the extracted coarse model points x )(i e
c generated by the APE algorithm. 
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Fig. 4.3.  A flowchart of the APE algorithm. 

Given x(1)
f , δ  and n.

Initialize i=1 and 
{ }x )()( i

f
iV =  

JT( x )(i e
c ) has 

rank n ? 

No

Obtain a new perturbation 
x∆ using first method.  Set  

{ }x 1)()()1( ++ ∪= i
f

ii VV  and 
i=i+1. 

Is V i)( =1? 

Yes 

No

Is x )(i e
c  approaching 

a limit ? 

Obtain a new perturbation 
x∆ using second method. Set 

{ }x 1)()()1( ++ ∪= i
f

ii VV  and 
i=i+1. 

Stop 

Yes 

No 

Yes 

Apply multi-point parameter 
extraction using the points 
in the set V i)(  to get x )(i e

c  
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Fig. 4.4.  The contours of Q(x,V (1) ) for the Rosenbrock function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5.  The contours of Q(x,V )2( ) for the Rosenbrock function. 
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Fig. 4.6.  The contours of Q(x,V )3( ) for the Rosenbrock function. 
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existing minimum is a global unique minimum.  To ensure uniqueness a third point is generated 

by solving the eigenvalue problem (4.22).  Thus we have 

[ ] [ ] [ ]{ }8281.08185.0,0833.17643.0,0.10.1(3) T T T  V =                         (4.30) 

The contours of Q(x,V )3( ) are shown in Fig. 4.6.  The algorithm then terminates as it detects that 

the extracted parameters are approaching a limit.  It returns the last set of extracted parameters as  

the solution for the MPE problem.  The variation of the extracted parameters obtained using the 

l2  optimizer with the number of fine model points used is shown in Table 4.1. 

 

4.5.2 A 10:1 Impedance Transformer 

The second example is the well-known 1+0:1 impedance transformer [82].  The 

parameters for this problem are the characteristic impedance of the two transmission lines Z1 and 

Z2 while the two lengths of the transmission lines are kept fixed at their optimal values (quarter 

wave length).  The coarse model utilizes nonscaled parameters while a “fine” model scales each 

of the two impedances by a factor of 1.6. 

It is required in this synthetic problem to extract the coarse model parameters whose 

response matches the fine model response at the point [2.2628   4.5259]T.  This point is the 

optimal coarse model design according to the specifications in [82].  The two models are 

matched using the reflection coefficients at eleven equally spaced frequencies in the frequency 

range 0.5 GHz ≤ ω ≤ 1.5 GHz.  The fine model response at x )1(
f  and the coarse model response at 

the point x )1( e
c  are shown in Fig. 4.7.  The contours of Q(x,V (1) ) are shown in Fig. 4.8.  It is clear 

from this figure that there exist three locally unique minima for the extraction problem.  The 

algorithm then generates a second perturbation using (4.22).  The set V )2(  is given by 
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TABLE 4.1 
THE VARIATION OF THE EXTRACTED PARAMETERS 

FOR THE ROSENBROCK FUNCTION WITH THE 
NUMBER OF POINTS USED FOR EXTRACTION 

 
 

Parameter 
 

x (1) e
c  

 

x )2( e
c  

 

x )3( e
c  

 

u1 

 

1.21541 
 

0.80008 
 

0.80008 
u2 0.91728 1.20012 1.20014 

 
 

 

 
TABLE 4.2 

THE VARIATION OF THE EXTRACTED PARAMETERS 
FOR THE 10:1 IMPEDANCE TRANSFORMER WITH THE 

NUMBER OF POINTS USED FOR EXTRACTION 
 

 
Parameter 

 

x (1) e
c  

 

x )2( e
c  

 

x )3( e
c  

 

Z1 

 

3.62043 
 

3.47160 
 

3.60357 
Z2 7.24147 7.43214 7.35052 
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[ ] [ ]{ }76634.449975.1,52592.426277.2(2) T T  V =                             (4.31) 

The fine model response for every point in V )2(  and the coarse response at the corresponding 

extracted coarse model point are shown in Fig. 4.9.  The corresponding contours of Q(x,V )2( ) 

are shown in Fig. 4.10.  It is clear that there still exist two locally unique minima.  Using (4.22) 

we have  

[ ] [ ] [ ]{ }26855.402024.3,76634.449975.1,52592.426277.2(3) TT T  V =             (4.32) 

The fine model response for each point in the set V )3(  and the coarse model response at the 

corresponding extracted coarse model point are shown in Fig. 4.11.  The contours of Q(x,V )3( ) 

are shown in Fig. 4.12.  The algorithm terminates as the termination condition is satisfied.  The 

variation of the extracted coarse model point with V i)(  is given in Table 4.2. 

 

4.5.3 The HTS Filter 

The fine model for the HTS filter is simulated as a whole using Sonnet’s em.  The 

“coarse” model is a decomposed Sonnet version of the fine model (see Fig. 4.13).  This model 

exploits a coarser grid than that used for the fine model.  The physical parameters of the coarse 

and fine models are given in Table 4.3. 

It is required to extract the coarse model parameters corresponding to the fine model 

parameters given in Table 4.4.  The values in this table are the optimal coarse model design 

obtained using the minimax optimizer in OSA90/hope according to specifications given in [77].  

We utilize the responses at 15 discrete frequencies in the range [3.967 GHz, 4.099 GHz] in the 

parameter extraction process. 
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Fig. 4.7. The responses of the given fine model point (ο) and the coarse model response (−) at 

the point x (1) e
c  for the 10:1 impedance transformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.8.  The contours of Q(x,V (1) ) for the 10:1 impedance transformer.
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Fig. 4.9. The fine model response (ο) and the corresponding coarse model response (−); (a) at 

the first point and (b) at the second point utilized in the DPE for the 10:1 impedance 
transformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.10.  The contours of Q(x,V )2( ) for the 10:1 impedance transformer. 
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Fig. 4.11. The fine model response (ο) and the corresponding coarse model response (−) ; (a) at 

the first point, (b) at the second point and (c) at the third point utilized in the three-
point parameter extraction for the 10:1 impedance transformer. 
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Fig. 4.12.  The contours of Q(x,V )3( ) for the 10:1 impedance transformer. 
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The algorithm first started by applying SPE where V )1(  contains only the point x )1(
f  

given in Table 4.5.  The point x (1) e
c  is given in Table 4.6.  Fig. 4.14 shows the fine model 

response at x )1(
f  and the coarse model response at x (1) e

c . 

The algorithm detected that this extracted point is a locally unique minimum.  A new 

fine model point is then generated by solving the eigenvalue problem (4.22).  A DPE step is then 

carried out.  The set V )2(  includes the points given in the second and third columns of Table 4.5.  

The point x )2( e
c  is given in Table 4.6.  Fig. 4.15 shows the fine model responses at the two 

utilized fine model points and the responses at the corresponding extracted coarse model points, 

respectively.  Again the algorithm detected that the extracted point is locally unique and a new 

fine model point is generated and added to the set of points.  The same steps were then repeated 

for three-point and four-point parameter extraction.  The points utilized are given in Table 4.5.  

The results are shown in the fourth and fifth columns of Table 4.6.  It is clear that the extracted 

parameters are approaching a limit.  The fine model responses and the responses at the 

corresponding extracted coarse model points for the last two iterations are shown in Figs. 4.16 

and 4.17, respectively.  Fig. 4.17(a) demonstrates that a good match between the responses of 

both models over a wider range of frequencies than that used for parameter extraction is 

achieved. 

 

4.5.4 Double-Folded Stub Filter 

We consider the design of the double-folded stub (DFS) microstrip structure shown in 

Fig. 3.2.  The filter is characterized by five parameters : W1 , W2 , S, L1 and L2.  L1, L2 and S are 

chosen as optimization variables.  W1 and W2 are fixed at 4.8 mil.  The fine model is simulated 

 



 
 
 
90  Chapter 4  THE AGGRESSIVE PARAMETER EXTRACTION ALGORITHM 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.13.  The decomposed HTS filter. 
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Fig. 4.14. The fine model response (ο) and the corresponding coarse model response (−) at the 

point utilized in the SPE for the HTS filter.  Note that only points in the range 3.967 
GHz to 4.099 GHz were actually used. 

 
 (a) (b) 
 
Fig. 4.15. The fine model response (ο) and the corresponding coarse model response (−), (a) at 

the first point, and (b) at the second point utilized in the DPE for the HTS filter.  Note 
that only points in the range 3.967 GHz to 4.099 GHz were actually used. 
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 (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) 
 
Fig. 4.16. The fine model response (ο) and the corresponding coarse model response (−), (a) at 

the first point, (b) at the second point, and (c) at the third point utilized in the three-
point parameter extraction for the HTS filter.  Note that only points in the range 3.967 
GHz to 4.099 GHz were actually used. 
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Fig. 4.17. The fine model response (ο) and the corresponding coarse model response (−), (a) at 

the first point, (b) at the second point, (c) at the third point, and (d) at the fourth point 
utilized in the four-point parameter extraction for the HTS filter.  Note that only 
points in the range 3.967 GHz to 4.099 GHz were actually used. 

 
 

 

 

 

3.867 3.929 3.992 4.054 4.117 4.179 
frequency (GHz)

-60 

-50 

-40 

-30 

-20 

-10 

0 

S
21

 
dB

 

(a) 

3.867 3.929 3.992 4.054 4.117 4.179 

frequency (GHz) 

-60 

-50

-40

-30 

-20 

-10

0 

S
21

 
dB

 
(b) 

3.867 3.929 3.992 4.054 4.117 4.179 

frequency (GHz)

-60 

-50 

-40 

-30 

-20 

-10

0 

S
21

 
dB

 

(c) 

3.867 3.929 3.992 4.054 4.117 4.179 
frequency (GHz)

-60 

-50

-40

-30 

-20 

-10 

0 
S

21
 

dB
 

(d) 



 
 
 
94  Chapter 4  THE AGGRESSIVE PARAMETER EXTRACTION ALGORITHM 

 

 
TABLE 4.3 

MATERIAL AND PHYSICAL PARAMETERS 
FOR THE COARSE AND FINE MODELS OF THE HTS FILTER 

 
 

Model Parameter 
 

Coarse Model 
 

Fine Model 

 
substrate dielectric constant 

 
23.425 

 
23.425 

substrate thickness (mil) 19.9516 19.9516 
shielding cover height (mil) 100 250 
conducting material thickness 0 0 
substrate dielectric loss tangent 0 0 
resistivity of metal (Ωm) 0 0 
magnetic loss tangent 0 0 
surface reactance (Ω/sq) 0 0 
x-grid cell size (mil) 2.00 1.00 
y-grid cell size (mil) 1.75 1.75 

 
 
 
 
 
 

TABLE 4.4 
THE OPTIMAL COARSE MODEL DESIGN 

FOR THE HTS FILTER 
 

 

Parameter 
 

Value 
 

L1 

 

181.00 
L2 201.59 
L3 180.97 
S1 20.12 
S2 67.89 
S3 66.85 

 

all values are in mils 
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TABLE 4.5 

THE FINE MODEL POINTS USED IN THE APE  
ALGORITHM FOR THE HTS FILTER 

 
 

Parameter 
 

x )1(
f  

 

x )2(
f  

 

x )3(
f  

 

x )4(
f  

 

L1 
 

181.00 
 

182.55 
 

181.34 
 

179.86 
 

L2 201.59 205.64 205.38 197.74 
L3 180.97 183.36 184.20 178.08 
S1 20.12 20.05 20.07 20.46 
S2 67.89 68.40 68.08 67.35 
S3 66.85 67.25 66.98 66.46 

 

all values are in mils 
 
 

TABLE 4.6 
THE VARIATION IN THE EXTRACTED PARAMETERS 

FOR THE HTS FILTER WITH THE NUMBER OF  
FINE MODEL POINTS 

 
 

Parameter 
 

x (1) e
c  

 

x )2( e
c  

 

x )3( e
c  

 

x )4( e
c  

 

L1 
 

188.31 
 

179.99 
 

176.67 
 

178.50 
 

L2 197.69 204.52 208.52 206.78 
L3 189.72 181.23 178.00 179.09 
S1 19.34 17.13 17.21 18.99 
S2 52.67 63.44 56.52 57.99 
S3 52.06 53.18 53.47  56.77 

 

all values are in mils 
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 by HP HFSS ver. 5.2 through HP Empipe3D [83].  The coarse model exploits the microstrip line 

and microstrip T-junction models available in OSA90/hope.  The coupling between the folded 

stubs and the microstrip line is simulated using equivalent capacitors.  The values of these 

capacitors is determined using Walker’s formulas [84].  Jansen’s microstrip bend model [85] is 

used to model the folding effect of the stub.  The coarse model is shown in Fig. 4.18. 

It is required in this example to extract the coarse model parameters corresponding to the 

fine model parameters given in Table 4.7.  This vector is the optimal design of the coarse model 

obtained by minimax optimization.  The optimal coarse model response and the fine model 

response at the optimal coarse model design are shown in Fig. 4.19.  This figure shows clearly 

the large misalignment between the two models which implies nonuniqueness of the extracted 

parameters. 

The algorithm started by applying SPE using the fine model point given in Table 4.7.  

Fig. 4.20 shows the fine model response at x )1(
f  and the coarse model response at the point x (1) e

c .  

The algorithm detected that the extracted parameters are locally unique.  A new fine model point 

is generated using (4.22) and added to the set of fine model points used for the MPE.  The 

algorithm needed nine iterations to trust the extracted coarse model parameters.  The fine model 

points utilized are given in Table 4.8 and the extracted coarse model points are given in Table 

4.9.  Fig. 4.21 shows the fine model response at x )1(
f  and the coarse model response at the point 

x )9( e
c . 

Table 4.9 shows the large relative change in parameter values between the first set of 

extracted parameters x (1) e
c  and the trusted set of parameters x )9( e

c .  If the step taken by any SM 

optimization algorithm utilizes x (1) e
c , the algorithm would have probably failed.  Fig. 4.22 shows 

the change of Q( x (1) e
c ,V i)( ) and of Q( x )9( e

c ,V i)( ) with V i)( .  The value of Q( x )9( e
c ,V i)( ) remains  
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Fig. 4.18.  The coarse model of the DFS filter. 
 

 
Fig. 4.19. The optimal coarse model response () and the fine model response (ο) at the 

optimal coarse model design for the DFS filter. 
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Fig. 4.20. The fine model response (ο) and the corresponding coarse model response (−) at the 

point x (1) e
c  for the DFS filter. 

 

 
Fig. 4.21. The fine model response (ο) and the corresponding coarse model response (−) at the 

point x )9( e
c  for the DFS filter. 
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Fig. 4.22. The variation of Q(x,V(i)) for the DFS filter at the point x (1) e

c  ( ∗ ) and at the 

point x )9( e
c  ( ο ) with the number of points utilized for parameter extraction. 

 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

i 

Q
(x

,V
(i)

) 



 
 
 
100  Chapter 4  THE AGGRESSIVE PARAMETER EXTRACTION ALGORITHM 

 

TABLE 4.7 
THE OPTIMAL COARSE MODEL DESIGN 

FOR THE DFS FILTER 
 

 

Parameter 
 

Value 
 

L1 

 

66.73 
L2 60.23 

S 9.59 
 

all values are in mils 
 

TABLE 4.8 
THE FINE MODEL POINTS USED IN THE APE  

ALGORITHM FOR THE DFS FILTER 
 

 

Parameter 
 

x )1(
f  

 

x )2(
f  

 

x )3(
f  

 

x )4(
f  

 

x )5(
f  

 

x )6(
f  

 

x )7(
f  

 

x )8(
f  

 

x )9(
f  

 

L1 

 

66.73 
 

67.72 
 

67.32 
 

66.15 
 

70.60 
 

67.66 
 

62.82 
 

65.80 
 

66.57 
L2 60.23 63.58 64.13 56.33 59.48 64.10 60.88 56.36 59.85 
S 9.59 9.27 9.48 9.71 9.71 9.66 9.50 9.52 10.26 

 

all values are in mils 
 

TABLE 4.9 
THE VARIATION IN THE EXTRACTED PARAMETERS 

FOR THE DFS FILTER WITH THE NUMBER OF  
FINE MODEL POINTS 

 
 

Parameter 
 

x (1) e
c  

 

x )2( e
c  

 

x )3( e
c  

 

x )4( e
c  

 

x )5( e
c  

 

x )6( e
c  

 

x )7( e
c  

 

x )8( e
c  

 

x )9( e
c  

 

L1 

 

58.01 
 

67.05 
 

66.11 
 

64.36 
 

56.46 
 

66.10 
 

56.50 
 

56.39 
 

56.59 
L2 38.40 40.47 40.40 43.28 42.94 42.02 42.81 43.00 43.02 
S 3.24 6.86 6.64 8.83 18.10 7.99 18.25 17.93 17.87 

 

all values are in mils 
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almost constant and small in value.  On the other hand the value of Q( x (1) e
c ,V i)( )  increases 

significantly with each new point added to the set of utilized fine model points signaling a false 

minimum.

 

4.6 CONCLUSIONS 

The Aggressive Parameter Extraction (APE) algorithm was presented in this chapter.  

APE addresses the optimal selection of parameter perturbations used to improve the uniqueness 

of the multi-point parameter extraction procedure.  The nonuniqueness of the parameter 

extraction problem may lead to the divergence or oscillation of the SM approach to circuit 

design.  New parameter perturbations are generated based on the nature of the minimum reached 

in the previous iteration.  We consider possibly locally unique and locally nonunique minima.  

The suggested perturbations in each of these two cases are obtained either by solving a system of 

linear equations or by solving an eigenvalue problem.  The APE algorithm continues until the 

extracted coarse model parameters can be trusted.  The algorithm is demonstrated through the 

parameter extraction of microwave filters and impedance transformers. 



 
 
 
 

 102

5 
 

THE HYBRID AGGRESSIVE SPACE 
MAPPING ALGORITHM 

 
 

5.1 INTRODUCTION 

In this chapter, the Hybrid Aggressive Space Mapping (HASM) algorithm is presented.  

The HASM algorithm addresses the case of a poor coarse model.  The previously discussed SM-

based optimization algorithms assume that the coarse model has sufficient accuracy.  The 

information supplied by the coarse model is used to guide the fine mode optimization iterates.  

However, if the coarse model is severely different from the fine model, SM-based optimization 

is unlikely to converge. 

We present a lemma that relates the developed mapping with the coarse and fine model 

derivatives.  We show that all SM-based optimization algorithms utilize coarse model derivatives 

and the mapping to indirectly estimate the fine model derivatives.  However, if the coarse model 

is poor, the estimated fine model derivatives may be inaccurate.  This may lead the TRASM 

optimization to be trapped in local minima. 

The HASM algorithm exploits two phases.  The first phase utilizes the TRASM strategy 

while the second phase utilizes direct optimization.  HASM utilizes SM optimization as long as 

it is converging.  Otherwise, it switches to the direct optimization phase.  The lemma that relates 

the established mapping and the first order derivatives of the coarse and fine models is utilized in 

the switching process. 
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Another motive for a hybrid algorithm is the optimality of the space-mapped design.  

This design in most cases is very near optimal.  However, the optimality of the final design can 

not be guaranteed.  This is because the final space-mapped response matches the optimal coarse 

model response, which may be different from the optimal fine model response obtained by 

solving the original design problem in the fine model space. 

We start by discussing some properties of SM optimization in Section 5.2.  These 

properties motivate the utilization of a hybrid algorithm.  The lemma is introduced in Section 

5.3.  In Section 5.4, we address a prediction approach for a good starting point for MPE.  This 

approach is used by the HASM algorithm to improve PE uniqueness.  The HASM algorithm is 

presented in Section 5.5.  The algorithm is applied to the design of microwave transformers and 

filters.  The examples include the design of a three-section waveguide transformer, a seven-

section waveguide transformer, an H-plane waveguide filter and a double-folded stub microstrip 

filter.  These examples are given in Section 5.6.  Finally, the conclusions are given in Section 

5.7. 

 

5.2 THE MOTIVATION FOR A HYBRID ALGORITHM 

ASM and TRASM are efficient algorithms.  The number of fine model simulations 

needed to obtain the space-mapped design is of the order of the problem dimensionality.  

However, both algorithms depend on the existence of a coarse model that is fast and has enough 

accuracy. 

If the coarse model is bad (i.e., very different from the fine model) space mapping may 

not work.  To illustrate this we consider the Rosenbrock function [81].  We form an artificial 

problem in which the “coarse” model is given by 

)1()(100 1
22

12
2 xxx Rc −+−=                                             (5.1) 
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and the “fine” model by 

))(1())()((100 11
2

11
2

22
2 ααα +−++−+= xxx R f                               (5.2) 

where α1 and α 2  are constant shifts.  The target of the direct optimization problem is to 

minimize Rf.  Considering (5.1) and (5.2) we notice that x*
c  = [1.0   1.0]T and x*

f  = ( x*
c −αααα ) 

where αααα  = [α1    α 2 ]T.  The misalignment between the two models is thus given by the two 

shifts α1 and α 2 . 

We discuss two sets of values for the shifts.  First, we consider αααα = [−0.1   −0.1]T.  Using 

(5.1) and (5.2) we notice that the coarse model point corresponding to a fine model point x f  is 

 cx = ( x f +αααα ).  It follows that the mapping between the two spaces is given by α+= xxP
ff

)( .  

The contours of xx *
cf −+α

2

2
 are shown in Fig. 5.1(a).  The mapping )(xP f  is then 

approximated through MPE.  Only one perturbed fine model point is utilized.  The contours of 

xxP * 2

2
)( cf −  obtained in this manner are shown in Fig. 5.1(b).  Figs. 5.1(a) and 1(b) show that 

f 2

2
 has a single minimum which is the solution that would have been obtained by direct 

optimization.  The differences between the two plots are attributed to the nonuniqueness of the 

parameter extraction process.  Taking the point x*
c  as the initial solution of the fine model, the 

TRASM algorithm is expected to converge to x*
f .  The corresponding contours of Rf  are shown 

in Fig. 5.1(c), whose minimum value is at [1.1   1.1]T as expected. 

The same steps are repeated for the case αααα  = [−1.5   −1.5]T.  The contour plot of 

xx *
cf −+αααα

2

2
 is shown in Fig. 5.2(a).  The contour plot of xxP * 2

2
)( cf −  obtained using MPE is 

shown in Fig. 5.2(b).  Fig. 5.2(b) illustrates the existence of a minimum of xxP * 2

2
)( cf −  other 
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than x*
f  which is closer to the starting point of the TRASM algorithm x*

c .  It follows that the 

TRASM algorithm is unlikely to converge to x*
f .  The corresponding contours of Rf  for this 

case are shown in Fig. 5.2(c), whose minimum value is at [2.5   2.5]T. 

Another motive for a hybrid algorithm is the optimality of the space-mapped design.  

The space-mapped design is very near optimal if R*
c  is similar to the optimal fine model 

response R*
f .  However, this can not be guaranteed.  For example, consider 

)1()(100 1
22

12
2 xxx R f −+−=                                                (5.3) 

Assume also that 

ε+= RR fc                                                            (5.4) 

where ε > 0.  It is clear that Rc
*  is equal to ε while R f

*  is zero.  It follows that space mapping 

may converge to a solution other than x*
f . 

 

5.3 SPACE MAPPING AND DIRECT OPTIMIZATION 

The properties of space mapping suggest that a hybrid algorithm be used.  This 

algorithm exploits the efficiency of space mapping and defaults to direct optimization when 

space mapping fails.  The HASM algorithm utilizes a lemma that enables switching between the 

TRASM optimization and direct optimization and vice versa. 

Lemma Assume that xc  corresponds to x f  through a parameter extraction process.  

Then the Jacobian Jf of the fine model response at x f  and the Jacobian Jc  of the coarse model 

response at xc  are related by 

BJJ cf =                                                                                                    (5.5) 
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Fig. 5.1. Different contour plots for the Rosenbrock problem for the case αααα = [−0.1   −0.1]T; (a)
the contour plot of xx *

cf −+αααα
2

2
, (b) the contour plot of xxP * 2

2
)( cf −  obtained

through parameter extraction and (c) contours of the fine model Rosenbrock function. 
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Fig. 5.2. Different contour plots for the Rosenbrock problem for the case αααα = [−1.5   −1.5]T; 
(a) the contour plot of xx *

cf −+αααα
2

2
, (b) the contour plot of xxP * 2

2
)( cf −  obtained 

through parameter extraction and (c) contours of the fine model Rosenbrock 
function. 
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where B is a valid mapping between the two spaces at x c  and x f . 

Proof 

As the points x f  and xc correspond to each other, it follows that their responses match, 

i.e., 

)()( xRxR ccff =                                                                                           (5.6) 

Now define a new fine model point xxx ffn ∆+=  where x f∆  is a small perturbation.  The 

response at this new point is perturbed from the response at the point x f  by 

xJR ff ∆=∆                                                                                               (5.7) 

The point xn corresponds to a coarse model point xx cc ∆+  that satisfies 

xJxJR ccff ∆=∆=∆                                                                                  (5.8) 

Also, by definition of the mapping B the two perturbations x f∆ and x c∆ are related by 

xxB cf ∆=∆                                                                                              (5.9) 

multiplying both sides of (5.9) by J c  we get 

xJxBJ ccfc ∆=∆                                                                                     (5.10) 

Comparing (5.10) with (5.8) we conclude that 

BJJ cf =                                                                                               (5.11) 

Relation (5.11) is interesting.  It shows that by having the matrix B and the coarse model 

Jacobian J c  we are able to obtain a good estimate of the Jacobian of the fine model response 

without any further fine model simulations.  It follows that when SM optimization fails to 

converge we can switch to direct optimization and supply it with the available first order 

derivatives given by (5.11). 

Another relationship which can be easily obtained from (5.11) is 
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( ) JJJJB f
T 

cc
T 

c
 - 1=                                                    (5.12) 

Relation (5.12) assumes that Jc  is  full rank and m ≥ n.  It is used for switching back from direct 

optimization to SM optimization.  Fig. 5.3 illustrates the switching between SM optimization and 

direct optimization. 

We illustrate the lemma as follows.  Consider 

)9.01.0()1.09.0( 21
2

21
2 xxxxR f +++=                                    (5.13) 

and 

xxRc
2
2

2
1 +=                                                          (5.14) 

Take ]0.1.02[     T
f =x .  Here Rf = 4.82.  The solution for the parameter extraction problem is 

xc =[1.90    1.10]T.  The Jacobian J c  at xc  is 

[ ]2.28.3=Jc                                                        (5.15) 

From (5.13) and (5.14) it is seen that 









=

0.90.1
0.10.9

B                                                        (5.16) 

It follows that Jf at x f is estimated by 

[ ] [ ]36.264.3
9.01.0
1.09.0

2.28.3 =







=  fJ                                   (5.17) 

which is the exact Jacobian of the fine model response. 
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Fig. 5.3.  Illustration of the connection between SM optimization and direct optimization. 
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5.4 SELECTION OF THE STARTING POINT FOR PARAMETER EXTRACTION 

The discussion in Section 5.2 reveals how the nonuniqueness of the PE process can 

affect the convergence of SM optimization.  The uniqueness of this procedure can be improved 

by utilizing a good starting point.  In the first iteration of the algorithm there is no available 

information about the mapping between the two spaces.  A reasonable assumption is to take x*
c  

as the starting point for the PE optimization problem.  As the algorithm proceeds the matrix 

B )(i approximates the mapping between the two spaces.  A prediction of the extracted 

parameters in the ith iteration is given by 

( )xxBxx )(1)()()()( i
f

i
f

ii
c

p
c −+= +                                             (5.18) 

This predicted point is then taken as a starting point for the PE optimization problem.  It supplies 

a good starting point provided that x )(i
c  is a valid solution to the parameter extraction in the 

previous iteration and B )(i  approximates the mapping between the two spaces. 

 

5.5 THE HASM ALGORITHM 

The HASM algorithm exploits SM when effective, otherwise it defaults to direct 

optimization.  Two objective functions are utilized by the algorithm.  The first objective function 

is 

xxPf * 2

2

2
2 )( cf −=                                                  (5.19) 

while the second function is 

)()( * 2

2

2
2 xRxRg ccff −=                                              (5.20) 
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While (5.19) aims at matching the extracted coarse model parameters to x*
c  in the 

parameter space, (5.20) aims at matching the same points mapped through the appropriate 

responses in the response space. 

The HASM algorithm consists of two phases: the first phase follows the TRASM 

strategy while the second phase exploits direct optimization.  It utilizes (5.11) and (5.12) for 

switching between phases as dictated by the convergence of the iterates. 

In the ith iteration we assume the existence of a trusted extracted coarse model 

parameters )( )()( xPx i
f

i
c  = .  The step taken in this iteration is given by (3.7), where 

.)()()1( hxx ii
f

i
f  +=+   SPE is then applied at the point x )1( +i

f  to get .)( *)1(1)( xxPf c
i
f

+i −= +  

The first phase utilizes two success criteria related to the reduction in (5.19) and (5.20).  

The SM success criterion is given by (3.8).  It indicates that the actual reduction in the objective 

function (5.19) should be greater than a certain fraction of the predicted reduction.  The direct 

optimization success criterion is 

gg )()1( ii <+                                                        (5.21) 

which implies that the new iterate x )1( +i
f  is a descent iterate of (5.20). 

The new point x )1( +i
f is accepted and the first phase resumes if this point satisfies both 

(3.8) and (5.21).  B )(i  is then updated.  The vector f )1( +i  satisfying (3.8) is either obtained 

through SPE or through RMPE that approaches a limit satisfying (3.8).  We denote by x ′f and 

R′f  the solution obtained at the end of the first phase and the corresponding fine model 

response, respectively. 
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Switching to the second phase takes place in two cases.  The first case is that (5.21) is 

not satisfied which means that we have to reject the new point x )1( +i
f .  The Jacobian of the fine 

model response at the point  i
fx )( is then evaluated.  This is done by first evaluating the Jacobian 

of the coarse model response J )(i
c  at the previously extracted coarse model point x )(i

c = )( )(xP i
f .  

J )(i
f  is then approximated using (5.11).  The second phase is then supplied by  i

fx )( , J )(i
f  and 

f )(i . 

The second case occurs when the new point x )1( +i
f  satisfies (5.21) but does not satisfy 

(3.8).  In this case the point x )1( +i
f  is better than the previous point  i

fx )(  and is accepted.  As the 

vector of extracted parameters does not satisfy (3.8), the vector f 1)( +i can not be trusted.  In 

order to trust this vector, RMPE is applied at the point x )1( +i
f  until either f 1)( +i approaches a 

limiting value or the number of additional points used for MPE reaches n.  If f 1)(i+ approaches 

a limit that does not satisfy (3.8), B 1)( +i  is updated, J 1)( +i
c at the extracted coarse model point 

x 1)( +i
c = )( 1)(xP +i

f  is evaluated and J 1)( +i
f  is then approximated using (5.11).  Otherwise, J )1( +i

f  is 

approximated using the n+1 fine model points used for MPE.  The second phase is then supplied 

by the point x )1( +i
f

, f 1)( +i  and the Jacobian estimate J )1( +i
f , which is either calculated using 

(5.11) or through finite differences. 

The second phase utilizes the first-order derivatives supplied by SM to carry out a 

number of successful iterations.  By a successful iteration we mean an iteration that satisfies the 

success criterion 

( ) ( )hJgggg )()()()(1)()( 01.0 kk
f

kk+kk +−>−                                  (5.22) 
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which indicates that the actual reduction in the objective function (5.20) should be greater than a 

certain fraction of the predicted reduction.  Notice that the superscript k is used as an index for 

the successful iterates of the direct optimization phase.  At the end of each successful iteration 

PE is applied at the new iterate x )(k
f  and is used to check whether a switch back to the first phase 

can take place.  The criterion for such a switch is 

  kk ff )()1( <+                                                       (5.23) 

If it is satisfied J )1( +k
c  is evaluated at the point x )1( +k

c = )( )1(xP +k
f , B is reevaluated using (5.12) 

and the algorithm switches back to the first phase.  Otherwise, the second phase continues.  We 

denote by x ′′f and R ′′f the solution obtained at the end of the second phase and the 

corresponding fine model response, respectively. 

For any iteration i > 0, the two phases are given by the following steps. 

Phase 1 

Step 0 Given x )(i
f , f )(i , B )(i and δ )(i .  Set δ )1( +i =δ )(i .  

Comment  δ )(i  is the utilized trust region size. 

Step 1 Obtain h )(i by solving (3.7).  Let h )(
2

)1( ii =+δ . 

Step 2 Evaluate x 1)+(i
f  and set }{ 1)(x += i

fV . 

Step 3 Apply MPE using the points in the set V to obtain f )1( +i . 

Comment  The prediction given in (5.18) is used as a starting point for the MPE. 

Step 4 If both (3.8) and (5.21) are satisfied update the matrix B )(i  to B )1( +i  using Broyden’s 

formula [6] and update δ )1( +i .  Go to Step 10. 
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Comment  The trust region size is updated based on how the predicted reduction in f 2  agrees 

with the actual reduction [36]. 

Step 5 If (5.21) is not satisfied, obtain J )(i
c  and evaluate BJJ )()()( ii

c
i

f = .  Switch to the second 

phase. 

Comment The second phase takes as arguments  i
fx )( , f )(i and J )(i

f  and returns x )(k
f , 

B )(k and f )(k .  It should be clear that several iterations might be executed in the 

second phase before switching back to the first phase at Step 10. 

Step 6 If V  is equal to one, go to Step 9. 

Comment  V  denotes the cardinality of the set V. 

Step 7 Compare f )1( +i obtained using V  fine model points with that previously obtained 

using V −1 fine model points.  If f )1( +i  is approaching a limit, update the matrix 

B )(i to get B 1)( +i , obtain J
1)( +i

c , evaluate BJJ 1)(1)(1)( +++ = ii
c

i
f  and switch to the second 

phase. 

Step 8 If V  is equal to n+1, obtain the matrix J )1( +i
f  by finite differences using the set V.  

Switch to the second phase. 

Step 9 Obtain a temporary point x t  = hx t
i
f ++ )1( , where 

fBhIBB )1()()()( )( +−=+ iTi
t

iTi  λ  

and δ )1( +≤ i
th .  Add this point to the set V and go to Step 3. 

Step 10 Let i=i+1.  Go to Step 0. 

The second phase can be summarized by the following steps. 
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Phase 2 

Step 0 Given the current iterate of the space mapping technique  k
fx )( , the corresponding 

Jacobian matrix J )(k
f  and .

)(f k  

Step 1 Obtain a successful iterate x 1)( +k
f

 by solving 

gJxIJJ )()()()( )( kTk
f

k
f

Tk
f −=∆+ λ  

for a suitable value of λ  that satisfies the direct optimization success criterion. 

Step 2 Update J )(k
f  to J )1( +k

f . 

Step 3 Apply PE at x 1)( +k
f

 to get .)1(f +k  

Step 4 If (5.23) is satisfied obtain J )1( +k
c  at the point x )1( +k

c = )( )1(xP +k
f , evaluate the matrix 

( ) JJJJB )1()1()1(1 -1 ++++= k
f

Tk
c

k
c

)T(k
c  and switch to the first phase. 

Step 5 If the termination condition is satisfied invoke the minimax optimizer else set k=k+1 

and go to Step 1. 

A flowchart of the first phase of the HASM algorithm is shown in Fig. 5.4. 

To ensure optimality, direct optimization is used to solve the original design problem 

using a minimax optimizer [12] starting from x ′′
f

. 
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 Fig. 5.4.  A flowchart of the first phase of the HASM algorithm. 
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5.6 EXAMPLES 

5.6.1 Three-Section Waveguide Transformer 

We consider the design of a three-section waveguide transformer [78].  The design 

specifications are 

VSWR ≤ 1.04  for 5.7 GHz ≤ ω ≤ 7.2 GHz                                  (5.24) 

The designable parameters are the heights of the waveguide sections b1, b2 and b3 and the lengths 

of waveguide sections L1, L2 and L3.  The fine model exploits HP HFSS ver. 5.2 through HP 

Empipe3D.  The coarse analytical model does not take into account the junction discontinuity 

effects [78]. 

The vector x*
c  is taken as the initial fine model design (Fig. 5.5).  The HASM algorithm 

switched to the second phase after two iterations of the first phase that required 4 fine model 

simulations.  The response R′f  is shown in Fig. 5.6.  The second phase carried out only one 

iteration which required 2 fine model simulations.  The response R ′′f is shown in Fig. 5.7. 

Direct minimax optimization is then applied to the original design problem.  The optimal 

fine model response R*
f  is shown in Fig. 5.8.  Figs. 5.6 and 5.8 show that in this example R′f  is 

different from R*
f .  The designs x*

c , x ′f , x ′′f and x*
f  are shown in Table 5.1. 

 

5.6.2 Six-Section H-Plane Waveguide Filter 

We consider a six-section H-plane waveguide filter [86, 87].  Design specifications are 

taken as 

|S11| ≤ 0.16  for   5.4 GHz ≤ ω ≤ 9.0 GHz                                    (5.25) 

|S11| ≥ 0.85  for  ω ≤ 5.2 GHz  and |S11| ≥ 0.5  for 9.5 GHz ≤ ω                     (5.26) 
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Fig. 5.5. The coarse response R*
c  () and the fine response )( *xR cf  (ο) for the three-section 

waveguide transformer. 
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Fig. 5.6. The coarse response R*
c  () and the fine response R′f  (ο) for the three-section 

waveguide transformer. 
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Fig. 5.7. The coarse response R*
c  () and the fine response R ′′f  (ο) for the three-section

waveguide transformer. 
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Fig. 5.8. The coarse response R*
c  () and the fine response R*

f  (ο) for the three-section 
waveguide transformer. 
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TABLE 5.1 

THE OPTIMAL COARSE MODEL DESIGN AND THE DESIGNS  
OBTAINED DURING DIFFERENT PHASES OF THE HASM ALGORITHM FOR 

 THE THREE-SECTION WAVEGUIDE TRANSFORMER 
 

 

Parameter 
 

x*
c  

 

x ′f  

 

x ′′f  
 

x*
f  

 

b1 

 

0.90318 

 

0.90331 

 

0.90114 

 

0.90549 
b2 1.37093 1.36436 1.35687 1.35777 
b3 1.73609 1.73208 1.72470 1.71866 
L1 1.54879 1.46991 1.47203 1.47008 
L2 1.58375 1.56402 1.56521 1.57587 
L3 1.64590 1.79666 1.77744 1.78286 

 

all values are in cm 
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A waveguide with a cross-section of 1.372 inches by 0.622 inches (3.485 cm by 1.58 cm) is 

used.  The six sections are separated by seven H-plane septa, which have a finite thickness of 

0.02 inches (0.508 mm).  The filter is shown in Fig. 5.9. 

The optimizable parameters are the four septa widths W1, W2, W3 and W4 and the three 

waveguide-section lengths L1, L2 and L3.  The coarse model consists of lumped inductances and 

dispersive transmission line sections.  It is simulated using OSA90/hope.  There are various 

approaches to calculate the equivalent inductive susceptance corresponding to an H-plane 

septum.  We utilize a simplified version of a formula due to Marcuvitz [88] in evaluating the 

inductances.  The coarse model is shown in Fig. 5.10.  The fine model exploits HP HFSS ver. 5.2 

through HP Empipe3D. 

The fine model response at the starting point x*
c  is shown in Fig. 5.11.  The first phase 

required 4 iterations to reach the design x ′f .  A total of 5 fine model simulations were needed.  

The second phase did not carry out any successful iteration.  The response R ′′f  is shown in Fig. 

5.12. 

The response R*
f  is obtained through direct minimax optimization (see Fig. 5.13).  The 

different fine model designs are given in Table 5.2.  It is clear that the convergence of the first 

phase is smooth as R′f ≈ R*
f ≈ R*

c . 

 

5.6.3 Seven-Section Waveguide Transformer 

The design of a seven-section waveguide transformer is also considered.  The 

transformer is shown in Fig. 5.14.  This example is a classical microwave circuit design problem 

[78].  The fine model is simulated using HP HFSS ver. 5.2 through HP Empipe3D.  The coarse 

model is an analytical model which neglects the junction discontinuity [78].  The design 
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Fig. 5.11. The coarse response R*

c  () and the fine response )( *xR cf  (ο) for the six-section H-
plane waveguide filter. 
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Fig. 5.9.  The fine model of the six-section H-plane waveguide filter. 

Fig. 5.10.  The coarse model of the six-section H-plane waveguide filter. 



 
 
 
124 Chapter 5  THE HYBRID AGGRESSIVE SPACE MAPPING ALGORITHM 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.12. The coarse response R*

c  () and the fine response R ′′f  (ο) for the six-section H-
plane waveguide filter. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.13. The coarse response R*

c  () and the fine response R*
f  (ο) for the six-section H-

plane waveguide filter. 
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TABLE 5.2 
THE OPTIMAL COARSE MODEL DESIGN, THE FINAL SPACE-MAPPED 

AND THE OPTIMAL FINE MODEL DESIGNS FOR THE  
SIX-SECTION H-PLANE WAVEGUIDE FILTER 

 
 

Parameter 
 

x*
c  

 

x ′f , x ′′ f  
 

x*
f  

 

W1 

 

0.48583 
 

0.51326 

 

0.51344 
W2 0.43494 0.47379 0.47396 
W3 0.40433 0.45091 0.45100 
W4 0.39796 0.44675 0.44664  
L1 0.65585 0.63701 0.63695 
L2 0.65923 0.63954 0.63977 
L3 0.67666 0.65704 0.65694 

 

all values are in inches 

 
 
 
 
 
 

 



 
 
 
126 Chapter 5  THE HYBRID AGGRESSIVE SPACE MAPPING ALGORITHM 

 

specifications are taken as  

VSWR ≤ 1.01  for  1.06 GHz ≤ ω ≤ 1.8 GHz                                    (5.27) 

The designable parameters for this problem are the height and length of each waveguide 

section.  The fine model response at x*
c  is shown in Fig. 5.15.  The first phase executed three 

successful iterations that required six fine model simulations.  The response R′f  is shown in Fig. 

5.16.  The second phase executed four iterations (see Fig. 5.17).  The response R*
f  is shown in 

Fig. 5.18.  Table 5.3 shows the different designs. 

 

5.6.4 Double-Folded Stub Filter 

We consider the design of the DFS microstrip structure.  See Fig. 3.2.  L1, L2 and S are 

chosen as optimization variables.  W1 and W2 are fixed at 4.8 mil.  The design specifications are  

S21≥ −3 dB  for  ω ≤ 9.5 GHz  and 16.5 GHz ≤ ω                                 (5.28) 

S21≤ −30 dB  for  12 GHz ≤ ω ≤ 14 GHz                                      (5.29) 

The fine model is the structure simulated by HP HFSS ver. 5.2 through HP Empipe3D.  We 

utilize the coarse model used in Chapter 4.  This coarse model is shown in Fig. 4.18. 

The fine model response at x*
c  is shown in Fig. 5.19.  This figure shows a big shift 

between the optimal coarse response and the initial fine response.  This signals considerable 

misalignment between the two models. 

The first phase successfully carried out eight iterations that required twelve fine model 

simulations.  The response R′f  is shown in Fig. 5.20.  The mapping established in the first phase 

is utilized to get a good estimate of J f  and a switch to the second phase is carried out.  The 
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Fig. 5.14.  The seven-section waveguide transformer. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.15. The coarse response R*

c  () and the fine response )( *xR cf  (ο) for the seven-section 
waveguide transformer. 
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Fig. 5.16. The coarse response R*

c  () and the fine response R′ f  (ο) for the seven-section 
waveguide transformer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.17. The coarse response R*

c  () and the fine response R ′′f  (ο) for the seven-section 
waveguide transformer. 
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Fig. 5.18. The coarse response R*

c  () and the fine response R*
f  (ο) for the seven-section 

waveguide transformer. 
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TABLE 5.3 
THE OPTIMAL COARSE MODEL DESIGN AND THE DESIGNS  

OBTAINED DURING DIFFERENT PHASES OF THE HASM ALGORITHM FOR 
 THE SEVEN-SECTION WAVEGUIDE TRANSFORMER 

 
 

Parameter 
 

x*
c  

 

x ′f  

 

x ′′f  
 

x*
f  

 

b1 

 

7.86732 

 

7.84126 
 

7.84321 

 

7.84319 
b2 6.61888 6.56661 6.56753 6.56746 
b3 4.68540 4.63369 4.63275 4.63267 
b4 2.91987 2.88266 2.88266 2.88268 
b5 1.81412 1.79307 1.79273 1.79272 
b6 1.27658 1.26697 1.26721 1.26723 
b7 1.06847 1.06475 1.06477 1.06474 

L1 7.10588 7.27059 7.27141 7.27145 

L2 7.12201 7.03866 7.04043 7.04047 

L3 7.11760 6.89568 6.89549 6.89552 

L4 7.12331 6.89253 6.89192 6.89189 

L5 7.12815 6.98273 6.97985 6.98000 

L6 7.12154 7.03160 7.03020 7.03023 

L7 7.12945 7.02606 7.02503 7.02509 

 

all values are in cm 

 
 
 

TABLE 5.4 
THE OPTIMAL COARSE MODEL DESIGN, THE FINAL SPACE-MAPPED 

 AND THE OPTIMAL FINE MODEL DESIGNS FOR THE  
DFS FILTER 

 
 

Parameter 
 

x*
c  

 

x ′f  

 

x ′′f  
 

x*
f  

 

L1 

 

66.727 
 

72.454 
 

73.869 
 

78.964 
L2 60.228 72.728 82.939 81.210 
S 9.592 7.621 8.170 7.901 

 

all values are in mil 
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Fig. 5.19.  The coarse response R*
c  () and the fine response )( *xR cf  (ο) for the DFS filter. 

 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Fig. 5.20.  The coarse response R*
c  (
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Fig. 5.21.  The coarse response R*

c  () and the fine response R ′′ f  (ο) for the DFS filter. 
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Fig. 5.22.  The coarse response R*
c  () and the fine response R*

f  (ο) for the DFS filter. 
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response R ′′f  (Fig. 5.21) shows a significant improvement in the response.  The design x ′′ f  is 

then taken as the starting point for the minimax optimizer.  The response R*
f  is shown in Fig. 

5.22.  The designs are given in Table 5.4. 

 

5.7 CONCLUSIONS 

In this chapter, we present the Hybrid Aggressive Space Mapping (HASM) optimization 

algorithm.  The algorithm is designed to handle severely misaligned cases.  It enables switching 

from SM optimization to direct optimization if SM fails.  The direct optimization phase utilizes 

all the available information accumulated by SM optimization about the mapping between the 

coarse and fine model spaces.  The algorithm also enables switching back from direct 

optimization to space mapping if SM is converging.  The connection between SM and direct 

optimization is based on a lemma that relates the mapping and the derivatives of the coarse and 

fine model responses.  An original approach for the prediction of the starting point of the 

parameter extraction optimization problem is also utilized.  This approach improves the 

uniqueness of the extraction step and consequently enhances the convergence of the algorithm. 

The algorithm is successfully demonstrated through the design of waveguide transformers and 

filters. 
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6 
 

SURROGATE MODEL-BASED SPACE 
MAPPING OPTIMIZATION 

 
 

6.1 INTRODUCTION 

In this chapter, we present a Surrogate Model-based-Space Mapping (SMSM) algorithm 

for microwave circuit optimization.  It integrates two distinct optimization approaches: SM 

optimization and surrogate-based optimization [44-48].  Both approaches aim at efficiently 

optimizing an accurate and time-intensive model, e.g., a full-wave Electromagnetic (EM) 

simulator.  SM exploits the existence of a less accurate but fast coarse model.  It formulates the 

design problem as a system of nonlinear equations.  On the other hand, surrogate-based 

optimization exploits an approximate model in iteratively solving the original design problem.  

This model may be a less accurate physically-based model or algebraic model [46]. 

Our SMSM algorithm combines both approaches.  The original design problem is solved 

using a surrogate model.  This model is a convex combination of a mapped coarse model and a 

linearized fine model.  The accuracy of the surrogate model is improved in every iteration using 

the generated fine model simulations. 

Recent developments in Space Mapping-based Neuromodeling (SMN) [49] and 

Generalized Space Mapping (GSM) modeling [50] exploit frequency-sensitive mappings.  This 

approach is reported to improve the accuracy of SM-based models.  SMSM exploits this concept 

in constructing the mapped coarse model.  Here, the coarse and fine models are simulated 
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at different sets of frequencies.  This approach handles significant response shifts efficiently. 

A number of examples are successfully solved.  They include a Rosenbrock example, a 

capacitively-loaded two-section 10:1 impedance transformer [82], a DFS filter and an HTS filter.

 

6.2 SPACE MAPPING OPTIMIZATION VS. SURROGATE-BASED OPTIMIZATION 

We denote the fine model responses at a point ℜ∈ ×1n
fx  and frequency ω  by 

ℜ∈ ×1),( Nrff ωxR .  These responses may include the real and imaginary parts of S11, etc.  The 

response vector ℜ∈ ×1m
fR  denotes the responses at all Nω  simulation frequencies where 

m=Nr Nω .  The original design problem is 













=  Uminarg ff
f

f
))((* xR

x
x  

 
(6.1) 

where U  is the objective function and x*
f  is the optimal fine model design.  Solving (6.1) using 

direct optimization methods, e.g. [12], is prohibitive due to the intensive simulation time of the 

fine model. 

SM optimization exploits the existence of a fast but less accurate coarse model of the 

circuit.  The first step in SM-based optimization algorithms is to obtain the optimal coarse model 

design x*
c .  SM optimization obtains a space-mapped design x f  whose response matches R*

c .  

x f  is a solution of the nonlinear system of equations (2.29) 

The previously discussed SM-based optimization algorithms solve (2.29) iteratively.  

ASM predicts a new iterate hxx )()()1( ii
f

i
f +=+  by utilizing the quasi-Newton iteration (2.31).  The 

TRASM algorithm minimizes )( )1(xf +i
f  using least squares within a trust region.  The ith 



 
 
 
136  Chapter 6  SURROGATE MODEL-BASED SPACE MAPPING OPTIMIZATION 

 

iteration of the algorithm is given by (3.7).  The new iterates are accepted only if they are 

descent directions for f )(i .  The HASM algorithm addresses the problem of a poor coarse 

model.  It utilizes a two phase algorithm.  The first phase exploits a TRASM strategy.  The 

second phase minimizes  cff RxR *
2

)( −  through direct least-squares optimization.  

Alternatively, an expensive model can be optimized indirectly by using a surrogate 

model [44-48].  This surrogate model may be a less accurate physics-based model or a 

polynomial approximation of the fine model.  We denote the surrogate model in the ith iteration 

by ℜ∈ ×1)( )( m
f

i
s xR .  The step taken is obtained by solving 













+=  Uminarg ii
f

i
s

i

i ))(( )()()(

)(

)( hxR
h

h , δ ii )()( ≤h  

 

(6.2) 

where ))(( )()()( hxR ii
f

i
sU +  is the value of the objective function evaluated using the surrogate 

model at the point hx )()( ii
f + .  The point hx )()( ii

f +  is then validated using fine model simulation.  

It is accepted if it improves the fine model objective function.  Otherwise, the accuracy of 

)()( xR f
i
s  should be improved.  Different strategies can be utilized for improving the surrogate 

model accuracy.  One strategy utilizes only the validation fine model simulations.  Additional 

fine simulations may be generated to improve the surrogate model in certain directions of the 

parameter space. 

 

6.3 THE SURROGATE MODEL 

In the ith iteration, the SMSM algorithm utilizes a surrogate model expressed as a 

convex combination between a Linearized Fine Model (LFM) and a Mapped Coarse Model 

(MCM) )()( xR f
i

m .  It is given by 
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)∆)()(1()()( )()()()()()( xJxRxRxR f
i

f
i
ff

i
f

i
m

i
f

i
s +−+= ηη , [ ]10,)(  i ∈η  

 

(6.3)

ℜ∈ ×nmi
fJ )(  is an approximation to the Jacobian of fine model responses at x )(i

f .  The parameter 

η )(i  determines which model is favored.  If 1)( =η i , the surrogate model becomes a MCM.  If 

0)( =η i , the surrogate model becomes a LFM.  ( )10,)(  i ∈∀η , the surrogate model exploits both 

approximations.  The LFM part in (6.3) ensures that the algorithm will work if the coarse model 

is poor or even wrong. 

The MCM )()( xR f
i

m  utilizes the linear frequency-space mapping 

),(),( )( ω ω jf
i

mjff xRxR ≈ = )),(),,(( )()( ωPω jf
i

jf
i

c xxPR ω , j=1, 2, …, Nω  (6.4)

where 


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),( cx

t
sB

x
xP , 

 

(6.5)

and x f∆ = x f − x )(i
f .  The parameters ℜ∈ ×nniB )( , ℜ∈ ×1)( nis , ℜ∈ ×1)( nit , ℜ∈ ×1)( nic , ℜ∈ ×11)(σ i  

and ℜ∈ ×11)(γ i  are the mapping parameters.  ω j  is the jth simulation frequency, j=1, 2, …, Nω .  

Here, a fine model point x f  and frequency ω j  correspond to a coarse model point ),()( ω jf
i xP  

and coarse model frequency ),()( ω jf
i
ωP x .  Notice that (6.5) defaults to the frequency-

insensitive mapping utilized by the ASM, TRASM and HASM algorithms if == ts )()( ii 0, 1)( =σ i  

and 0)( =γ i . 

The advantage of utilizing (6.5) is illustrated by Fig. 6.1 for a single response case.  It is 

required to extract the coarse point xc  corresponding to a given fine point x f .  Previous SM-

based algorithms utilize the PE procedure 
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











−= )()( xRxR
x

x ccff
c

c minarg  

 

(6.6) 

Fig. 6.1(a) shows also the coarse model response at the starting point for (6.6).  The PE 

optimizer may not have enough information to align the almost disjoint responses.  However, the 

responses could align perfectly if a frequency transformation ω)Pωc (=ω  is applied to the 

coarse model frequency axis.  This implies that the two models are simulated over different 

frequency ranges.  Fig. 6.1(b) illustrates possible aligned results.  It follows that (6.5) allows 

another degree of freedom in aligning the coarse and fine models. 

The mapping parameters in (6.5) are obtained such that the MCM approximates the fine 

model over a region of fine model parameters and frequency.  They are obtained through the 

optimization procedure 


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where V i)(  is a set of fine model points whose cardinality is NV p
i =)(  and ℜ∈ ×1m

ke .  The set 

V i)(  is constructed through an iterative process.  Initially, we set { }x )()( i
f

iV = .  The two 

conditions 
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are checked S i
ff

)(∈∀ x , the set of simulated fine model points up to the ith iteration.  The  
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Fig. 6.1. Illustration of the frequency-sensitive mapping concept; (a) a significant frequency
band shift exists between fine and coarse model responses at the initial iteration and
(b) the coarse model frequency is transformed such that both responses match. 
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first condition ensures better coverage by the points in V i)( .  The second condition rejects points 

outside an δe  neighborhood of x )(i
f .  We denote δe  as the extraction radius. 

If the (i-1)th iteration is unsuccessful, the coarse model approximation should be 

improved.  This is important to guarantee a successful iteration in the ith iteration.  However, no 

improvement is possible if (6.9) results in VV ii )1()( −= .  In this case, an additional perturbation 

∆x is generated by the algorithm.  ∆x is obtained by solving 
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where 
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f
Ti

fi
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ev ννJJ                             (6.11) 

The point xx ∆)( +i
f  is then added to V i)( .  The APE algorithm, discussed in Chapter 4, adopted 

a similar approach in generating new perturbations.  The construction of V i)(  is illustrated in 

Fig. 6.2. 

 

6.4 THE SMSM ALGORITHM 

The ith iteration of the algorithm proceeds as follows.  First, the set V i)(  is constructed.  

The mapping parameters are then estimated using the optimization procedure (6.7)-(6.8).  The 

suggested step h )(i  is obtained by solving (6.2), where the surrogate model is given by (6.3).  

Notice that (6.2) utilizes only coarse model simulations and can be solved using traditional 

optimization methods. 
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Fig. 6.2. Illustration of the selection of the parameter extraction points; (a) in the (i−1)th
iteration, we have the point x 1)( −i

f  and the set V i )1( − , (b) a new point is generated by

the algorithm that does not satisfy the success criterion, (c) x 1)( −i
f  becomes x )(i

f , the

previous perturbation h )(i  is excluded from V i)(  and the algorithm generates an
alternative perturbation and (d) the set V i)(  is used to extract new mapping
parameters and predict a successful iterate. 
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If the response R*
c  is good enough, we may be satisfied with a design for which 

RxR *
cff ≈)( .  In this case, we select U as  cff RxR *)( − .  However, if the optimality of the 

design is the main concern, U may be selected as the generalized minimax objective function 

[12]. 

h )(i  is accepted if it improves the objective function.  Otherwise, it is rejected.  The 

parameters J )(i
f , δ i)(  and η )(i  are updated in every iteration.  Broyden’s formula [6] is used to 

update J )(i
f .  Initially, we set JJ *)1(

cf = , the Jacobian of the coarse model response at x*
c .  The 

trust region δ i)(  is updated based on the ratio between the actual reduction ra in U and the 

predicted reduction rp.  The ratio 
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(6.12) 

is thus evaluated at the end of each iteration.  If 75.0≥ρ , the surrogate model has good accuracy 

and we set δπδ ii )(
1

)1( =+ , 0.11 >π .  If 10.0≤ρ , we set δπδ ii )(
2

)1( =+ , 0.10 2 << π .  Otherwise, 

we set δδ ii )()1( =+ .  η )(i  is updated to favor the more accurate model, either the LFM or the 

MCM.  It is initialized by 1)1( =η .  The utilized update is 

EE

E
)()(

)(
)1(

i
m

i
l

i
li

+
=+η  

 

(6.13) 

where )()( )()()()()()( hxRhxRE ii
ff

ii
f

i
m

i
m +−+=  and )()( )()()()()()( hxRhJxRE ii

ff
ii

f
i

ff
i

l +−+=  define 

the prediction error using the MCM and the LFM, respectively.  The SMSM algorithm 

terminates if n+1 consecutive unsuccessful iterations are carried out or if h )(i  becomes 

sufficiently small.  Fig. 6.3 illustrates one iteration of the algorithm. 
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Our SMSM algorithm can be summarized by the following steps. 

Step 1 Given xx *)1(
cf = , 1)1( =η , δ )1( , δe , JJ *

cf =)1(  and i=1. 

Step 2 Construct V i)( . 

Step 3 Apply the optimization procedure (6.7)-(6.8) to obtain the mapping parameters. 

Step 4 Obtain the suggested step h )(i  by solving (6.2). 

Step 5 If ))(())(( )()()( xRhxR i
ff

ii
ff UU <+ , set hxx )()()1( ii

f
i

f +=+  else xx )()1( i
f

i
f =+ . 

Step 6 Update J )(i
f , δ i)(  and η )(i . 

Step 7 If the stopping criterion is satisfied stop. 

Step 8 Set i=i+1 and go to step 2. 

A flowchart of the algorithm is shown in Fig. 6.4. 

 

6.5 EXAMPLES 

6.5.1 The Rosenbrock Example 

We applied the SMSM algorithm to the Rosenbrock function [81].  This analytic 

example is frequently used as a test example for optimization algorithms.  The coarse model is 

selected as 

( ) ( )xxxR cccc 1,
22

,12,
2 1100 −+−=                                             (6.14) 

An affine transformation of parameters is utilized in the fine model.  This model is given by 
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Fig. 6.3.  Illustration of the ith iteration of the SMSM algorithm. 

θ 

))(( )()( hxR  U ii
ff θ+  

rp 
ra 

 U   

))(( )()()( hxR  U ii
f

i
s θ+  

0 1



 
 
 
6.5  EXAMPLES  145 

 

 

Fig. 6.4  A flowchart of the SMSM algorithm. 
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The target of the optimization process is to minimize R f .  The contours of U for both models 

are shown in Figs 6.5 and 6.6.  We assume that R f  corresponds to zero “frequency”.  The 

algorithm executed eight iterations.  Only nine fine model simulations are needed.  The initial 

trust region and extraction radius are x*
cδ ∞

=)1( and x*
ceδ ∞

= 5 , respectively.  The final 

mapping is given by 
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(6.16) 

The final parameters given in (6.16) show that the mapping (6.15) is successfully recovered.  

The initial and final fine model designs are given in Table 6.1.  The value of U in each iteration 

is shown in Fig. 6.7. 

 

6.5.2 A Capacitively-Loaded 10:1 Impedance Transformer [82] 

We consider the design of a capacitively-loaded 10:1 impedance transformer.  The fine 

and coarse models are shown in Figs. 6.8 and 6.9, respectively.  The values of the capacitances 

are given in Table 6.2.  Design specifications are  

S11≤ 0.50  for  0.5 GHz ≤ ω ≤1.5 GHz (6.17) 

The electrical lengths of the two transmission lines at 1.0 GHz are selected as designable 

parameters.  The characteristic impedances are kept fixed at the optimal values given in Table 

6.3.  Both models make use of the ideal transmission line model available in OSA90/hope.  

Eleven frequency points were simulated per sweep.  We utilized the real and imaginary parts of 

S11 in the optimization procedure (6.7)-(6.8).  The initial trust region size and extraction radius 

are  x*
cδ ∞

= 09.0)1(  and x*
ceδ

∞
= 09.0 , respectively.  The algorithm executed five iterations.
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Fig. 6.6.  The contours of U for the coarse model of the Rosenbrock example. 
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Fig. 6.5.  The contours of U for the fine model of the Rosenbrock example. 
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Fig. 6.7.  The value of U in each iteration for the Rosenbrock example. 
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        Fig. 6.8.  The fine model of the capacitively-loaded 10:1 impedance transformer. 
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      Fig. 6.9.  The coarse model of the capacitively-loaded 10:1 impedance transformer. 
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TABLE 6.1 
INITIAL AND FINAL FINE MODEL DESIGNS FOR  

THE ROSENBROCK FUNCTION 
 

 

Parameter 
 

x )1(
f  

 

x )9(
f  

 

xf,1 

 

1.0 
 

1.27520 
xf,2 1.0 0.50037 

 
 
 
 

TABLE 6.2 
THE FINE MODEL CAPACITANCES FOR THE 

CAPACITIVELY-LOADED IMPEDANCE 
TRANSFORMER 

 
 

Capacitance 
 

Value 
 

C1 
 

10 
C2 10 
C3 10 

 

all values are in pF 
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TABLE 6.3 
THE CHARACTERISTIC IMPEDANCES FOR 
THE CAPACITIVELY-LOADED IMPEDANCE 

TRANSFORMER 
 

 
Impedance 

 
Value 

 

Z1 
 

2.23615 
Z2 4.47230 

 

all values are in ohm 
 
 
 
 

TABLE 6.4 
THE FIRST THREE DESIGNS FOR THE  
CAPACITIVELY-LOADED IMPEDANCE 

TRANSFORMER 
 

 

Parameter 
 

x )1(
f  

 

x )2(
f  

 

x )3(
f  

 

L1 
 

90.0000 
 

81.9000 
 

81.59880 
L2 90.0000 81.9000 74.38324 

 

all values are in degrees 
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Fig. 6.11. The optimal coarse model response () and the fine model response (ο) at the end of 
the first successful iteration for the capacitively-loaded 10:1 impedance transformer. 
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Fig. 6.10. The optimal coarse model response () and the fine model response (ο) at the
starting point for the capacitively-loaded 10:1 impedance transformer. 
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Fig. 6.13.  The change of U with each iteration for the 10:1 impedance transformer. 
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Fig. 6.12. The optimal coarse model response () and the fine model response (ο) at the end of 
the second successful iteration for the capacitively-loaded 10:1 impedance 
transformer. 
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Only the first two are successful.  The total number of fine model simulations is seven.  The first 

three designs are shown in Table 6.4.  The corresponding responses are shown in Figs. 6.10, 6.11 

and 6.12.  The value of the U in every iteration are shown in Fig. 6.13.  The final mapping is 

given by 
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−
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002120.
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(6.18) 

 

6.5.3 The Double-Folded Stub Filter 

The DFS fine model utilizes Sonnet’s em through Empipe (See Fig. 3.2).  We utilize the 

coarse model shown in Fig 4.18.  The design specifications for this problem are given by (5.28)-

(5.29). 

L1, L2 and S are selected as designable parameters.  W1 and W2 are fixed at 4.8 mil.  Only 

eleven frequency points are utilized per frequency sweep.  The mapping parameters are obtained 

using the real and imaginary parts of S21.  The initial trust region and extraction radius are 

x*
cδ ∞

= 09.0)1( and x*
ceδ ∞

= 09.0 , respectively.  The width S is scaled by a factor of 6.0 to 

make the problem better conditioned. 

The design procedure is carried out with the interpolation option of Empipe disabled.  

Here, every iterate is snapped to the nearest on-grid point.  The SMSM algorithm carried out 

only 16 iterations.  A total of 18 calls to Empipe (18 em simulations) were needed.  The initial 

and final designs are given in Table 6.5.  The corresponding responses are shown in Figs. 6.14 

and 6.15, respectively.  The value of U in each iteration is shown in Fig. 6.16.  The final 

mapping is given by 
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Fig. 6.14. The optimal coarse model response () and the fine model response (ο) at the
starting design for the DFS filter. 

 S
21
d

B
 

8.00 11.25 14.50 17.75 21.00
frequency (GHz)

-60

-50

-40

-30

-20

-10

0

Fig. 6.15. The optimal coarse model response () and the fine model response (ο) at the final
design for the DFS filter. 
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Fig. 6.16.  The value of U in every iteration for the DFS filter. 
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(6.19) 

 

6.5.4 The HTS Filter 

We also consider the HTS filter.  This filter is illustrated in Fig. 3.5.  The design 

specifications are  

S21 ≤ 0.05  for  ω ≤ 3.967 GHz  and 4.099 GHz ≤ ω 

S21 ≥ 0.95   for  4.008 GHz ≤ ω ≤ 4.058 GHz 

 

(6.20) 

The designable parameters are L1, L2, L3, S1, S2 and S3.  We take L0 = 50 mil and W = 7 mil.  The 

coarse model exploits the empirical models of microstrip lines, coupled lines and open stubs 

available in OSA90/hope (see Fig. 3.6).  The fine model employs the method of moments 

simulator em through Empipe.  We utilized the real and imaginary parts of both S11 and S21 in the 

optimization procedure (6.7)-(6.8). The initial trust region is x*
cδ ∞

= 20.0)1( .  The  δe -

neighborhood is selected as an n-dimensional box.  This takes into account that the response is 

more sensitive to the lengths than the widths.  The interpolation option of Empipe is disabled to 

make the optimization time reasonable. 

We solved this problem for two different cases.  For the first case, the substrate 

dielectric is assumed lossless and a relatively coarse grid size is used.  The material and physical 

parameters values used in both OSA90/hope and in em are shown in Table 6.6.  SMSM 

simulates the fine model at 16 frequency points.  Starting from the snapped optimal coarse 
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TABLE 6.5 
THE INITIAL AND FINAL DESIGNS FOR THE 

DFS FILTER WITHOUT INTERPOLATION 
 

 

Parameter 
 

x )1(
f  

 

x )17(
f  

 

S 
 

9.60 
 

6.4 
L2 60.80 84.8 
L1 67.2 86.4 

 

all values are in mil 
 
 
 

TABLE 6.6 
MATERIAL AND PHYSICAL PARAMETERS 

FOR THE HTS FILTER 
 

 

First Case 
 

Second Case  
Model Parameter  

OSA90/hope 
 

em 
 

OSA90/hope 
 

em 
 
substrate dielectric constant 

 
23.425 

 
23.425 

 
23.425 

 
23.425 

substrate thickness (mil) 19.9516 19.9516 20 20 
shielding cover height (mil) ∞ 250 ∞ 250 
Conducting material thickness 0 0 0 0 
Substrate dielectric loss tangent 0 0 3.0e-5 3.0e-5 
Resistivity of metal (Ωm) 0 0 0 0 
Surface roughness of metal 0  0  
Magnetic loss tangent  0  0 
Surface reactance (Ω/sq)  0  0 
x-grid cell size (mil)  1.00  1.00 
y-grid cell size (mil)  1.75  1.00 
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TABLE 6.7 

THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL 
FOR THE HTS FILTER (FIRST CASE) 

 
 

Parameter 
 

x )1(
f  

 

x )8(
f  

 

L1 
 

188.00 
 

188.00 
 

L2 
 

198.00 
 

192.00 
L3 189.00 187.00 
S1 22.75 22.75 
S2 99.75 78.75 
S3 112.00 91.00 

 

all values are in mils 
 

 
 
 
 

TABLE 6.8 
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL 

FOR THE HTS FILTER (SECOND CASE) 
 

 
Parameter 

 

x )1(
f  

 

x )5(
f  

 

L1 
 

188 
 

196 
 

L2 
 

198 
 

184 
L3 189 195 
S1 22 23 
S2 99 79 
S3 112 90 

 

all values are in mils 
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Fig. 6.17. The optimal coarse model response () and the fine model response (ο) at the initial 
design for the HTS filter (first case). 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 6.18. The optimal coarse model response () and the fine model response (ο) at the final 
design for the HTS filter (first case). 
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Fig. 6.19.  The value of U in every iteration for the HTS filter (first case). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.20. The optimal coarse model response () and the fine model response (ο) at the end of 
the first iteration for the HTS filter (first case). 
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design, the final design is reached in 7 iterations only.  A total of 7 fine model simulations are 

used.  The initial and final designs are given in Table 6.7.  The corresponding responses are 

shown in Figs 6.17 and 6.18, respectively.  The value of the objective function in each iteration 

is shown in Fig. 6.19. 

Fig. 6.20 illustrates the fine model response at the end of the first iteration.  It is seen 

that the fine model response is well aligned in the proper band using only one fine model 

simulation.  This illustrates the power of SMSM in handling significant frequency shifts.  The 

final mapping is given by 
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The problem is resolved taking into account the substrate losses and using a finer grid as shown 

in Table 6.6.  Here, the fine model is simulated over 9 frequency points only.  The final design is 

reached in 4 iterations that required only 5 model simulations.  The initial and final designs are 

given in Table 6.8.  The corresponding responses are shown in Figs. 6.21 and 6.22, respectively.  

The values of the objective function in every iteration are shown in Fig. 6.23.  The final mapping 

is given by 
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Fig. 6.21. The optimal coarse model response () and the fine model response (ο) at the initial 

design for the HTS filter (second case). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.22. The optimal coarse model response () and the fine model response (ο) at the final 

design for the HTS filter (second case). 
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Fig. 6.23.  The value of U in every iteration for the HTS filter (second case).
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6.6 CONCLUSIONS 

We presented a Surrogate Model-based Space Mapping (SMSM) algorithm for efficient 

optimization of microwave circuits.  The SMSM algorithm integrates SM optimization with 

surrogate model-based optimization.  It exploits a surrogate model in the form of a convex 

combination of a mapped coarse model and a linearized fine model.  The mapped coarse model 

utilizes a linear frequency-sensitive mapping.  During optimization, the coarse and fine models 

are simulated over different frequency ranges.  This approach is shown to be powerful especially 

if significant response shift exists.  SMSM is successfully illustrated through the design of 

microwave filters and transformers. 
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CONCLUSIONS 
 
 

This thesis has presented recent advances in Space Mapping (SM) optimization of 

microwave circuits.  The models used in simulating a microwave circuit vary in their speed and 

accuracy.  Usually, accurate “fine” models are slow and less accurate “coarse” models are fast.  

Traditional optimization methods utilize response values and possibly response derivatives.  SM 

optimization aims at efficiently optimizing a microwave circuit using mainly coarse model 

simulations while maintaining the confidence supplied by fine model simulations. 

Chapter 2 concerned itself with reviewing some of the basic concepts of circuit 

optimization.  The formulation of circuit design as an optimization problem was reviewed.  We 

briefly discussed the different types of error norms and their minimization algorithms.  The basic 

concept of SM optimization was introduced.  We reviewed the first two SM-based optimization 

algorithms; the original SM algorithm and Aggressive Space Mapping (ASM).  The Parameter 

Extraction (PE) subproblem associated with SM was explained.  The nonuniqueness problem of 

PE and its effect on the convergence of SM optimization were addressed.  We illustrated the 

ASM algorithm through the design of a microwave impedance transformer. 

Chapter 3 addressed the Trust Region Aggressive Space Mapping (TRASM) algorithm.  

TRASM integrates a trust region methodology with ASM.  A Levenberg-Marquardt approach is 

used to convert this problem to a linear system of equations.  The Recursive Multi-Point 

parameter Extraction (RMPE) procedure utilized by TRASM was also presented.  This procedure 

makes use of the available mapping and fine model points.  We illustrated the TRASM algorithm 

through the design of microwave filters and transformers. 
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Chapter 5 concerned itself with addressing the case of a poor coarse model.  Both ASM 

and TRASM assume that the coarse model has sufficient accuracy.  A lemma that relates the 

developed mapping to the fine and coarse model derivatives was presented.  Through this lemma, 

we showed that SM-based optimization algorithms indirectly approximate the fine model 

derivatives using the coarse model derivatives and the available mapping.  The effect of a 

severely different coarse model was also discussed.  We showed that TRASM is likely to get 

trapped in local minima in such a case.  The Hybrid Aggressive Space Mapping (HASM) 

algorithm was suggested as a possible remedy for this problem.  The two-phase approach utilized 

by HASM is explained.  HASM was illustrated through a number of examples. 

The PE problem is thoroughly reviewed in Chapter 4.  We illustrated the Multi-Point 

Extraction (MPE) procedure used for enhancing the uniqueness of PE.  This approach matches 

the responses of the fine and coarse models at a number of perturbed points.  The Aggressive 

Parameter Extraction (APE) algorithm was reviewed.  APE automates the selection of 

perturbations that are likely to impact the uniqueness of PE.  APE was illustrated through the 

parameter extraction of a number of coarse models. 

The SM-based optimization algorithms addressed in Chapters 2, 4 and 5 formalize the 

design problem as a nonlinear system of equations.  These algorithms also utilize a frequency-

insensitive mapping.  During the course of the optimization algorithm, the fine and coarse models 

are simulated at different points but at the same set of frequencies.  The Surrogate Model-based 

Space Mapping (SMSM) optimization algorithm, presented in Chapter 6, generalizes these 

concepts.  SM optimization is formulated as a general optimization problem of a surrogate 

model.  The construction of this surrogate model was explained.  The algorithm also utilizes a 

frequency-sensitive linear mapping.  We showed that this approach is powerful especially if 

significant response shift exists. 
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The theoretical work in this thesis has been amply supported by examples.  Known difficult 

analytical examples were used to test the feasibility and robustness of the respective algorithm.  

Practical problems were also used to show the efficiency and engineering relevance of the 

algorithms discussed.  For most of the practical examples, the fine model is presented by an 

Electromagnetic (EM) simulator.  The coarse models are mainly empirical/circuit-theoretic models.  

The microwave literature is rich with models that can be utilized as coarse models. 

 We expect that more research will be carried out in SM optimization technology.  We 

foresee that this research will lead to the following developments: 

1. Making the SM optimization of arbitrary microwave structures feasible through  

- Automating the generation of coarse models by utilizing neural networks, 

rational function approximation and equivalent circuit approximation.  Currently, 

the generation of coarse models is the user’s responsibility 

- Developing a theory for the optimality and convergence properties of SM 

optimization. 

2. Application of SM optimization and efficient derivative estimation to the design of 

antenna structures, CoPlanar Waveguide (CPW) structures and Multi-Layer (ML) 

circuits.  Problems of special interest are the automated design of printed-circuit antennas 

and CPW and ML filters.  
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