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ABSTRACT 

This thesis offers a unified and integrated treatment of 

three essential aspects of computer-aided circuit design: effective 

use of the state-of-the-art optimization tools, efficient calcula

tion of exact and approximate gradients, and adequate mathematical 

representation of the engineering problems. 

The recent advances in gradient-based i
P 

optimization are 

reviewed. The essence of the trust region Gauss-Newton method and 

the quasi-Newton solution to optimality equations is described. A 

new algorithm for linearly constrained one-sided i 1 optimization is 

presented. 

Efficient approaches to network sensitivity analysis are 

addressed. Useful formulas are derived for general multi-ports, 

especially two-ports. Novel proofs of an important result for 

lossless two-ports are given. 

The basic formulations of nominal circuit optimization are 

introduced through a hierarchy of simulation models. Variables, 

error functions and i
P 

objectives are identified. Optimization of 

multi-coupled cavity filters is described and illustrated by exam-

ples of elliptic, self-equalized and asymmetric designs. 

scale optimization of multiplexers is also discussed. 

Large-

Realistic consideration of tolerances and uncertainties is 

of prominent interest to circuit, especially integrated circuit, 

designers. A multi-circuit approach to design centering, toleran-

iii 



cing, tuning and yield enhancement is presented. Techniques for 

statistical design are reviewed. A generalized lP centering algo

rithm is developed. 

A novel approach to device modeling which utilizes multiple 

circuits and exploits the theoretical properties of the 11 norm is

described. It emphasizes the uniqueness and consistency of an 

equivalent circuit model. Practical applications are formulated 

and illustrated through industrial examples. 

A new algorithm for optimization with integrated gradient 

approximations is offered. Implementations for the minimax and 11

problems are shown. The efficiency and usefulness are demonstrated 

by a large variety of examples. 
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CHAPTER 1 

INTRODUCTION 

The continuing effort to formulate and solve increasingly 

complex engineering problems through the state-of-the-art mathemat

ical optimization represents one of the driving forces of advanced 

study in computer-aided design (CAD). The astonishing progress in 

computer hardware, leading to drastic reduction in the cost of mass 

computation and the widespread use of personal computers, has given 

further impetus to the development of efficient CAD techniques. 

In electrical engineering, one of the earliest applications 

of CAD techniques is in the area of filter design. Methods that 

were popular at the time have been summarized in the classic paper 

by Ternes and Calahan (1967). Since then, advances have been made 

in many directions. Optimization techniques have evolved from 

simple and low-dimension-oriented methods into sophisticated and 

powerful tools serving practicing engineers. Efficient approaches 

have been developed for large-scale network simulation and sensiti

vity calculations. 

In recent years, there has been a continuing trend toward 

dealing more explicitly with process imprecision, manufacturing 

tolerances, model uncertainties, measurement errors, and so on. 

Such realistic considerations arise from design problems in which a 

large volume of production is envisaged, e.g., integrated circuits. 

They also arise from modeling problems in which consistent results 

1 
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are expected despite measurement limitations, model approximations 

and simplifications. 

This thesis offers a unified and integrated treatment of 

three essential aspects of circuit CAD: effective use of the state

of-the-art optimization tools, efficient calculation of exact and 

approximate gradients, and adequate mathematical representation of 

engineering design and modeling problems. Emphasis is given to 

recent, but well-tested, advances in gradient-based minimax, 1
1 

and 

1
2 

optimization. To provide the required gradients, elegant and 

efficient approaches to network sensitivity analysis are described. 

Since the difficuities in exact sensitivity calculation for some 

applications have contributed a sizable gap between the advanced 

optimization theories and their actual implementation, we also 

develop an efficient and integrated algorithm for gradient approxi

mations. A hierarchical representation is identified for the nomi

nal circuit which is then extended to including tolerances and 

model uncertainties, resulting in a consistent formulation of the 

i
P 

circuit optimization. A multi-circuit approach is presented 

which unifies the concepts of realistic circuit design and robust 

device modeling. 

The methods described for design, modeling and gradient 

approximations are applied to relevant practical examples such as 

multi-coupled cavity filters, waveguide manifold multiplexers and 

FET devices. Not only serving to illustrate the theory, these 

examples are also of current significance to researchers and engi

neers, especially in the field of satellite connnunications. 
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Chapter 2 is concerned with the recent theoretical and 

algorithmic advances in the l
P 

optimization. The definitions and

properties of the l
P 

norms, one-sided and generalized l
P 

functions

are reviewed. Following the essence of the Hald and Madsen (1981, 

1985) algorithms for minimax and 11, we describe the trust region

Gauss-Newton method, which solves a sequence of semi-linearized l
P 

problems, and the quasi-Newton method which is applied to solving 

the optimality equations. We then present a new algorithm for 

linearly constrained one-sided 11 optimization which is very useful

in circuit design and centering. Based on the same principle as 

the Hald and Madsen approach, our algorithm is a 2-stage combined 

method. Linear programming techniques are utilized to find a 

trust region solution to a linearized subproblem. The optimality 

equations for the one-sided 1
1 

problem are also derived to which a 

quasi-Newton iteration is applied. 

Chapter 3 deals with efficient and systematic calculation 

of network sensitivities. A simplified algebraic approach to 

linear network sensitivity analysis is reviewed. Useful formulas 

are derived for unterminated and terminated general multi-ports. 

The results are specialized to two-ports which are widely used to 

represent filters and subnetworks. Elegant and original proofs 

are shown for an important formula for lossless reciprocal two-

ports. Sensitivity expressions for some commonly used frequency 

responses are also given. 

Chapter 4 is devoted to nominal circuit optimization. A 

hierarchy of simulation models is introduced, and the parameters 
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and responses associated with these models are identified. Error 

functions and an ,eP objective are formulated from the model res-

ponses and the performance specifications. The nominal minimax 

optimization of multi-coupled cavity filters, whose large variety 

and complexity have made them prime candidates for CAD, is descri-

bed in detail. Three examples of practical interest, including 

elliptic, self-equalized and asymmetric filters, are presented. 

Large-scale circuit optimization is demonstrated by a 16-channel 

multiplexer design. 

Chapter 5 considers realistic circuit design. Tolerances 

and uncertainties associated with the models of different levels 

are exposed. Multiple circuits are defined to relate these uncer-

tainties to a nominal point. The concepts of design centering, 

tolerancing and tuning, with the aim of improving the yield and 

reducing the production cost, are discussed. Techniques for stat

istical design are reviewed and several representative methods are 

shown in some detail. A generalized ,eP centering algorithm is

proposed which offers a natural extension to nominal ,eP optimiza

tion and a unified approach to yield enhancement. 

In Chapter 6, we examine the motivation, theoretical foun

dation and practical applications of a novel approach to device 

modeling. Attempting to overcome the adverse effects of various 

uncertainties to modeling, the new approach utilizes the concept of 

simultaneous processing of multiple circuits and exploits the theo

retical properties of the 11 optimization. Unlike the traditional

approach, it emphasizes the uniqueness and consistency of the res-
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ults of modeling. Applications to parameter identification and 

model verification are illustrated by industrial examples. 

Chapter 7 addresses itself to the subject of optimization 

with integrated gradient approximations. An algorithm combining 

perturbations, the Broyden update (Broyden 1965) and the special 

iterations (Powell 1970) is described. A weighted formula which 

may improve the performance of the Broyden update is developed. 

Integration of the gradient approximations with an optimization 

routine is discussed and illustrated through the minimax and 1 1 

implementations. The effectiveness and efficiency of the proposed 

approach are demonstrated by abundant examples. 

We conclude in Chapter 8 with some suggestions for further 

research. 

The author contributed substantially to the following ori

ginal developments presented in this thesis: 

(1) A new algorithm for the linearly constrained one-sided 1 1 

optimization.

(2) New proofs of a sensitivity formula for reciprocal lossless

two-ports.

(3) An efficient approach to the simulation, sensitivity analy

sis and optimization of multi-coupled cavity filters.

(4) A generalized ,eP centering algorithm for statistical design

centering and yield enhancement.

(5) Theoretical results of a novel approach to device modeling

which utilizes multiple circuits and its application to FET

modeling.



6 

(6) A general approach to gradient approximations and the use

of a weighted update.

(7) Integration of the gradient approximation method with the

minimax and 11 algorithms and its practical applications.
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one-sided 11 optimization is described. 

2.2 

2.2.1 

FORMULATIONS OF i
p 

OPTIMIZATION 

l
P 

Norms, One-Sided and Generalized i
P 

Functions 

Given a set of nonlinear functions 

-
. 

T f(x) - [f1 (x) f2 (x) ... fm (x)] , (2.1)

where the superscript T stands for vector or matrix transposition, 

and 

(2.2) 

is the set of variables, the i
P 

norm off is defined as (Ternes and 

Zai 1969) 

[ L lf
j 

IP] l fp. 
j=l 

(2.3) 

Least squares (1
2

) is perhaps the most widely used norm, 

which is given by 

[ I lf
j 1 2 1�. 

j=l 
(2.4) 

In practice, we often use 11£11� as an objective function 

which is differentiable and its gradient can be easily obtained 

from the partial derivatives off. Furthermore, it is a quadratic 

function if f is linear in x. Partly due to these properties, a 

large variety of 1
2 

optimization techniques have been developed and 

popularly implemented in CAD software (e.g., TOUCHSTONE 1985 and 

SUPER-COMPACT 1986). 

The parameter p has an important implication. By choosing 

a large (small) value for p, we in effect place more emphasis on 
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those error functions (f
j 

's) that have larger (smaller) values. 

Letting p = oo, we have the minimax norm 

II fll
ro 

= max If 
j 

I
j 

(2.5) 

which directs all the attention to the worst case and the other 

errors are in effect ignored. The minimax norm is suitable if we 

wish to minimize f in an optimal equal-ripple manner (the worst 

f
j 

's being equal in magnitude), for example, in filter design. 

On the other hand, the use of the 11 norm, as defined by

I I fj I,
j=l 

(2.6) 

implies attaching more importance to the error functions that are 

closer to zero. This property is often exploited in data-fitting 

problems (e.g., Bartels and Conn 1981). The application of the 11

norm to modeling will be exposed in Chapter 6. 

Notice that neither llfll
ro 

nor llfll
1 

is differentiable in the 

ordinary sense. Therefore, their minimization requires algorithms 

that are much more sophisticated than those in the 1
2 

case. 

With the 1P norm, we are minimizing the error functions

towards a zero value. Suppose that our true intention is to have 

f
j 

S 0, then a negative value of f
j 

simply indicates that the goal 

is exceeded and is, in a sense, better than having f
j 

= 0. This 

fact leads to the use of the one-sided 1P function defined by

where J = {j 

then H; (f) 

[ I lf
j 

IP] l fp
jeJ 

f
j 

� 0}. Actually, if we define £1 

(2. 7) 

max{f
j

, 0}, 
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therefore, can be treated similarly to the 1
2 

case. 

In this section, we define nonlinear programs which are 

equivalent to 11, 1
2 

and i� problems. The equivalent formulations

often clarify the concepts of local linearization and optimality 

conditions. 

For instance, the minimization of II fll 1 is equivalent to

m 
minimize I y

j 
x,y j=l 

subject to 

Y
j 

� f
j 

(x), y
j 

� -f
j 

(x), j = 1, 2, ... , m. 

(2 .11) 

The one-sided 11 problem can be treated as

m 
minimize I y

j 
x,y j=l

subject to 

Y
j 

� f
j 

(x), Y
j 

� 0, j = 1, 2, ... , m. 

(2.12) 

These results, as well as those for the minimax and least 

squares, are summarized in Table 2.1. For the convenience of pre

sentation, we denote these nonlinear programs by P(x,f). 

2.2.3 Linear i
P 

Optimization

A linear i
P 

problem implies that the set of error functions

f is linear in the variables x. As an important consequence, the 

equivalent problem P(x, f) becomes a linear or quadratic program 

whose exact solution can be found using standard techniques (e.g., 

the simplex method for linear programming due to Dantzig 1951). 
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TABLE 2.1 

NONLINEAR PROGRAMMING EQUIVALENT FORMUIATIONS 

FOR 11, 1
2 AND 1

00 
OPTIMIZATION 

Original problem: minimize H(f) 
X 

Equivalent problem: minimize V(x,y) subject to the constraints 
x,y 

H(f) V(x,y) constraints (for j 1, 2, ... , m) 

m 

llflli I Yj Yj 
� fj , Yj 

� -fj 

j=l 

llfll2 yTy Yj 
= f

j 

II flloo y y � f
j , y � -fj 

m 
Ht(f) I Yj 

j=l 
Yj 

� f
j
, Yj 

� 0 

H;(f) yTy Yj � f
j ' Yj 

� 0 

H!(f) y y � fj
, y � 0 

H00(f) y y� f
j 
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For instance, consider a linear 1
1 

problem. Let the set of 

linear functions be 

j = 1, 2, ... , m, (2.13)

where c
j 

and d
j 

are constants. Then the solution to the following 

linear program 

m 
minimize L Yj 

x,y j=l 

subject to 

is the minimizer of II fll 
1 
. 

(2.14) 

j 1, 2, ... , m, 

An equally important fact is that linear constraints can be 

easily incorporated into the solution of a linear iP problem. Let

P(x,f,D) be the problem of P(x,f) subject to a set of linear cons

traints of the form 

0, 
D: 

k 

k 

1, 2, ... , L
0 q

, 
(2.15) 

L
0 q

+l, ... , L, 

where 8k and b
k 

are constants. If P(x,f) is a linear or quadratic 

program, so is P(x, f, D). In other words, linearly constrained 

linear 1
1
, 1

2 
and i00 problems can also be solved using standard 

linear or quadratic programming techniques. 

2.3 

2.3.1 

TRUST REGION GAUSS-NEWTON METHOD 

Semi-Linearization of a Nonlinear iP Function

For a general problem P(x,f), if we substitute f with a set 
- -

of linearized functions f, then P(x,f) becomes a linear iP problem
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which can be solved using standard techniques. In a Gauss-Newton 

method, we define and solve a sequence of such linear subproblems. 

At each iteration, given Xie, a set of linearized functions 

is defined as 

f(h) = f(xk) + G(xk )h, (2.16) 

where G is the Jacobian given by 

(2.17) 

We then solve the linear subproblem P(h,f) using linear or 

quadratic programming. From a slightly different viewpoint, we may 

call this a semi-linearization (Madsen 1985) of the nonlinear obje

ctive function U(x) = H(f) resulting in 
- -

U(h) = H(f(h)). (2.18) 

It should be noted that (2.18) is quite different from a 

normal linearization as U(h) � U(Xic) + [U' (Xic)] T h which corresponds 

to a steepest descent method. In fact the gradient u' may not even 

exist. 

2.3.2 Trust Regions 

In general, the set of linearized functions f as given by 

( 2 .16) is valid only as a local model and, therefore, its use 

should be restricted to within a neighbourhood of xk in which f is

believed to be a good approximation to f. Such a neighbourhood is 

called, appropriately, a trust region and typically defined by 

Ak � h
j

' i 1, 2' ... ' n, 
D: (2.19) 

Ak � -h
j

' i 1, 2' ... ' n.

At each iteration, we incorporate a trust region and solve 
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a linearly constrained linear 1
P 

subproblem P(h,f,D). Denote its 

solution by I\:· If xic+l\c reduces the original nonlinear objective 

function we take it as the next iterate, i.e., if U(Xic+l\:) < U(xk) 

then xk + 1 = xk +I\: , otherwise we let xk + 1 = Xie • In the latter case,

the trust region is apparently too large and, consequently, should 

be reduced. 

Hald and Madsen (1981, 1985) suggested that the local bound 

Ak be adjusted according to the goodness of the linearized model. 

More precisely, if 

(2.20) 

then the trust region appears to be too large and the bound is dec

reased: Ak+l = K1Ak. Otherwise, if

then the bound is increased: Ak+l 

U (I\: ) ] , ( 2. 21)

K2Ak. If neither (2.20) nor

(2.21) holds then Ak+l = Ak. The constants {6
1

, 62, K
1

, K2} should

satisfy O < 6
1 

< 6
2 

< 1 and O < K
1 

< 1 < K
2

. 

Madsen (1985) has shown that the trust region Gauss-Newton 

method provides global convergence in which the proper use of trust 

regions constitutes a critical part. In some other earlier work by 

Osborne and Watson (1969, 1971) the problem P(h,f) was solved with-

out incorporating a trust region and the solution hk was then used 

as the direction for a line search. For their algorithms no con-

vergence can be guaranteed and {x
k

} may even converge to a non

stationary point. 

The trust region methods in a broader context have been 

surveyed recently by More (1982). 
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2.3.3 The Levenberg-Marquardt Method 

Normally for the least squares problem we have to solve a 

quadratic program at each iteration, which can be a time-consuming 

process. A remarkable alternative is the method due to Levenberg 

(1944) and Marquardt (1963). Given Xie, it defines 

minimize bT (GT G + 0
k

l)b + 2fT Gh + fT f ,  (2.22)

where G = G(Xic), f = f(x
k

) and 1 is an identity matrix. The mini

mizer b
k 

is obtained simply by solving a linear system 

(2.23) 

using, for example, LU factorization. 

The Levenberg-Marquardt parameter 0
k 

is very critical for 

this method. First of all, it is chosen to guarantee the positive 

definiteness of (2.23). Furthermore, it plays, roughly speaking, 

an inverse role of Ak to control the size of a trust region. When 

0
k 

� 00, b
k 

gives an infinitesimal steepest descent step. When 0
k 

= 

0, I\ becomes the solution to P(b,t) without bounds, which is equi

valent to having Ak � oo. Hence, the rules for updating Ok should 

be opposite to those for Ak. 

2.4 QUASI-NEWTON METHOD APPLIED TO AN l
p 

PROBLEM 

Quasi-Newton methods (variable metric methods) emerged from 

the original work of Davidon (1959), Fletcher and Powell (1963), as 

well as Broyden (1965, 1967). 

For a differentiable objective function U, a quasi-Newton 

step is given by 

(2.24) 
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where � is an approximation to the Hessian of U(x) and the step 

size controlling parameter ak is to be determined through a line 

search. However, for the 11 and the minimax objective functions,

the gradient u' may not exist, much less the Hessian. 

2.4.1 Solution of the Optimality Equations 

The optimality conditions for an l
P 

problem provide more 

insight to the general case. Applying the Kuhn-Tucker conditions 

(Kuhn and Tucker 1951) to the nonlinear programming problem P(x,f), 

we shall find a set of optimality equations 

R(x) = 0 (2.25) 

which must be satisfied by a local optimum x*. Naturally, we are 

motivated to solve (2.25), as a means of finding the minimizer of 

U(x). A quasi-Newton step for solving nonlinear equations (2.25) 

is given by 

(2.26) 

where Jk is an approximate Jacobian of R(x) . Only when U(x) is 

differentiable will the optimality equations be R(x) = u' (x) = 0 

and (2.26) reverts to the more familiar formula (2.24). 

Consider the 11 case as an example. The optimality equa

tions can be shown as (Charalambous 1979) 

R(x, g) [ 
I µj f� (x) + I o j f� (x)

j(lZ jEZ 

fz (x) l 0 (2. 27) 

where Z is an index set, as Z(x*) (j I fj (x*) = 0}, identifying

the zero functions at the optimum. The vector fz (x) consists of 

the functions in the set Z and the multipliers satisfy jo
j 

I � 1, 
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jEZ, µ
j 

= sign{f/x*)}, jfl:Z. 

solving the linear system 

A quasi-Newton step is obtained by 

-R(xk, <\), (2.28) 

where Jk is an approximate Jacobian of (2.27) which consists of a 

mixture of the first derivatives f� and approximations to the 

Hessians 

I µ
j
f�' <x) + I s

j
f�' <x) 

jfl:Z jEZ 

(Bandler, Kellermann and Madsen 1987). 

(2.29) 

It is important to notice 

that in order to define the correct set of optimality equations, we 

must first identify the set of zero functions at the optimum. In 

practice, we typically use the current set of zero functions to 

construct and solve the optimality equations, known as the active 

set method. For this method to succeed, we must be sufficiently 

close to the solution. A similar concept applies to the minimax 

case in which the active set is defined by the worst error func-

tions (Hald and Madsen 1981). 

This example reveals that the application of quasi-Newton 

method can be quite involved when the ordinary gradient u' does not 

exist. The theory of generalized gradient (Clarke 1975) addresses 

the optimality for a broad range of non-differentiable problems. 

2.4.2 Updates of a Hessian 

Quasi-Newton methods, whether in (2.24) or (2.26), all re-

quire update of certain approximate Hessians. Among the formulas 

that have been proposed over the years, the most well-known are the 
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Powell Symmetric Broyden (PSB) update (Powell 1970b), the Davidon

Fletcher-Powell (DFP) update (Davidon 1959, Fletcher and Powell 

1963) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update 

(Broyden 1969, Fletcher 1970, Goldfarb 1970, Shanno 1970) . They 

are given by, respectively, 

PSB 
wsT 

+ SWT WT S SST 

Hie+ 1 Hie +

ST S (sT s)2 

DFP 

wyT 
+ yw

T WT S yyT 

Hie+ 1 Hie +

yTs 
(2.30) 

(yT s)2 

BFGS 
yyT Hie SST 

Hie 

Hie+ 1 Hie + ----

yT s ST 
Hie S 

where S = Xic+1 
- Xie' y = u· <Xic+1) u· <Xie) (if B is to approximate 

the Hessian of U
) or y= f

� (Xie+ 1) f� (Xie) (if B is to approximate

f
l• I)' 

d 
J 

an w = y - Hie s . A thorough treatment of the theory under-

lying these updates has been given by Dennis and More (1977). As 

they have pointed out, numerical evidence seems to support the BFGS 

update as the best formula for use in minimization. The interes

ting expression 

8 DFP BFGS 

Bic+1 = 0 Bic+1 + (1 - 0) Bic+1 (2.31) 

describes the Broyden family (Broyden 1967, Fletcher 1970). Dixon 

(1972) has proved theoretically that when an exact line search is 

used all members of the Broyden family would have the same perfor-

mance. In practice, the merits of a great many variations are 

often compared in terms of their preservation of positive definite-

ness, convergence to the true Hessian and numerical performance. 

Sometimes it is more efficient to update the inverse of an 
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approximate Hessian using formulas similar to those in (2.30). 

2.5 COMBINED METHODS 

The Gauss-Newton and quasi-Newton methods each has its own 

advantage. 

vergent. 

The trust region Gauss-Newton method is globally con

But, like other first-order methods, it suffers from a 

very slow rate of convergence when close to a singular solution 

(Madsen 1985). On the other hand, the quasi-Newton method enjoys a 

fast rate of convergence near a solution but is not always reliable 

from a bad starting point. These complementary properties of the 

two methods seem to suggest their combination in one algorithm. 

Hald and Madsen (1981, 1985) have developed a class of two

stage algorithms. A trust region Gauss-Newton method is employed 

in Stage 1 to provide global convergence to a neighbourhood of a 

solution. When the solution is singular, the first method suffers 

from a very slow rate of convergence and a switch is made to a 

quasi-Newton method (Stage 2). Several switches between the two 

methods may take place and the switching criteria ensure the global 

convergence of the combined algorithm. This approach has demons-

trated a very strong performance in circuit optimization (Bandler, 

Kellermann and Madsen 1985, 1987). 

Powell (1970c) has extended the Levenberg-Marquardt method 

and suggested a trust-region strategy which interpolates between a 

steepest descent step and a Newton step. When far away from the 

solution, the step is biased toward the steepest descent direction 

to make sure that it is downhill. Once near the solution, taking a 
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full Newton step will provide rapid final convergence. 

2.6 AN ALGORITHM FOR LINEARLY CONSTRAINED 

ONE-SIDED 1
1 

OPTIMIZATION 

2.6.1 Introductory Remarks 

The linearly constrained one-sided 1
1 

optimization problem 

to be considered has the following formulation. 

minimize U(x) = I f
j 

(x) 
X jEJ 

subject to 

a;x 
1 

+ b
i 

0, i 1, 2' ... ' Leq' 

a;x 
1 

+ b
i 

� 0, i L
0 q

+l, 
. . .  ' 

L, 

(2.32) 

where x = [x
1 

x2 .•. �] T , J = {j I f
j 

> 0} identifies the set of 

positive functions among f
1

, f
2

, . . .  , fm, a
i 

and b
i 

are constants. 

The problem arises in a number of applications. It can be 

applied to circuit design where f represents error functions ari

sing from upper and lower specifications. Bandler, Kellermann and 

Madsen (1987) have considered multiplexer design by the one-sided 

1
1 

optimization. In Chapter 5 of this thesis, the one-sided 1
1

optimization constitutes an integrated part of the generalized l
P 

centering algorithm for yield enhancement. 

Traditionally, the one-sided 1
1 

problem is treated by defi

ning 

f1 - { 0 '

if f
j 

> 0, 

otherwise, 
(2.33) 

and minimizing the 1
1 

norm of P. This simplistic approach has two 

shortcomings. Firstly, the discontinuity of f1 at f
j 

= 0 can be 
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and should be taken into account explicitly in the linear program-

ming subproblem of each Gauss-Newton iteration. Introducing the 

discontinuity externally may affect adversely the local lineariza

tion of the error functions, which is essential to the Gauss-Newton 

method. Furthermore, the 11 and the one-sided 11 problems have 

different optimality conditions. Using an 1
1 

algorithm to solve a 

one-sided 11 problem may lead to a false solution which satisfies 

the wrong set of optimality equations. 

We now describe a one-sided 1
1 

algorithm which is based on 

the Hald and Madsen approach. 

2.6.2 Stage 1: A Trust Region Gauss-Newton Method 

This is a direct application of the trust region Gauss-

Newton method (Section 2.3) to the one-sided 1
1 

problem. 

At the kth iteration, a feasible point Xie and a local bound 

Ak are given. The following subproblem is defined: 

m 
minimize I Yj 

h,y j=l 

subject to 

Yj 
� f

j 
(xk

) + 
, T f
j 

(xk
) h, 

Yj 
� 0, 

Ak � hi, 
A

k 
� -hi ,

aI (xk + h) + b
i 

0,

aI <Xie + h) + b
i � 0,

j 1, 2, ... ' m, 
(2.34) 

j 1, 2, ... ' m, 

i 1, 2, ... ' n, 

i 1, 2' ... ' Leq
'

i L
8q+l,

. . . ' 
L, 

which can be solved by a standard linear programming routine. In 

the light of the discussions in Section 2.3, we can relate (2.34) 
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to a semi-linearized subproblem H(f). For each f
j
, we define a 

piece-wise linearized model as 

(2.35) 
0, otherwise, 

which corresponds to two linear constraints in (2.34). The discon-

tinuity at f
j 

= 0 is built into the local model and handled inter-

nally by activating the appropriate constraint (both constraints 

are active at f
j 

= 0). In comparison, the simplistic approach 

(using the two-sided ,e1 and f!) assumes either f
j 

= f
j 

+ (f�)Th or 

f
j 

= 0 throughout one iteration, depending on which side of f
j 

= 0 

the iteration starts. Such an assumption becomes invalid if the 

point of discontinuity is crossed during the iteration. 

Denote the solution of (2.34) by l\· If Xie + 11k reduces 

the nonlinear objective function, i.e., if U(Xic +b
k
)< U(xk), then 

it is taken as the next iterate. Otherwise x
k+l 

= x
k
.

The local bound A
k 

is adjusted in every iteration based on 

the goodness of the linearized model, following the general rules 

described in Section 2.3. More precisely, if 

(2.36) 

then the trust region appears to be too large and the bound is dec

reased: A
k
+

l 
= 0. 25A

k
. Otherwise, if 

then the bound is increased: A
k+1 = 2A

k
.

(2. 37) holds then A
k+l 

= A
k
.

(2.37) 

If neither (2.36) nor 
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2.6.3 Stage 2: A Quasi-Newton Method 

The Stage 2 of the algorithm applies a quasi-Newton method 

to solving the optimality equations of the one-sided 1
1 

problem. 

The nonlinear programming equivalent to the linearly cons

trained one-sided 1
1 

problem is 

minimize U(x,y) I Yj 

x,y j=l 

subject to 

gj = Yj 
- fj (x) � 0, j 1, 2, ... ' m, 

gj+m = Yj � 0, j 1, 2, ... ' m, 

gj+2m 
= aJx + bj � 0, j 1, 2, ... ' L. 

A local optimum must satisfy the Kuhn-Tucker conditions as 

au 

8(x,y) 

2m+L 
I 

j=l 
0, 

where 6j are nonnegative multipliers. 6 j = 0 if gj > 0. 

(2.38) 

(2.39) 

First we examine the derivatives with respect toy. It is 

obvious that 

au;ay = [1 1 . . .  1] T' 

agj /8y = uj , j 1, 2' ... ' m, 
(2.40) 

agj +m/ay = uj ' j 1, 2, ... ' m, 

8 gj +2m/ay = 0, j 1, 2, ... ' L, 

where uj is the jth column vector of an M by M identity matrix. 

It has 1 in the jth position and zeros elsewhere. From (2.39) and 

(2.40) we have 

[ 1 1 . . . 1 ] T - L ( 6 j uj + 6 j + m uj ) 
j=l 

0. (2.41) 
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The jth equation is actually 

(2.42) 

Notice that at least one of the two constraints correspon

ding to f
j

, namely g
j 

and g
j

+m' must be active. If f
j 

> 0 then g
j 

is active but g
j

+m is not, thus o
j

+m = 0 and o
j 

= 1. If, on the 

other hand, f
j 

< 0, then o
j 

= 0. When f
j 

= 0 both g
j 

and g
j

+m are 

active. We summarize these results as 

0, 

where J {j 

if j E J, 

if j E Z, 

otherwise, 

f 
j 

> 0 } and Z = { j I f 
j 

(2.43) 

0} are mutually exclusive

index sets. 

Now we inspect the derivatives with respect to x. We have 

au;ax = 0, 

ag
j 
;ax = -f� (x)' j 1, 2, ... ' m, 

(2.44) 
ag

j 
+m/ax = 0, j 1, 2, ... ' m, 

ag
j 

+2m/ax = a
j

' j 1, 2' ... ' L.

Combining (2.39), (2.43) and (2.44), we arrive at the set 

of optimality equations as 

I 
jEJ 

f� (x) + I o j f� (x) -
jEZ 

aix +b
i

= 0, i EA, 

0, 

(2.45) 

where A = {i I aix + b
i 

= 0} identifies the active set of linear 

constraints which will always include the equality constraints, 1 � 

o
j 

� 0, j E Z, and µi 
= o

i
+Zm � 0. A local optimum of the linearly

constrained one-sided 11 problem must satisfy (2.45).



27 

Using a matrix notation, we express (2.45) as R(x,6,µ) = 0. 

The Stage 2 of our algorithm obtains a quasi-Newton step by solving 

the linear system 

Jk 

where Jk is 

R' 

[: l -R(xk, .\ ,#-\;.), (2 .46) 

an approximation to the Jacobian of R given by 

I f' � <x) + I s j f' � <x) E F 
jEJ jEZ 

ET 0 0 (2.47) 

-FT 0 0 

where E and Fare matrices with columns f�(x), jEZ, and -a
i

, iEA, 

respectively, and they can be calculated exactly at each iteration. 

The submatrix at the upper left-hand corner contains second-order 

derivatives, therefore, the corresponding part of Jk is updated at 

each iteration using a modified BFGS formula (Powell 1978, also 

Bandler, Kellermann and Madsen 1987), as 

with 

Hie+ 1 Hie + --- - -----

y = O[G(xk+f'.\xk ,.\) - G(Xic ,.\)] + (1-0)Bics, 

G(x, 6) = I f� (x) + I S j f� (x) , 
jEJ jEZ 

(2.48) 

(2.48) 

where 0 satisfying O � 0 � 1 is selected such that yT s > 0, in 

order to maintain a positive definite Bic+i· 
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2.6.4 A Combined 2-Stage Algorithm 

In the combined algorithm, the trust region Gauss-Newton 

method in Stage 1 is intended to provide global convergence and the 

quasi-Newton iteration of Stage 2 is used to obtain fast final 

convergence near a solution. 

In Stage 1, the following steps take place. 

Step 1 Given � and Ak, Xic+i and Ak+l are found using the trust 

region Gauss-Newton method described in 2.6.2. The active 

sets are estimated as Zk+l and Ak+l by the zero functions 

and active linear constraints at Xic+l' respectively. 

Step 2 An estimate <8ic+i ,J'k+1
) of the multipliers is found through 

a least squares solution of (2.45) using xk+l' Zk+l and 

The approximate Jacobian is updated by the BFGS 

formula, giving Jk+i ·

A switch from Stage 1 to Stage 2 is made if the following 

conditions are met. 

(a) The estimated active sets Zk+l and Ak+l have been constant

over K consecutive Stage 1 iterations (we use K = 3).

(b) The estimated multipliers corresponding to Zk+l and Ak+l

are in the correct ranges: 1 � c5 j � 0 and µi � 0.

The requirement of stable active sets and acceptable multi-

pliers is intended to avoid premature switches to Stage 2. 

The steps in Stage 2 have been described in the last sec

tion (2.6.3). A switch from Stage 2 back to Stage 1 is made if one 

of the following conditions holds. 

(a) The active sets are not complete because a function f
j 

with
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j � Z has become zero or changed sign, or a constraint not 

included in A has become violated. 

(b) The value of a multiplier is outside its range.

(c) A quasi-Newton step fails to decrease the residual of the

optimality equations:

IIRic +1 11 > o. 999 IIRic 11.

The use of the trust region Gauss-Newton method as Stage 1,

the quasi-Newton method as Stage 2, and these switching conditions 

are at the heart of the class of algorithms described by Madsen 

(1985) who has proved global convergence in general. 

The description of our algorithm for linearly constrained 

one-sided 1
1 

optimization is complete. In Chapter 5, this algori

thm is applied to circuit centering. 

2.7 A UNIFIED FORTRAN LIBRARY FOR NONLINEAR OPTIMIZATION 

Several optimization routines based on the Hald and Madsen 

approach have been implemented in a unified Fortran library which 

is named the KMOS library (Bandler, Chen and Renault 1987). It 

includes routines for linearly constrained minimax, linearly const

rained 1
1

, linearly constrained one-sided 11 and unconstrained 1
2

optimization problems. 

The routines for linearly constrained minimax problems were 

originally developed by Bandler and Zuberek (1982) for the CDC 

170/730 system. Since then, many changes have taken place, both in 

the hardware and the software. Most importantly, many new algori

thms have become available, including the 1
1 

(Bandler, Kellermann 



30 

and Madsen 1987), the 1
2 

(Madsen 1986) and the one-sided 1
1 

(desc-

ribed in this Chapter) algorithms. Methods which do not require 

exact gradients have also been developed and implemented (which 

will be described in Chapter 7). 

The KMOS library is created basically for the convenience 

of its use. The calling sequence to the optimization routines and 

the printing service provided by these routines are standardized 

and unified. To employ different optimization methods, only mini

mal changes need to be made to the user's program. By sharing some 

common codes, the unified library is also smaller in size as com

pared with the separate packages combined. 

2.8 CONCLUDING REMARKS 

In this chapter, we have addressed the recent advances in 

the state-of-the-art 1
P 

optimization techniques. The formulation 

and the properties of the 1
P 

functions have been reviewed. An 

important class of solution methods has been discussed in detail. 

We have shown that linear and linearly constrained linear minimax, 

1
2 

and 1
1 

problems can be solved by linear or quadratic programming 

techniques. We have described the Gauss-Newton method which is 

based on the trust region solution of a semi-linearized subproblem 

and the quasi-Newton method which is applied to solving the set of 

optimality equations. The Levenberg-Marquardt method for the least 

squares problem has also been reviewed. 

A new algorithm for the linearly constrained one-sided 1
1 

optimization has been presented. The shortcomings of the tradi-
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tional approach to the one-sided problems by externally defining 

discontinuous error functions have been exposed and, therefore, the 

need of a true one-sided algorithm was justified. We have defined 

the trust region Gauss-Newton iteration which solves a sequence of 

semi-linearized subproblems by linear programming. We have also 

derived the optimality equations for the one-sided 11 problem and

applied a quasi-Newton method to the solution of these equations. 

Following the Hald and Madsen approach, the Gauss-Newton and the 

quasi-Newton methods have been combined into a 2-stage algorithm. 

The optimization techniques which we have described provide 

the powerful tools for solving the various circuit optimization 

problems covered by the subsequent chapters. Due to their proven 

success in many practical applications, software based on these 

techniques has been integrated by EEsof Inc. into TOUCHSTONE Ver

sion 1. 5 (1987). 



CHAPTER 3 

EFFICIENT APPROACHES TO NETWORK SENSITIVITY ANALYSIS 

3.1 INTRODUCTION 

The application of gradient-based optimization techniques 

to circuit problems requires the evaluation of network sensitivi-

ties, typically first-order. Director and Rohrer (1969a, 1969b) 

pioneered the adjoint network approach to sensitivity analysis for 

linear circuits. Their work and subsequent contributions by many 

other researchers have greatly facilitated the advance in CAD tools 

from non-gradient (random, direct) techniques to sophisticated and 

powerful ones. 

Relating to the gradient-based iP optimization methods in

Chapter 2, we are interested in the first-order derivatives of the 

functions f1, f2, ... , fm with respect to the variables x1, x2, ... ,

�' i.e., the Jacobian of f with respect to x. For a circuit 

problem, the functions f
j 

are typically derived from the errors 

between the circuit responses and the given (constant) specifica-

tions. Therefore, the derivatives of f
j 

can be obtained from the 

appropriate network sensitivities. 

In this chapter, we describe a unified and systematic 

approach to efficient sensitivity calculations for linear networks 

in the frequency domain. Useful formulas are derived from a nodal 

description of a linear network. Unterminated and terminated 

multi-ports are analyzed in general. The results are then applied 

32 
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to two-ports which are widely used to represent filters as well as 

subnetworks. For two-ports, we also present some second-order 

sensitivities useful in the optimization of group delay and gain 

slope. Formulas for some commonly used frequency responses are 

also given. 

A special class of two-ports, namely lossless two-ports, 

deserves separate attention because their sensitivity expressions 

can be shown in a simple analytic form. This result was stated by 

Orchard, Ternes and Cataltepe for the first time in 1983. Three 

original and different proofs have been presented by Bandler, Chen 

and Daijavad (1984a, 1984b, 1985b). Here, we describe two of the 

proofs using a notation consistent with the rest of the chapter. 

3.2 SENSITIVITY ANALYSIS USING A NODAL DESCRIPTION 

For the network under consideration, assume that a nodal 

description is available. For simplicity, we further assume an 

admittance matrix. The formulas are, of course, applicable to an 

impedance or hybrid matrix. 

We have 

YV=I (3.1) 

where Y is the N by N admittance matrix, V the nodal voltages and I

the excitation vector. Differentiating (3 .1) with respect to a 

generic variable� gives 

av 8Y 

- y-1 - V. (3.2) 
a� 

To select the sensitivity for a particular voltage of inte-
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rest, say, Vk, we define a unit vector 'lie which is the kth column 

vector of an N by N identity matrix (its kth element is 1 and the 

others are zeros). Premultiply (3.2) by�' 

a<t, 

aY aY 
-�Y- 1-V = -VT-V =

a<t, a<t, 

where we define an adjoint system by 

yT V = '1ic· 

N N 

I I 
i=l j=l 

(3.3) 

(3.4) 

For example, consider a capacitor connected between nodes a 

and b. The parameter C appears in four places in Y: as jwC in Yaa

and Ybb and as -jwC in Yab and Yba. Therefore,

(3.5) 
ac 

If we solve the original circuit (3.1) by LU factorization, 

then the adjoint solution (3.4) requires minimal extra effort. 

Director and Rohrer (1969a) have arrived at essentially the 

same results from Tellegen' s theorem. The concise derivation by 

matrix algebra as shown here was due to Branin (1973). 

3.3 

3.3.1 

GENERAL M-PORTS 

Unterminated M-Ports 

It is quite common to separate the nodes of a network into 

internal and external nodes, and designate some pairs of external 

nodes to constitute external ports. This is especially useful in 

the analysis of a complicated system consisting of subnetworks. We 

can describe each subnetwork as an unterminated M-port and the rest 

of the system as terminations of the M-port. Such an equivalent of 
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the subnetwork may then be analyzed independently. 

Suppose that the nodal equations (3.1) describe an untermi

nated network. We use 

(3.6) 

to represent the voltages and currents, respectively, associated 

with the external ports, as shown in Fig. 3.1. Conventionally the 

unterminated M-port is characterized by 

(3. 7) 

where z is the M-port open-circuit impedance matrix. 

Consider a typical element of z, say zkl· Suppose that the

kth port is created between nodes i and j, and VPk = V1 - V
j

. By

introducing a vector llpk which has 1 in the ith position, -1 in the 

jth position and zeros elsewhere, we can write 

(3.8) 

If node j is the ground then llpk has 1 in the ith position and 

zeros elsewhere. \lpl is similarly defined for the 1th port. 

It follows that 

(3.9) 

where Pi is the solution of 

(3.10) 

The sensitivity formula for zkl can be derived, similarly 

to the derivation of (3.3), to be 

8zk l 8Y 
""T 

Pl, (3.11) -�
8</, 8</, 

where Pie is the solution of 
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Fig. 3.1 An illustration of multi-ports. (a) An unterminated network described by
a nodal admittance matrix. (b) The network represented by an unterminated
M-port. (c) The terminations of the M-port.
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y
T 

J>ic = llpk • (3.12) 

Generally, in order to complete the evaluation of z and its 

sensitivities, we need to solve the original network with M diffe

rent right-hand sides, namely Up
1

, ... , Up
M

, leading to p
1

, ... , 'PM· 

We also need M adjoint solutions p1 , • • • ' Pt.1 · If the network is 

reciprocal then yT = Y and consequently Pie = Pie for all k. While 

the use of an unterminated M-port allows us to analyze a network or 

subnetwork independent of its terminations, it also increases the 

amount of computations. We emphasize that all the solutions, 

original and adjoint, require only one LU factorization of Y. 

3.3.2 Terminated M-Ports 

Now assume that the kth port is terminated by an indepen

dent current source JPk with an admittance YPk (see Fig. 3.1). The 

currents and voltages of the M-ports are related by 

I
p 

= 

JP - Y
p 

V
p

, (3.13) 

where 

JP [JPl JP2 JPM] T ' 
(3.14) 

Y
p 

diag{YPl Yp z . . . YPM} 

Solving (3.7) and (3.13) concurrently gives 

VP 
= (1 + z Y

p
)-1 zJ

p
. (3.15)

Differentiating (3.15) and after some algebra, we can arrive at a 

sensitivity formula for the terminated M-port as 

az 8Y
p 

( 1 + z Yp )-1 (- Ip - z V
p

) . 
a<J, a4> 

(3.16) 
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TWO-PORTS 

General Two-Ports 

A special case of M-ports, namely two-ports, is widely used 

to describe networks for which we are primarily interested in a 

pair of input and output variables. Conventionally the input port 

is defined between node 1 and the ground, and the output between 

node N and the ground. Thus, V
p1 

= V
1 

and V
p2 = VN. 

Following the general approach for M-ports, we define two 

solutions of the original network as 

y p Ui' 
(3.17) 

y q �' 

as well as two adjoint solutions as 

y
T q �' 

where u
1 

= [l O ... O] T and�= [O O ... 0 l] T . 

The open-circuit impedance matrix for the unterminated 

two-port is 

z = 

given by 

[ 
uTY- l u 1 1 

�Y- l u
l 

uir 1� 

�y- 1� 

and its sensitivities by 

az BY 

-[p q]T-[p q] 
a<J, 

] [ 
P1 ql 

] ' (3.19) 

PN qN 

] 
(3.20) 

Usually, the output port is terminated by a load Y
1

, and 

the input port by a source J = lA with an ad.mi ttance Y
8 

• These 

terminations are represented by 
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(3.21) 

Formulas (3.15) and (3.16) can then be applied directly to 

solving the terminated two-port and evaluating its sensitivities. 

3.4.2 Second-Order Sensitivities 

In the optimization of group delay and gain slope respon

ses, second-order derivatives of z are needed. In these cases, the 

first-order derivatives of z with respect to the frequency w are 

used to evaluate the response itself. The sensitivities of 8z/8w 

with respect to a circuit parameter ¢,, namely 8 2 z/awa¢,, are of 

second-order. 

Using (3.20) we have 

az 

aw 

BY 
= _ [ 

u
\lif

T

T

l 
] -[p qf-[p q] 

aw 

BY 
y- 1 -Y-1 [u1 �].

aw 

Differentiating (3.22) with respect to¢, leads to 

a 2 z

--= 
awa¢, 

[UT ] 8Y 

y-1 (- y-1 

UT 8¢, 

BY 

BY a2y
BY 

- - -- + - y- 1 

aw awa¢, aw 

a2y

BY 
-) y- 1 

a¢, 

BY 

(3.22) 

[u1 �] 

(3.23) 

[p q]T -[p q] - [p q]T--[p q] + [p q]T -[p q]'
a¢, awa¢, a¢, 

where P, q, 
-

p, 
-

q are solutions of, respectively, 

Yp= [ 8Y/8w] p,

Yq= [ 8Y/8w] q,
(3.24) y

T 
-

[8Y/8w] T 
" 

p = p, 

y
T 

-

[8Y/8w] T 
" 

q = q.
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Eight solutions of the network are involved in (3.23) which 

require one LU factorization of Y and eight forward and backward 

substitutions. Notice that four solutions will suffice for a reci

procal network. 

3.4.3 Sensitivities of Commonly Used Frequency Responses 

It is very common, especially in filter design, to use 

frequency responses, such as reflection coefficient, return loss, 

insertion loss, scattering parameters and group delay, to describe 

the external behaviour of a circuit. Once we have the sensitivi-

ties of the port voltages and currents, the corresponding formulas 

for the frequency responses can be readily derived. Table 3 .1 

summarizes the results for some commonly used frequency responses 

according to their conventional definitions. 

3.4.4 Lossless Two-Ports 

Lossless two-ports are widely used as prototype models in 

filter design. In the context of this chapter, lossless two-ports 

deserve a special treatment because we can prove that the related 

sensitivity expressions require only one network analysis. 

The central sensitivity formulas for lossless two-ports 

were due to Orchard, Ternes and Cataltepe (1983, 1985). Between 

1983 when the formulas appeared for the first time and 1985 when 

their proof was presented by Orchard et al., three different and 

original proofs were published by Bandler, Chen and Daijavad 

(1984a, 1984b, 1985). Here, we present two proofs based on the 
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TABLE 3.1 

SENSITIVITY EXPRESSIONS FOR SELECTED FREQUENCY RESPONSES 

Response 

input reflection 
coefficient Pin 

Formula 

input return loss -20log
l o I Pin I

insertion loss 

group delay 
1 avN 1 aY

8 -Im[- -- + - --]
VN 8w Y

8 
aw 

scattering matrix (z - l)(i + 1)- 1 

Sensitivity Expression 

a Y
8 G8 

Y
8 G8 

8V
1 

2[V
1

-(--) + -- --] 
a¢ Y; Y; a¢ 

20 1 8pin 
- -- Re[---]

inlO Pin 8¢ 

20 1 avN 1 aYT 
- -- Re[- -- + - --]

inlO VN 8¢ YT 8¢ 

1 a2 vN 1 avN avN 
-Im[- -- - - -- --

VN 8w8¢ V� 8w 8¢ 

1 82 Y
8 

1 8Y
8 

8Y
8 + - -- - - -- --] 

Y
8 

8w8¢ Y� aw 8¢ 

1 az 

-(1 - S) (1 - S) 

2Z
0 

8¢ 

G8 
= Re(Y

8 ), YT = Y
8 

+ Y
1

, Y; is the complex conjugate of Y
8

. 

z = z/Z
0 

where Z
0 

is the normalizing impedance. 

Sis the scattering matrix. 
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ideas of the previous publications but following the notation con

sistently used in this chapter. The first proof is derived through 

algebraic manipulations. The second proof is based on the princi

ple of conservation of energy and the Cauchy-Riemann equations of 

complex differentiation. 

and mathematical elegance. 

Theorem 

It bears clear physical interpretation 

Assuming that a lossless two-port is terminated by a source 

J = lA with a conductance G
8 

at the input port and by a load G1 at

the output port, the evaluation of the sensitivities of the trans

ducer coefficient which is defined by 

0 = - in(2V
N �1 )

requires only one solution of the network. 

Proof 1 

Define 

(3.25) 

(3.26) 

as the admittance matrix of the network including the terminations. 

The reciprocal and lossless properties of the network implies 

yT Y, 
(3.27) 

y* - Y.

where * stands for complex conjugate. The terminated network can 

be solved from 

y' V ul. (3.28) 

From (3.3) and noticing that y' is symmetrical, we have 

av
1 ay

'

- VT - V. (3.29) 
8</, a<f, 
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Differentiate (3.28) and premultiply the result by (V*)T , 

av 
(V*)T y' - = - (V*)T - V. 

8</> 8</> 

Using (3.26) and (3.27) we have 

2 ( Gs ul t1i + 
G

L t1ri tJi ) 
+ 

y 
+ 

(Y* ) 
T 

2 ( Gs U1 ui + G
L t1ri Ui ) .

Evaluate y' from (3.31) and substitute the result for (3.30), 

av ay' 

(3.30) 

(3.31) 

(V*)T {2(GsU1Ui + G
1 t1ritJi) - [(Y' )*] T }- = -(V*)T -v. (3.32) 

a4> a4> 

From (3. 28) we notice that (V* )T [ (Y' )* ]T

(3.32) can be reduced to 

lli , therefore

av
1 

avN av
1 

ay' 
2GsV� -

+ 
2G

L
v; - - - = -(V*)T - V. 

a4> a4> a4> a4> 

(3.33) 

By substituting (3.29) in (3.33) and using the input ref

lection coefficient p = 2GsV
1 

- 1 (Table 3.1), we arrive at 

ay' 
(p* V - V*)T - V. 

8</> 
(3.34) 

Finally, from the definition of the transducer coefficient 

as given in (3.25), we obtain 

80 ay' 
(V* - p*V)T - V, 

8</> 
(3.35) 

where PN is the power in the load, given by PN = G1VNv;. Clearly,

(3.35) involves only one solution, namely V, of (3.28). 

For example, let <f, be y
ij 

(the admittance connected between 

nodes i and j). Then 

(3.36) 
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and consequently, 

where vij 

Proof 2 

ae 1 

[(v: - p*Vi) - (v; - p*Vj )] (Vi - Vj ) 
2PN 

Vi - Vj 
is the voltage across y

ij
. 

(3.37) 

Consider an internal branch between nodes i and j as cha

racterized by I
ij 

= Y
ijvij

, where Y
ij 

= g
ij 

+ jxij 
and g

ij 
= 0 at 

nominal (i.e., y
ij 

represents a lossless element). The real power 

associated with this branch is given by Pij 
= g

ij 
IVij 

1 2
, which is 

equal to zero at nominal. Denote the power in the load by PN and 

define 

(3.38) 

The conservation of energy of the whole system implies 

(3.39) 

where the summation is taken over all the internal branches. 

and, at 

Differentiating (3.39) with respect to g
ij and xij

, we have 

8P1 8PN 
+-- + 1vij 

I 2 0, 
ag

ij 
ag

i j 

g
ij 

0, 

8P1 8PN 
+ --= 0.

axij axij 

From (3.38), we obtain, after simple manipulations, 

av1 

Re[(2G
8
V� - 1) -] 

a<f, 

av1 

Re[p* -]. 
a<f, 

(3.40) 

(3.41) 

(3.42) 
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Following (3.29) and (3.36), we have 8V 1
/8g

ij 

8P 1 
8P 1 

-- - j-- - Re[p*Vf j] + jRe[jp*Vf j ] p*VL. (3 .43) 
8g

i j 
8xi j 

Combine (3.40), (3.41) and (3.43), 

8PN 8PN 
-- - j-- - IVij 12 

+ p*Vfj · 
8 gi j 

8xi j 

(3.44) 

The complex valued transducer coefficient given in (3.25) 

is analytical in the network parameters wherever it is defined. 

Let it be 0 = a +  jp. With respect to y
ij 

= g
ij 

+ jxij
, we know 

that the Cauchy-Riemann equations are satisfied as 

8a 8P 

8a 8P 

Accordingly we find that (Lang 1977) 

80 8a 8a 
-- = -- - j-- . 
8y 

i j 
8 g

i j 
8xi j 

By definition, 

a = Re[-1n(2VN j G8 G1 )] = - (l/2)1n(41VNl 2 G8 G1 ) 

= - (l/2)[1n(4G8 ) + ln(PN)],

therefore, 8a/8� 

80 1 

[8PN/8�]/2PN. It follows that 

8PN 8PN 
[--j-] 
8g

i j 
8xi j 

I 1
2 * 2

vij - P vij 

This formula is identical to (3.37). 

(3.45) 

(3.46) 

(3. 47) 

(3.48) 
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In this chapter, we have described a unified and systematic 

approach to efficient sensitivity calculations for linear network 

in the frequency domain. Useful formulas have been derived for 

networks described by a nodal matrix as well as unterminated and 

terminated multi-ports. A more elaborate treatment has been direc

ted at two-ports including results for second-order sensitivity and 

frequency responses. Two elegant proofs have been derived for an 

important sensitivity expression related to lossless two-ports. 

We recognize that exact sensitivity expressions are not 

always available, e.g., when time-domain analysis and nonlinear 

circuits are involved. The subject of gradient approximations is 

treated in Chapter 7. 

Even for linear circuits in the frequency domain, large

scale networks present new problems which need to be addressed. 

Often, a large network can be described through compounded and 

interconnected subnetworks. Many commercial CAD programs such as 

SUPER-COMPACT (1986) and TOUCHSTONE (1985) have facilitated such a 

block structure. 

One possible approach is to assemble the overall nodal 

matrix and solve the network equations using sparse techniques. 

Another approach is to rearrange the overall nodal matrix into a 

bordered block structure which is then solved using decomposition 

techniques (Hachtel and Sangiovanni-Vincentelli 1981). Also, it 

may be possible to develop efficient formulas for a special struc

ture, such as the work of Bandler, Daijavad and Zhang (1986) for 
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multiplexing networks. 

In conjunction with these techniques, the sensitivity ana

lyses outlined in this chapter can be carried out at the subnetwork 

level. 



CHAPTER 4 

NOMINAL CIRCUIT OPTIMIZATION 

4.1 INTRODUCTION 

Nominal circuit design is an approach to the optimization 

of a single point, in the space of designable variables, which best 

meets a given set of performance specifications. The classical 

paper by Ternes and Calahan in 1967 was one of the earliest to for

mally advocate the use of iterative optimization in circuit design. 

Also, pioneering papers by Lasdon, Suchman and Waren (1966), Waren, 

Lasdon and Suchman (1967) demonstrated optimal design of linear 

arrays and filters using the penalty function approach. Since then 

optimization oriented CAD techniques have become indispensable 

tools in many engineering fields. 

At the heart of the problem is the mathematical description 

of the engineering system under consideration and the design goals. 

In this chapter, we first introduce a hierarchy of models which are 

employed to simulate the physical system. The parameters and the 

response functions associated with these models are identified. 

Error functions which arise from the performance specifications and 

the simulated responses are defined. The objective function and 

variables for optimization are then discussed. The formulation of 

a nominal circuit optimization problem, at increasingly abstract 

levels, is clarified in our presentation. 

Practical illustrations of nominal design are provided by 

48 
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the optimization of multi-coupled cavity filters which are of sig-

nificant interest in satellite communication systems. The large 

variety and complexity of these filters have made them prime candi-

dates for computer-aided design. An efficient approach to the 

exact sensitivity analysis of multi-coupled cavity filters has been 

presented by Bandler, Chen and Daijavad (1986a). In this chapter, 

three examples of filter design are described, including a 10th

order elliptic filter, a 10th-order self-equalized filter obtained 

from simultaneous optimization of the amplitude and group delay, as 

well as a 6th-order asymmetric design. First-order prediction of 

the effect of cavity dissipation using filter sensitivities is also 

discussed. 

A 16-channel multiplexer consisting of cavity filters dis

tributed along a waveguide manifold which involves 240 nonlinear 

variables is also presented to illustrate efficient solutions to 

large-scale nominal optimization problems. 

4.2 

4.2.1 

BASIC FORMULATION 

A Hierarchy of Simulation Models 

In order to apply the mathematical tools to an engineering 

problem, we have to be able to describe the physical system under 

consideration by suitable simulation models. 

The physical system being described can be a network, a de

vice, a process, and so on, which has a fixed structure and given 

element types. We manipulate the system through some adjustable 

parameters denoted by a column vector <$1. We use the superscript M 
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to identify concepts related to the physical system. Geometrical 

dimensions such as the width of a strip and the length of a wave-

guide section are examples of adjustable parameters. 

In the production of integrated circuits, qJ'l may include 

some fundamental variables which control, for instance, a photomas-

king or doping process and, consequently, determine the geometrical 

and electrical parameters of a chip. External controls, such as 

the biasing voltages applied to an active device, may also be 

candidates for c/fi. 

The performance and characteristics of the system are usua-

lly described in terms of some measurable quantities. Frequency 

and transient responses are typical examples. These measured 

responses, or simply measurements, are denoted by F'1(c/fi). 

Simulation models can be usefully defined at many levels. 

Tromp (1977, 1978) has considered an arbitrary number of levels 

(also see Bandler, El-Kady, Kellermann and Zuberek 1983). Such a 

hierarchical definition often clarifies the concepts of tolerance 

and model uncertainty (which will be treated in Chapter 5). 

For simplicity, we consider a hierarchy of models consis

ting of four typical levels as 

pi pi (FL ) ' 

qJI qJI ( <Jr ) . 

(4.1) 

<fr is a set of low-level model parameters. It is supposed 

to represent, as closely as possible, the adjustable parameters in 

the actual system, i.e., c/fi. 
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<J/1 defines a higher-level model, typically an equivalent 

circuit, with respect to a fixed topology. Usually, the reason for 

using an equivalent circuit is the convenience of its analysis. 

The relationship between <If and <J/1 is either derived from theory or 

given by a set of empirical formulas. 

Next on the hierarchy we define the model responses at two 

possible levels. The low-level external representation, denoted by 

F1 , can be the frequency-dependent scattering parameters, unter

minated y-parameters, transfer function coefficients j and so on. 

Although these quantities may or may not be directly measurable, 

they are very often used to represent a subsystem. 

The high-level responses F8 directly correspond to the 

measured responses, namely F1 , which may be, e.g. , the frequency 

responses such as return loss, insertion loss and group delay of a 

suitably terminated circuit. 

A realistic example of a one-section transformer on strip

line was originally considered by Bandler, Liu and Tromp (1976b). 

The circuits and parameters, physical as well as model, are shown 

in Fig. 4.1. The physical parameters </l'1 (and the low-level model 

<If) include strip widths, section lengths, dielectric constants, 

strip and substrate thicknesses. The equivalent circuit parame-

ters, denoted by <J/1, include the effective linewidths, junction 

parasitic inductances and effective section length. The scattering 

matrix of the circuit with respect to idealized (matched) 

terminations can be a candidate for a low-level external represen-
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8 

t 

A' s' 

(a) 

A 8 

z, 

(b) 

Fig. 4.1 A microwave stripline transformer (Bandler, Liu and Tromp 
1976b) showing (a) the physical structure and (b) the 
equivalent circuit model. The physical parameters are 

where w is the strip width, 1 the length of the middle 
section, fr the dielectric constant, b the substrate
thickness and ts the strip thickness. <f]A- is represented
in the simulation model by�- The high-level parameters 
of the equivalent circuit are 

where D is the effective linewidth, it the effective
section length and L the junction parasitic inductance. 
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tation (F'). The reflection coefficient, taking into account the 

actual complex terminations, could be a high-level response of 

interest ( F1 ) . 

For a particular case, we may choose a certain section of 

this hierarchy to form a design problem. We can choose either qr 

or 4/1 as the designable parameters. Either FL or F1 or a suitable 

combination of the both may be selected as the response functions. 

Bearing this in mind, we simplify the notation by using q, for the 

designable parameters and F for the response functions. 

4.2.2 Specifications and Error Functions 

We express the desirable performance of the system by a set 

of specifications which are usually functions of some independent 

variable(s) such as frequency, time, temperature, etc. (Bandler and 

Rizk 1979). In practice, we have to consider a discrete set of 

samples of the independent variable ( s) such that satisfying the 

specifications at these points implies satisfying them almost eve

rywhere. Also, we may consider simultaneously more than one kind 

of responses. Thus, without loss of generality, we denote a set of 

sampled specifications and the corresponding set of calculated 

response functions by, respectively, 

j 

j 

1, 2, ... , m, 

1, 2, ... , m. 

(4.2) 

Error functions arise from the difference between the given 

specifications and the calculated responses. To formulate the 

error functions properly, we may wish to distinguish between having 
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upper and lower specifications (windows) and having single specifi

cations, as illustrated, respectively, in Figs. 4.2(a) and 4.3(a). 

Sometimes the one-sidedness of upper and lower specifications is 

quite obvious, as in the design of a bandpass filter. On other 

occasions the distinction is more subtle, since a single speci

fication may as well be interpreted as a window having zero width. 

In the case of having single specifications, we define the 

error functions by 

j = 1, 2, ... , m, (4.3) 

where wj is a nonnegative weighting factor. 

In the case of having an upper specification Suj and a 

lower specification S1j, we define the error functions as 

euj (q,) = wuj (F/q,) - Su), 

e1j (q,) = wlj (Fj (q,) - S1j ), 

where wuj and w lj are nonnegative weighting factors. 

sets as defined by 

3u = U1, jz, · · ·, jkl , 

J 1 = {h+1 1 jk+2 1 
• • · ,  jm} 

(4.4) 

The index 

(4.5) 

are not necessarily disjoint (i.e., we may have simultaneous upper 

and lower specifications) . In order to have a set of uniformly 

indexed error functions, we let 

euj ( q,) ' 

-e1/ct,)' 

j = j i, i = 1, 2, ... , k, 

j = j i, i = k+ 1, k+2, ... , m. 
(4.6) 

The responses corresponding to the single specifications 

can be real or complex whereas upper and lower specifications can 

only be defined for real responses. Notice that in either case 
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Fig. 4.2 Illustrations of (a) upper specifications, lower speci
fications and the responses of circuit a and circuit b, 
(b) error functions corresponding to circuits a and b,
and (c) generalized i

p 
objective functions.
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Fig. 4.3 Illustrations of (a) a discretized single specification 
and two discrete single specifications (e.g., expected 
parameter values to be matched) , and the responses of 

circuit a and circuit b, (b) error functions related to 

circuits a and b, and (c) the corresponding ip norms.
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the error functions are real . Clearly, a positive (nonpositive) 

error function indicates a violation (satisfaction) of the corres-

ponding specification. Figs. 4. 2 (b) and 4. 3 (b) depict the error 

functions corresponding to upper/lower specifications and single 

specifications, respectively. 

4.2.3 Variables and Objective Functions 

In a nominal design, without considering tolerances (i.e., 

assuming that modeling and manufacturing can be done with absolute 

accuracy) , we seek a single set of parameters, called a nominal 

point and denoted by </11, which best satisfies the specifications. 

Furthermore, if the functional relationship of <JI = <JI (<Jr) is 

considered to be precise, then it does not really matter at which 

level the design is conceived. In fact, traditionally it is often 

oriented to an equivalent circuit. 

A classical case is network synthesis where <JI, 0 is ob

tained through the use of an equivalent circuit and/or a transfer 

function. A low- level model <Jr, 0 is then calculated from <JI, 0 
, 

typically with the help of an empirical formula (e.g., the number 

of turns of a coil is calculated for a given inductance). Finally, 

we try to realize <tf, 0 by its physical counterpart <tf1, 0 . 

With the tool of mathematical optimization, the nominal 

design <JR (at a chosen level) can be obtained through the solution 

of the following problem 

minimize U(x), 
X 

(4. 7) 

where x is a set of optimization variables and U(x) is a scalar 
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objective function which is typically defined as an 1P function

H(e), such as the ubiquitous least squares, the more esoteric 

generalized 1
P 

or the minimax objective, as has been discussed in 

Chapter 2 and is depicted in Figs. 4.2(c) and 4.3(c). 

Optimization variables and model parameters are in fact two 

separate concepts. The vector x may contain all the elements or a 

subset of the elements of </i1. It is a common practice to have some 

of the variables normalized. It is also common to have several 

model parameters tied to a single variable. Such dependencies 

usually exist in symmetrical circuit structures but, most impor

tantly, they become a fact of life in integrated circuits. 

4.3 OPTIMIZATION OF MULTI-COUPLED CAVITY FILTERS 

The application of multi-coupled cavity filters in modern 

microwave communication systems has received increasing attention. 

The theoretical work of Atia and Williams (1971, 1972) has inspired 

many advances in .this area. These advances have been responsible 

for many improvements in satellite multiplexing networks, as has 

been discussed by Chen, Assal and Mahle (1976), Cameron (1982), 

Kudsia (1982), among others. 

The growing variety and complexity of this type of filter 

necessitate the employment of modern CAD techniques. For example, 

the traditional approach to an analytical solution may become 

inappropriate when asynchronously tuned or nonminimum phase designs 

have to be considered. Bandler, Chen and Daijavad (1986a) have 

presented an efficient approach to the exact sensitivity analysis 
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of multi-coupled cavity filters, which has facilitated effective, 

flexible and systematic design optimization of these filters. 

Beside their own significance, the filter examples in this 

section serve as illustrations of practical minimax nominal design 

optimization. 

4.3.1 The Physical Structure and the Equivalent Circuit 

The typical structures for longitudinal dual-mode coupled 

cavity filters are shown in Fig. 4.4. The physical parameters 

include the geometrical dimensions of the cross slots through which 

the cavities are coupled and the penetrations of the coupling 

screws by which different modes in the same physical cavity are 

coupled. The cavity resonant frequencies may also be adjusted 

using the tuning screws. 

The narrowband unterminated equivalent circuit introduced 

by Atia and Williams (1971) is described by a symmetrical impedance 

matrix as 

Z = j ( s 1 + M) + r 1, (4.8) 

where 1 denotes an N by N identity matrix and s is the normalized 

frequency variable given by 

w0 
w 

w0 

s = (- - -), (4.9) 

w
0 

and �w being the synchronously tuned cavity resonant frequency 

and the bandwidth parameter, respectively. In (4.8), r assumes the 

uniform cavity dissipation which is zero for a lossless filter. r 

is related to the unloaded Q-factor by 
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r = w
0

/(1::J.wQ). (4.10) 

Mis an N by N coupling matrix whose element M
ij 

represents 

the normalized coupling between the ith and j th cavities. The 

diagonal entry M
ii 

represents a deviation from synchronous tuning. 

Mis a symmetrical matrix, i.e., M
ij 

= M
ji

· Not all the elements 

in M correspond to desirable and designable couplings. Some of 

them may indicate stray couplings. Dispersion effects on the 

filter can be modeled by a frequency dependent M matrix. Fig. 4.5 

depicts the equivalent circuit. 

4.3.2 Efficient Simulation and Sensitivity Calculations 

In Chapter 3, we have described an efficient approach to 

sensitivity analysis of general networks. It can be applied most 

beneficially to the case of multi-coupled cavity filters. 

From the nodal description Z I = V, where Z is given by 

(4.8), we define and solve 

(4.11) 

z q �' 

where u
1 

= [1 0 ... O] T and � = [O ... 0 l] T . The unterminated

filter is then modeled by a two-port whose short-circuit admittance 

matrix is given by 

(4.12) 

Following the results of Section 3.4.1, the sensitivities 

of the y matrix are obtained as 
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ay 

(4.13) 

Since Z is symmetrical, we need only two solutions of the circuit 

(a nonreciprocal two-port would require four solutions). 

For instance, consider¢= Mi k'

ay 

(4.14) 

where c = 1 if i � k (in which case Mi k appears in two places of Z, 

namely the (i,k) and (k,i) positions) or c = 1/2 if i = k. Also, 

(4.15) 

which is useful in predicting a first-order change due to cavity 

dissipation. We also have 

ay ay 
SW aw ar

where 

as 1 WO 
SW 

=-=- [l + (-)2]. 
aw b.w w 

We can use (4.16) in group delay and gain slope calculations. 

By defining two additional solutions of the system as 

Z p = j SW 
p, 

Z q = j SW 
q, 

and following (3.25), we can evaluate 

a ay 
[ 

PT ] az
--(-) = 2 -- [p q]. 
aMik aw qT aMik 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

These second-order sensitivities become very useful in group delay 
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optimization, as illustrated later in this chapter. 

We enjoy a computational advantage in the analysis of loss-

less filters. Since r = 0 the impedance matrix Z in (4.8) is 

purely imaginary. Consequently, the systems defined by (4.11) and 

(4.18) can be solved by real arithmetic, which is obviously less 

time consuming than complex calculations. 

An interesting special case is the canonical symmetrical 

filter structure (Kudsia, 1982). The coupling matrix of such a 

filter exhibits a dual symmetry with respect to its anti-diagonal 

as well as its diagonal, meaning that Mab = M
ik

' for a = N + 1 - k 

and b = N + 1 - i. Using a matrix notation, it implies 

M = l.Ml, 

Z = lZl, 
(4.20) 

where 1 is rotation matrix which has l's on its anti-diagonal and 

zeros elsewhere. It can be easily verified that 11 = 1. 

with 

i.e., 

Comparing 
- -

Z lp = lZl lp 1 Zp 

(4.11), we find that 

-

q = 1 p 
' 

q
i 

= PN+l-i" Similarly, 

-

1 ul � 

q 1 p. In other words,

(4.21)

(4.22) 

for this 

type of filters, the solutions of only two systems, instead of 

four, are sufficient for the evaluation of the first- and second-

order sensitivities. 

Once the two-port analysis is completed, various frequency 

responses of the filter and their sensitivities can be treated 

using the general formulas given in Table 3.1. 
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4.3.3 Cubic Interpolation in Minimax Design 

In order to apply mathematical optimization techniques to a 

filter design problem, discrete frequency samples have to be consi-

dered. In minimax design, a poor selection of frequency samples 

may cause some difficulties, especially for a high-order Chebyshev 

filter whose responses exhibit many ripples. If the peaks of some 

ripples are missed ( in frequency sampling) , then the discretized 

solution may not be adequately close to the continuous minimax 

optimum. Conventionally, we try to overcome this difficulty by 

using densely spaced sample points. This, however, may lead to a 

prohibitively large number of error functions to be minimized. 

Bandler and Chen (1984a) employed a cubic interpolation 

technique to detect the ripples of the responses and keep track of 

their locations during the optimization process. Consequently the 

frequency samples can be automatically and optimally selected. 

Let e be a function which is continuous and differentiable 

in w. A ripple peak of e is a local maximum with respect to w and 

characterized by e' = 8e/8w = 0 and 82 e/8w2 
< 0. This implies a 

change in the sign of 8e/8w in the neighborhood of the maximum. It 

follows that if there exist two frequencies w
1 

< w2 such that 

e' (w1) > 0 and e' (w
2

) < 0, at least one maximum of e lies in 

between. If w1 and w
2 

are close enough to exclude the existence of

multiple maxima, the cubic interpolation formula (Fletcher and 

Powell 1963) can be used to estimate the detected maximum as 
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e' (w1) - e' (w2) + 2x

e(w2)
- e' (w1) - e' (w2) + 3

(4.23) 

This technique has proved to be very effective in practice. 

The response functions of interest as well as their sensitivities 

with respect w are evaluated at some base frequencies suitably 

selected (e.g., uniformly spaced points with adequate density). 

The ripples are then detected, located using (4.23) and chosen to 

form error functions to be optimized. Naturally, the number of 

such ripples are much smaller than the number of base points. In 

this way, the dimensionality of the optimization problem can be 

substantially reduced. 

We have incorporated such techniques in the filter design 

examples of the following sections and, as a result, have been able 

to use a relatively small number of frequency samples to achieve 

virtually continuous minimax solutions. 

4.3.4 10th-Order Elliptic and Quasi-Elliptic 

Self-Equalized Filters 

A 10th-order multi-coupled cavity filter with a center 

frequency of 4GHz and a bandwidth of 40MHz is considered. It has a 

dual-symmetrical coupling matrix with 26 nonzero elements, namely 

Mi i +l' Mi +l i , i = 1, 2, ... , 9, and Mi 11 _

1
. ,  M11_ i i , i = 1, 2, 3, 

I I I I 

4. Taking the dual-symmetry into account, we have 9 independently
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designable couplings. The input and output transformer ratios are 

also considered as variables. The filter is assumed lossless. 

The first example (Bandler and Chen 1984b) is a convention

al elliptic (Chebyshev) bandpass filter. The design goal consists 

of an upper specification of 30dB on the return loss for the pass

band (3980MHz - 4020MHz) and a lower specification of 70dB on the 

insertion loss for the stopband (below 3976MHz or above 4024MHz). 

Since the amplitude responses are known to be symmetrical with 

respect to the center frequency, we need only consider one half of 

the operating frequency range. The cubic interpolation technique 

is employed to automatically determine, at each iteration, the 

positions of the frequency samples. The minimax solution is given 

in Table 4.1 and the filter responses are shown in Fig. 4.6. 

Optimal trade-offs between the attenuation and group delay 

characteristics are required for high fidelity signal transmission. 

As has been demonstrated by Atia and Williams (1974), nonminimum

phase filters have the potential of realizing optimum amplitude and 

flat group delay characteristics. 

Our second example is a 10th-order quasi-elliptic self

equalized filter achieved through simultaneous optimization of the 

amplitude and group delay (Bandler, Chen and Daijavad 1986a). 

Compared to the first example, the amplitude specifications are 

relaxed to be 22dB return loss for the passband and 4SdB insertion 

loss for the stopband. An additional specification of 1. Sns is 

imposed on the relative group delay (delay variation) at four fixed 

sample points in the lower half of the passband, namely 3985MHz, 
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TABLE 4.1 

PARAMETERS FOR THE lOTH-ORDER ELLIPTIC FILTER 

Parameter Solution 

M12, M21, Mg, 1 o, M10,g
0. 97284

M23, M32, Mag, Mga
0.63006 

M34, M43, M7a, Ma1
0.54981 

M45, M54, M57, M1s
0.39867 

M55, Mss
0.88914 

M1, 1 o, M10,1
0.00298 

Mzg, Mg2
-0.02422

M3a, Ma3
0.15196 

M47, M74
-0.49440

Il1 '
Il2

1.15823 
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3990MHz, 3995MHz and 4000MHz (since the passband group delay is 

relatively smooth, cubic interpolation was not used). 

The solution is given in Table 4.2 and the responses are 

shown in Fig. 4. 7. Although no explicit manipulation of the 

transfer function is necessary, we have achieved a nonminimwn-phase 

design as expected. Fig. 4.8 shows that two zeros of the transfer 

function are located on the right hand half of the s-plane. 

4.3.5 An Asymmetric Design 

The responses of a synchronously tuned filter, for which 

the nominal values of M11 are zero, are always electrically symmet

rical (with respect to the center frequency). Cameron (1982) has 

described the use of filters that have asymmetric characteristics, 

particularly in satellite communication systems. Advantages can be 

gained in applications to contiguous band multiplexers, where 

asynchronously tuned filters are utilized to annihilate inherent 

asymmetric distortions (such as a dispersive slope) by building 

compensating characteristics into the nominal design. They are 

also utilized to avoid the use of dummy channels by making the 

cut-off slope sharper on one side of the passband of the first and 

the last channel filters. 

The conventional synthesis procedure is not applicable for 

asymmetric filters and a far more complicated procedure is needed 

(Cameron 1982). From a prescribed transfer function a prototype 

coupling matrix is constructed, and a sequence of rotational tran

sformations using appropriate pivoting matrices is performed to 
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TABLE 4.2 

PARAMETERS FOR THE lOTH-ORDER QUASI-ELLIPTIC SELF-EQUALIZED FILTER 

Parameter Solution 

M12, M21, Mg,10, M10,9
0.84424 

M23, M32, Mag, Mga
0.59318 

M34, M43, M7a, Ma1
0.54438 

M45, M54, M67, M16
0.53059 

M55, M55 0.46916 

M1, 10, M10 1
0.01597 

Mzg, Mgz
-0.02673

M3a, Ma3
-0.05570

M4 7, M74 
0.13067

n1 ' 
n2

1.02258
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remove the unrealizable couplings. 

In comparison, the optimization approach is very flexible. 

The diagonal elements of the coupling matrix, which represent 

deviations from synchronous tuning, are included as variables. The 

specifications are simply defined to be asymmetrical as desired and 

can be modified conveniently. 

We present a 6th-order example. The filter is centered at 

4GHz with a 40MHz bandwidth. Including the diagonal elements there 

are 10 independently designable couplings. The passband upper spe-

cification is 2SdB return loss. The stopband lower specification 

is 40dB insertion loss. The lower stopband is defined as below 

3978MHz, allowing only 2MHz for the lower transition band, whereas 

the upper stopband begins at 4035MHz, 15MHz apart from the pass

band. 

At the solution, the amplitude responses, as plotted in 

Fig. 4.9, exhibit the desired asymmetry in an optimal equal-ripple 

manner. A very sharp cut-off slope is achieved at the lower end of 

the passband. The filter parameters are given in Table 4.3. 

4.3.6 First-Order Prediction of the Effect of Cavity Dissipation 

Lossless filters are often used as an ideal model to obtain 

nominal designs. 

cavity dissipation. 

In reality, the actual devices are subject to 

The performance of a lossy filter can, of 

course, be re-evaluated by exact simulations. This would require 

complex matrix analyses and, if different values of the Q-factor 

are considered, such complex analyses would have to be repeated for 
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TABLE 4.3 

PARAMETERS FOR THE 6TH-ORDER ASYMMETRIC FILTER 

Parameter Solution 

M11, 
M66 -0.05092

M22, 
Mss -0.07059

M33, 
M44 0.76097 

M12, 
M21, 

M55, 
M55 0.91876 

M23, 
M

3 z
, 

M45, 
M54 0.44780 

M34, 
M43 0.24704 

M15
, 

M51 -0.08815

M2s
, 

Ms2 0.41092 

M1s, 
Ms1 1 Mz5, 

M52 0.01462 

Mz4, 
M42, 

M35, 
M53 -0.31096

nl ' 
nz 1.08666 
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each value of Q. 

More efficiently, we can predict the non-ideal response by 

a first-order estimation. The basic sensitivity formula with 

respect to the cavity dissipation is given by (4.15). We have 

applied this method to one of our earlier examples, namely the 

10th-order self-equalized filter. As shown in Fig. 4. 10, the 

predicted passband insertion loss is indistinguishable from the 

exact simulation of the lossy filter (the numerical difference is 

less than 0.00ldB). 

It is a known fact that a filter with flat group delay 

characteristics is also less sensitive to dissipation. Bandler, 

Chen and Daijavad (1984b) have shown explicitly that the sensitivi

ty of the amplitude with respect to dissipation is proportional to 

the group delay (this is also clear from (4.16)). For the example 

depicted in Fig. 4.10, the insertion loss variation is less than 

O.ldB over 80 percent of the passband.

4.4 LARGE-SCALE OPTIMIZATION OF MANIFOLD MULTIPLEXERS 

The design of contiguous band manifold microwave multip

lexers has been a problem of significant interest (Atia 1974, Chen, 

Assal and Mahle 1976, Bandler, Chen, Daijavad and Kellermann 1984, 

Chen 1985). It also presents a practical example for large-scale 

nominal circuit optimization. 

A typical multiplexer structure is shown in Fig. 4.11. It 

consists of multi-coupled cavity channel filters distributed along 

a waveguide manifold. The interface between a channel filter and 
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the manifold waveguide can be a T-junction for which an empirical 

model has been proposed by Chen, Assal and Mahle (1976). The 

location of channel filters along the manifold can be modeled by 

spacings. 

A major task in multiplexer optimization is to design the 

channel filters and to determine their spacing along the manifold. 

The responses of interest for a typical problem are common port 

return loss and insertion loss between the common port and each 

channel output port. Recently, a general approach to the simula

tion and sensitivity analysis of multiplexers has been presented by 

Bandler, Daijavad and Zhang (1986). 

Bandler, Kellermann and Madsen (1987) have described a 

12GHz 12-channel multiplexer which has a channel separation of 

40MHz and a usable bandwidth of 39MHz. The center frequency of 

channel No. 1 is 12180MHz. Twelve 6th-order filters are used. A 

lower specification of 20 dB on the common port return loss is 

imposed over the passband of all 12 channels. The design process 

is started with a one-sided 11 optimization in order to deemphasize

the worst violations of the specification and concentrate on the 

smaller errors. From the 11 solution minimax optimization is

employed which involves 60 variables. The final optimized return 

loss is shown in Fig. 4.12. 

Baudler, Chen, Daijavad, Kellermann, Renault and Zhang 

(1986) have described a novel decomposition approach to large-scale 

minimax optimization. It has been applied to expanding the 12-

channel design into a 16-channel multiplexer which involves 240 
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nonlinear designable parameters. Instead of making a blind attempt 

to optimize all the variables simultaneously, a suitable decomposi

tion approach was taken in which we define, by adding one channel 

at a time, a sequence of localized problem involving a relatively 

small number of variables and functions. For example, when the 

13th channel is added, we optimize only variables in channels 12 

and 13 with specifications on responses in channels 11, 12 and 13. 

By repeating such a decomposition process four times, in which 

channels 13 to 16 are added and optimized successively, an optimal 

design is reached, as shown in Fig. 4.13. 

Although the decomposition procedure may be justified in

tuitively, it is actually soundly based on sensitivity analyses. 

An automatic decomposition technique has been developed (Bandler 

and Zhang 1987) which can save computational time and alleviate 

memory storage problems for general large-scale applications. 

4.5 CONCLUDING REMARKS 

In this chapter, we have demonstrated the application of 

optimization techniques to nominal circuit design. A hierarchy of 

simulation models has been introduced. Physical and model parame

ters and responses have been identified. A general formulation has 

been defined which leads to a nominal design through minimizing a 

suitable 1
P 

measure of the errors between the given specifications 

and the calculated responses. 

Illustrations of nominal design have been provided by the 

optimization of multi-coupled cavity filters as well as manifold 



0 

5 � 

(Il 
0 
....... 

10 

en 

en 

0 15 
_J 

z 
0 20 

H 

I-

(I 25 
w 

en 

z 
H 30 

0 

z 
35 

<! 

z 

er 40 

I-

w 

{I 45 

50 

.. . -· . 

II I 1• II l 

. ... . ....... .... 

11 111-..1 II Ill I 

- ....... -·. . 

Ill I II II II IH ... ... . .... . ..... 

..... . ···-· 

• • IA .. _ ... 

. ..... ···-

II n11•1 I 

11560 11600 11640 11680 11720 11760 11800 11840 11880 11920 11960 12000 12040 12080 12120 12160 12200

FREQUENCY (MHZ) 

Fig. 4.13 Optimized responses of the 16 channel multiplexer. 

.. 

w 



84 

multiplexers. Practical examples of significant interest have been 

described in detail. The use of the cubic interpolation techniques 

in minimax optimization has also been discussed. 

The nominal design approach is based on an ideal assumption 

that the simulation models are precise and accurate. The removal 

of this assumption leads to more realistic approaches to circuit 

optimization, both in design and modeling, which will be addressed 

in the next two chapters. 



CHAPTER 5 

REALISTIC APPROACHES TO CIRCUIT DESIGN 

5.1 INTRODUCTION 

The approach of nominal circuit optimization, which we have 

covered in Chapter 4, focuses attention on an idealized situation 

in which the models are assumed to be precise and accurate. In 

reality, unfortunately, there are parameter tolerances and model 

uncertainties to be accounted for. Such realistic considerations 

arise from design problems in which a large volume of production is 

envisaged, e.g., integrated circuits. 

Recognition that an actual realization of a nominal design 

is subject to fluctuation or deviation led, in the past, to the 

so-called sensitivity minimization approach (e.g., Schoeffler 1964, 

Laker, Ghausi and Kelly 1975). Employed by filter designers, the 

approach involves measures of performance sensitivity, typically 

first-order, and including it in the objective function. 

The statistical design approach emerged from the pioneering 

work of Karafin (1971), Butler (1971), Pinel and Roberts (1972) and 

Elias (1975). It deals more explicitly with process imprecision, 

manufacturing tolerances, model uncertainties, and so on, with the 

aim of improving production yield and reducing cost. There has 

been an increasing interest in statistical design in recent years, 

perhaps due to the growth of large and integrated circuits. 

In this chapter, we first identify the possible tolerances 
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and uncertainties associated with a typical physical system and its 

simulation models. Multiple circuits are defined to relate these 

uncertainties to a nominal point. The concepts of centering, tole

rancing and tuning are discussed in relation to yield enhancement 

and cost reduction. 

A review of statistical design techniques is then given. 

We describe in some detail several representative methods including 

the worst-case design approach, the simplicial and multidimensional 

approximations, the gravity method and the parametric sampling 

method. 

We also propose a generalized l
P 

centering algorithm as a

natural extension to the lP nominal optimization. It provides a

unified formulation of yield enhancement for both the worst-case 

and the case where yield is less than 100%. 

5.2 

5.2.1 

Circuit examples are also presented as illustrations. 

A MULTI-CIRCUIT FORMULATION 

Physical Tolerances and Model Uncertainties 

Tolerances and uncertainties can be defined for the physi

cal system and represented in the simulation models of different 

levels. For the physical system, consider 

¥1 ' O ( cf ) + b¥1 ,

cf ' O + bcf ,
(5.1) 

where b¥'1 represents measurement errors, cf, 0 a nominal value for 

cf and bcf some physical (manufacturing, operating) tolerances. 

In order to represent the physical system more realistical-
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ly, the hierarchy of simulation models, which we have introduced in 

Section 4.2.1, needs to be modified as 

F1 F1 , o ( FL ) + LiF1 '

FL , o ( <JP ) + LiFL '

<JP , 0 ( <tf ) + Li</P ' 

<tf , 0 + Li</f ' 

(5.2) 

where <tf, 0, <JP, 0, F" • 0 and F1, 0 are nominal models applicable at 

different levels. Lic/f , Li</P , LiFL and LiF8 represent uncertainties or 

inaccuracies associated with the respective models. Li</f corres

ponds to the tolerances Li</l1 • Li</P may be due to the approximate 

nature of an empirical formula. Parasitic effects which are not 

adequately modeled in <JP will contribute to LiFL , and finally we

attribute anything else that causes a mismatch between F8, 0 and 

F1 ' o to LiFH . 

These concepts can be illustrated by the one-section strip

line transformer example due to Bandler, Liu and Tromp (1976b) 

which has also been considered in Section 4.2.1. Tolerances may be 

imposed on the physical parameters including the strip widths and 

thicknesses, the dielectric constants, the section length and 

substrate thicknesses (see Fig. 4.1). Such tolerances correspond 

to Li</l1 and are represented in the model by Li</f • We may use Li</P to 

represent uncertainties associated with the empirical formulas 

which relate the physical parameters to the equivalent circuit 

parameters (the effective linewidths, the junction inductances and 

the effective section length). Mismatches in the terminations at 

different frequencies may be estimated by LiF1, which contribute to 
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the discrepancy between the actual and the nominal (asswning mat

ched terminations) reflection coefficients. 

The distinction between different levels of model uncer

tainties can be quite subtle. For example, consider the parasitic 

resistance r associated with an inductor whose inductance is L. 

Both L and r are functions of the nwnber of turns of a coil (which 

is a physical parameter). Depending on whether or not r has been 

modeled by the equivalent circuit (i.e., whether or not r has been 

included in <tJI), the uncertainty associated with r may appear in 

�q/1 or in �FL . 

5.2.2 Multiple Circuits and Yield 

If our primary concern is to improve production yield and 

reduce cost in the presence of the tolerances �</r and the model 

uncertainties �(/1, a single-circuit nominal design will not be 

adequate. We have to consider, as representatives of the actual 

production outcomes, multiple circuits defined by 

k = 1, 2, ... , K, (5.3) 

where </I' , <fF' and sk are generic notation for the nominal parame

ters, the kth set of parameters and a deviate due to the uncertain

ties, respectively. A more elaborate definition will be given as 

we proceed. 

For each circuit, we define an acceptance index by 

1 

0 

if H(e(c/))) :s; 0 

otherwise 
(5.4) 

where H(e) is a generalized l
P 

function defined in Section 2.2.1,
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and H(e((/,)) � 0 indicates satisfaction of the specifications by�. 

An estimate of the yield is given by the percentage of acceptable 

samples out of the total, as 

Y � [ l I
a 

(qi) ]/K 
k=l 

(5.5) 

The merit of a design can then be judged more realistically 

according to the yield it promises. Fig. 5.1 shows three nominal 

points and the related yield. Now we shall have a closer look at 

the definition of multiple circuits. 

In the Monte Carlo method the deviates sk are constructed 

from random numbers generated by a physical process or arithmetical 

algorithms. Typically, we assume a statistical distribution for 

D.<fr , denoted by nL (EL ) where EL is a vector of tolerance variables. 

For example, we may consider a multidimensional uniform distribu

tion on [-EL , eL ] . Similarly, we assume a DH ( eH) for D.<t/1. 

At the low level, consider 

<fr , k = <fr , 0 + SL , k , k = 1 , 2 , ... , KL ,

where sL , k are samples from the distribution nL .

level, we have, for each k, 

<J/1 , k , i = <J/1 , 0 + SH , k , i , i 1, 2, ... , KH , 

where 

with �' i being samples from the distribution DH . 

(5.6) 

At the higher 

(5. 7)

(5.8) 

One might propose a distribution for sH , k, i which would

presumably encompass the effect of both DL and DH . But, while we 
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may reasonably assume simple and independent distributions for �<If 

and �</1, the compound distribution is likely to be complicated and 

correlated and, therefore, much less desirable. 

5.2.3 Centering, Tolerancing and Tuning 

Again, in order to simplify the notation, we use <tJ1 for the 

nominal circuit and E for the tolerance variables. 

Design centering is generally related to the enhancement of 

yield, directly or indirectly. An important class of problems 

involves design centering with fixed tolerances, usually relative 

to the corresponding nominal values. This is called the fixed 

tolerance problem (FTP). The optimization variables are elements 

of the nominal circuit parameters <tJ1. Incidentally, the nominal 

optimization problem (i.e., single-circuit design) is sometimes 

referred to as the zero tolerance problem (ZTP). 

Since imposing tight tolerances on the circuit parameters 

will increase the cost of component fabrication or process opera

tion, we may attempt to maximize the allowable tolerances subject 

to an acceptable yield. In this case both <tJ1 and E are considered 

as variables to be optimized. Such a problem is referred to as 

optimal tolerancing, optimal tolerance assignment, or the variable 

tolerance problem (VTP). 

Tuning some components of (/J-1 after production, whether by 

the manufacturer or by a customer, is quite commonly used as a 

means of improving the yield. This process can also be simulated 

using the model by introducing a vector of designable tuning adjus-
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tments re for each circuit, as 

k= 1, 2, ... , K. (5.9) 

We have to determine, through optimization, the value of Tk 

such that the specifications will be satisfied at qi- which may 

otherwise be unacceptable, as depicted in Figs. 5.2 and 5.3. The 

introduction of tuning, on the other hand, also increases design 

complexity and manufacturing cost. We seek a suitable compromise 

by solving an optimization problem in which re are treated as part 

of the variables. Analogously to ZTP, FTP and VTP we can define 

zero tuning, fixed tuning and variable tuning problems (Bandler and 

Kellermann 1983). 

From nominal design, centering, optimal tolerancing to 

optimal tuning, we have defined a range of problems which lead to 

increasingly improved yield but, on the other hand, correspond to 

increasing complexity. An increase in yield does not necessarily 

lead to a decrease in cost. A commonly assumed cost versus yield 

curve (Singhal and Pinel 1981) is shown in Fig. 5.4. Often, a 

rather abstract objective function (cost function) is selected for 

the cost-yield design problem. Fig. 5.5 illustrates a design with 

a 100% yield and a second design corresponding to the minimum cost. 

5.3 A REVIEW OF TECHNIQUES FOR STATISTICAL DESIGN 

The statistical design approach was pioneered by Karafin 

(1971), Butler (1971), Pinel and Roberts (1972), Elias (1975), as 

well as Bandler, Liu and Tromp (1976a). During the years, signi

ficant contributions have been made by, among others, Director and 
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1981). 
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97 

Hachtel (the simplicial method, 1977), Bandler and Abdel-Malek 

(multidimensional approximation, 1978), Polak and Sangiovanni

Vincentelli (a method using outer approximation, 1979), Soin and 

Spence (the gravity method, 1980), Singha! and Pinel (the paramet

ric sampling method, 1981), as well as Biernacki and Styblinski 

(dynamic constraint approximation, 1986). 

In this section, we describe in some detail several repre

sentative techniques for statistical design. 

5.3.1 Worst-Case Design 

At the heart of the worst-case approach is an attempt to 

achieve a 100% yield. Since this implies that the specifications 

have to be satisfied for all the possible outcomes, it will suffice 

to consider only the worst cases. 

Bandler, Liu and Tromp (1976a) have formulated worst-case 

design as a nonlinear programming problem as 

minimize C(x)

(5.10) 

subject to e(</f") � 0, for all k, 

where C(x) is a suitable cost function and <If- are candidates for 

the worst case. For instance, we may have 

C(x) = I (5 .11) 

where Ie and It are index sets identifying the toleranced and 

tunable parameters, respectively. €i and ti are the tolerance and 

the tuning range, respectively, associated with the ith parameter. 

a
i 

and b
i 

are nonnegative weights. A cost function can also be 
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defined for relative tolerances and tuning by including <J,� into 

(5.11). 

A critical part of this approach is the determination of 

the worst cases. Vertices of the tolerance region, for example, 

are possible candidates for the worst case by assuming one-dimen

sional convexity. The yield function does not appear explicitly in 

(5.10), instead, a 100% yield is implied by a feasible solution. 

Bandler and Charalambous (1974) have derived a solution to 

(5.10) by minimax optimization. Polak and Sangiovanni-Vincentelli 

(1979) have proposed a different but equivalent formulation which 

involves a nondifferentiable optimization. 

The worst-case approach is not always appropriate. While 

attempting to obtain a 100% yield, the solution may necessitate 

unrealistically tight tolerances or excessive tuning. 

case, the cost may be too high. 

In either 

5.3.2 Approximations of the Acceptable Region 

The acceptable region with respect to a given set of speci

fications is defined as 

Ra = { cf, I H ( e (cf,) ) :S O } , ( 5 . 12 ) 

where H(e) is an ..eP function. Since the yield is given by the

percentage of circuit outcomes that fall within the acceptable 

region, we may wish to find an approximation to that region. 

Director and Hachtel (1977) have developed a simplicial 

approximation approach. It begins by determining some points <Ji- on 

the boundary of Ra which is given by Oa = {cf, I H(e(cf,)) = 0}. The 
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convex hull of these points forms a polyhedron. The largest hyper

sphere inscribed within the polyhedron gives an approximation to Ra 

and is found by solving a linear programming problem. Using line 

searches more points on the boundary are located and the polyhedron 

is expanded. The process thus provides a monotone increasing lower 

bound on the yield. The center and radius of the hypersphere can 

be used to determine the centered nominal point and the tolerances, 

respectively. The application of this method is, however, limited 

by the assumption of a convex acceptable region. 

Bandler and Abdel-Malek (1978, 1980) presented a method 

which approximates each e
j 

(<J,) by a low-order multidimensional poly-

nomial. Circuit simulations are performed at some t/f" selected 

around a reference point. From the values of e
j 

(t/1") the coeffi-

cients of the approximating polynomial are determined by solving a 

linear system of equations. Suitable linear cuts are constructed 

to approximate the boundary Oa. The yield is estimated through 

evaluation of the hypervolumes that lie outside Ra but inside the 

tolerance region. In critical regions these polynomial approxima-

tions may be subsequently updated during optimization. The one-

dimensional convexity assumption for this method is much less 

restrictive than the multidimensional convexity required by the 

simplicial approach. 

also available. 

Sensitivities for the estimated yield are 

Recently, Biernacki and Styblinski (1986) have extended the 

work on multidimensional polynomial approximation by considering a 

dynamic constraint approximation scheme. It avoids the large 
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number of base points required for a full quadratic interpolation 

by selecting a maximally flat interpolation. During optimization, 

whenever a new base point is added the approximation is updated. 

It leads to improved accuracy compared with a linear model and also 

reduced computational effort compared with a full quadratic model. 

5.3.3 The Gravity Method 

Soin and Spence (1980) proposed a statistical exploration 

approach. Based on a Monte Carlo analysis, the centers of gravity 

of the failed and passed samples are determined as, respectively, 

<If- = [ L <If ]/Kfail ' 
keJ 

<JP [ L <If ]/�ass 
kfEJ 

(5.13) 

where J is the index set identifying the failed samples. Kfail and 

� ass 
are the numbers of failed and passed samples, respectively. 

The nominal point </I' is then adjusted along the direction given by 

s = <JP - <If- using a line search. This algorithm is simple but also 

heuristic. The relationship between the gravity centers and the 

yield is not clear in a general multidimensional problem. 

5.3.4 The Parametric Sampling Method 

The parametric sampling method by Singhal and Pinel (1981) 

has provided another promising direction. A continuous estimate of 

yield (as opposed to the Monte Carlo estimate using discrete sam

ples) is given by the following integral 



101 

+co

Y(x) = f Ia(cJ,) r(cJ,,x) dcJ, , (5.14) 
- co 

where Ia(<P) is the acceptance index defined in (5.4) and r(cJ,,x) the

parameter distribution density function which depends on the design 

variables x (e.g., the nominal point specifies the mean value and 

the tolerances control the standard deviations). Normally, in 

order to estimate the yield, we generate samples <If, k = 1, 2, ... , 

K, from the component density r, perform K circuit analyses and 

then take the average of I
a

(<lf). For each new set of variables x 

we would have a new density function and, therefore, the sampling 

and circuit analyses have to be repeated. 

The approach of parametric sampling is based on the concept 

of importance sampling as 

Y(x) -- h(cJ,) dcJ, ' 
h ( cJ,) 

(5.15) 

where h(cJ,) is called the sampling density function. The samples <If 

are generated from h(cJ,) instead of r(cJ,, x). 

yield is made as 

1 K r(qf-, x) 1 K 

An estimate of the 

Y(x) � - l I
a

(<lf) 
K k=l h(qf-) 

l Ia(<lf) W(qf-,x). (5.16) 

K k=l 

The weights W(qf-,x) compensate for the use of a sampling density 

different from the component density. 

This approach has two clear advantages. Firstly, once the 

acceptance indices I
a

(<lf) are calculated, no more model simulations 

are required when x is changed. Furthermore, if r is a differen

tiable density function, then gradients of the estimated yield are 



102 

readily available. Hence, powerful optimization techniques may be 

employed. In practice the algorithm starts with a large number of 

base points sampled from h((j) to construct the initial databank. 

To maintain a sufficient accuracy, the databank needs to be updated 

by adding new samples during optimization. 

This approach, however, is not applicable to non-differen

tiable density functions such as uniform, discrete and truncated 

distributions. It can be extended to include tunable parameters if 

the tuning ranges are fixed or practically unlimited. In this case 

the index I
a

(<lf") is defined as 1 if <If" is acceptable after tuning. 

If <If" is not acceptable before tuning, then whether it can be tuned 

and, if so, by how much will have to be determined through optimi

zation (which is separate from the optimization of yield) . A 

variable tuning range (in order to minimize the cost) can not be 

accommodated. 

5.4 A GENERALIZED l
p 

CENTERING ALGORITHM 

In this section, we propose a generalized l
P 

centering 

algorithm which encompasses, in a unified formulation, problems of 

100% yield (worst-case design) and less than 100% yield. 

5.4.1 Representing an Outcome by an l
P 

Function 

First we consider the centering problem where we have fixed 

tolerances and no tuning. The optimization variable vector x con-

tains elements of the nominal parameters qi'. Define 

f = [ eT ( c/f ) eT ( </1' ) . . . eT ( cf ) ] T (5.17) 
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as the set of multi-circuit error functions. We can achieve a 

worst-case minimax design by 

minimize U(x) = H
00

(f)
X 

max max (e
j 

(</f)}
k j 

(5.18) 

where the multiple circuits <If are related to <Ji) by (5.3). 

If a 100% yield is not possible, we would naturally look 

for a solution where the specifications are met by as many points 

(out of K circuits) as possible. For this purpose minimax is not a 

proper choice, since unless and until the worst case is dealt with 

nothing else seems to matter. We may attempt to substitute for 

H
00

(f) a generalized 1
2 

or 1
1 

function, i.e., H
2

(f) or H
1

(f), hoping

to reduce the emphasis given to the worst case. However, in (5.18) 

each outcome (<If) is represented by a set of discrete error func

tions and each error function makes a separate contribution to the 

i
P 

objective, thus obscuring the relationship between different 

outcomes. 

The problem is better represented by finding, for each <If, 

a scalar function which indicates directly whether <If satisfies or 

violates the specifications and by how much. For this purpose, we 

choose a set of generalized i
P 

functions as 

vk (x) = HP (e(</f)), k = 1, 2, ... , K. (5.19)

The sign of vk indicates the acceptability of <If and the magnitude 

of vk measures, so to speak, the distance between <If and the boun

dary of the acceptable region. For example, when p = oo the it is a 

worst-case measure whereas when p = 2 it becomes closer to the 

Euclidean norm. 
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Generalized l
P 

Centering 

We define a generalized l
P 

centering as 

minimize U(x) = HP(u(x)), (5.20) 

where x contains the nominal (center) point, and 

u(x) (5.21) 

and a1, ••• , a
K 

are a set of positive multipliers. Different values

of p and q lead to different variations of the algorithm. We shall 

discuss separately the case where a nonpositive U(x) exists and the 

case where we always have U(x) > 0, noticing that for a given x the 

sign of U(x) does not depend on p, q or any ak. 

In the first case, the existence of a U(x) � 0 indicates 

that a 100% yield is attainable. Since the sign of U(x) is inde-

pendent of p, q and a, we should be able to achieve a U(x) � 0 

(i.e., a 100% yield) using any values for p, q and a. However, the 

specific solution x at which U(x) attains its minimum depends on p, 

q and a. It means that the centered design '11' will be influenced 

by the choice of p, q and a. Interestingly, the minimax worst-case 

centering becomes a special case by letting both p, q = oo and using 

unit multipliers. 

Now consider the case where the optimal yield is less than 

100%. In this case the set J = (k I t1ic > 0) is not empty and the 

generalized l
P 

objective is defined by the one-sided l
P 

function H; 

(see (2. 8) of Section 2. 2 .1). To emphasize the effect of p, we 

write the one-sided l
P 

sum as 



U(x,p) I [Uic(X)]P 
keJ 
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(5.22) 

As p decreases towards zero, U(x,p) approaches the total number of 

unacceptable outcomes which is also given by K(l - Y(x)), Y(x) 

being the discrete yield. We may, therefore, attempt to minimize 

U(x,p) as a means of increasing Y(x). However, for p < 1 U(x,p) is 

not a convex function. The smallest p that preserves the convexity 

is 1, which leads to the one-sided 1
1 

function as 

Hi (u) = I t1ic (x) 
keJ 

(5.23) 

If we choose the multipliers as 

(5.24) 

where � is a reference point, then Hi defined in (5. 23) becomes 

precisely K(l - Y(x)) at xr. From this point of view, (5.23) and 

(5. 24) define a smooth and convex interpolation function for the 

purpose of enhancing the discrete yield. The one-sided 1
1 

algori

thm developed in Chapter 2 is a powerful tool for minimizing Ht. 

From a different viewpoint, we know that a stationary point 

x* of U(x,p) as given by (5.22) is characterized by the derivatives 

of [� (x*) ]P which is 

(5.25) 

A stationary point of Ht as given by (5.23) is characterized by 

(5.26) 

In order for x* to be a stationary point of H1 also, we equate 

(5.25) to (5.26), resulting in the multipliers given by (5.24) with 

the reference point� * 
= x . In other words, by using appropriate 

multipliers, we may be able to approximate the minimizer of U(x,p) 



106 

by solving a convex 1
1 

problem. 

approximation to maximizing Y(x).

Minimizing U(x,p) is in turn an 

In practice, we can not know x* prior to the optimization. 

We may take the starting point x
0 

as a convenient reference point 

and, consequently, define the multipliers by 

1/vk (x0 ) , if vk (x0 ) > a, 

1/a ,  otherwise, 
k 1, 2, ... , K, (5.27) 

where a is a small positive number suitably chosen for a numerical 

implementation. Notice that by definition the magnitude of vk 

measures the closeness of <If to the acceptable region. A small vk 

indicates that <If is close to be satisfying the specifications. 

Therefore, we assign a large multiplier to it so that more emphasis 

will be given to <If during optimization. On the other hand, we 

deemphasize those points that are far away from the boundary of the 

acceptable region because their contributions to the yield are less 

likely to change. 

The roles of the multipliers can also be discussed in the 

light of the penalty function approach. If we consider v � 0 as a 

set of nonlinear constraints, then the maximizer of the discrete 

yield will have a maximum number of constraints satisfied. The 

generalized 1
P 

centering is like a penalty function method. If a 

100% yield is possible, then the centered solution will satisfy all 

the constraints, regardless of the values of multipliers. Other-

wise, the yield is less than 100% and the optimum satisfies only a 

subset of the constraints. In this case if we assign sufficiently 

large multipliers to the constraints in the optimal subset, then 
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the 1
1 

objective (5.23) becomes an exact penalty function. In the 

present algorithm, we consider those outcomes that are close to the 

acceptable region as likely candidates for the optimal subset. We 

also consider 1/a, in (5.27), as a sufficient large bound for the 

multipliers. 

A sequential process may also be constructed in which we 

solve (5.20), update the multipliers at the solution and repeat the 

optimization. Bearing in mind that design centering should always 

be initiated from a good nominal solution and, therefore, drastic 

changes in the variables are unlikely to take place, we can expect 

such a sequential process to be a stable one. Incidentally, the 

generalized i
p 

centering algorithm can certainly be applied to a 

single circuit to obtain a nominal design. In that sense, the new 

algorithm is a natural extension to the i
P 

nominal circuit optimi-

zation. If we can not achieve even an acceptable nominal point, 

then any attempt to optimize the yield is doomed to failure. 

5.4.3 Tolerancing and Tuning 

The generalized i
P 

centering algorithm can be extended to 

accommodate considerations of tolerancing and tuning. 

We need to define a function or functions which approp

riately relate the tolerances and tuning to the cost of production. 

One possible choice of such a cost function is, similar to (5.11), 

C(x) = I + L b
i

t
i - Ca,

iEl
t 

(5.28) 

where the index sets l
e 

and I
t 

identify the toleranced and tunable 
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parameters, respectively. a
i 

and b
i 

are nonnegative weights. 

is a realistic target for the cost. It is also possible to define 

several cost functions representing separate trade-offs in a comp

lex environment such as VLSI design (similar to the multiple objec

tives described by Brayton, Hachtel and Sangiovanni-Vincentelli 

(1981)). For instance, (5.28) may be broken up into multiple cost 

functions associated with separate groups of parameters. 

By this formulation, the cost function is treated in the 

same way as we treat e(ct,). When C(x) � 0, we say that x satisfies 

the specification (C
0

) on the cost. In fact, we can adjust C
0 

and 

the weights a
i

, b
i 

so that C(x) is made comparable in value with 

the error functions. 

The optimization problem is defined as 

minimize U(x) = HP(u(x)), (5.29) 

where the variables x include the nominal point <t/', the tolerances 

€
i

' iEi
e

, and the tuning adjustments rf, lrf I� t
i

, k = 1, 2, ... , 

K, iEit, for the multiple circuits defined by (5.9). We also have 

u(x) (5.30) 

a
K

+l C(x)

Following the discussions of the last section, we can solve 

(5.30) for a solution, say x*. If U(x*) � 0 then the design speci

fications have all been satisfied and the target for cost has been 

met. If, on the other hand, U(x*) > 0, we can conclude that either 

the design specifications are too tight or the target cost is un-
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realistic or perhaps both. 

5.4.4 Circuit Examples 

In this section, we present two circuit examples to illus

trate the usefulness of the theory. 

The first example was originally considered by Singhal and 

Pinel (1981). The circuit involved is a Chebyshev lowpass filter 

as shown in Fig. 5.6. Fifty-one frequencies {0.02, 0.04, ... , 1.0, 

1.3 Hz} are considered. An upper specification of 0.32dB on the 

insertion loss is defined from 0.02 to l.OHz, and a lower specifi

cation of 52dB on the insertion loss is defined at l.3Hz. 

Valuable results on the statistical design of this circuit 

have been reported by Singhal and Pinel (1981) using the parametric 

sampling method. Normally distributed tolerances were assumed for 

the 11 circuit components. Starting from a nominal point obtained 

by standard filter synthesis, a worst-case design as well as a 

minimum cost design were achieved. 

As we have pointed out in Section 5. 3. 4, the parametric 

sampling method is not applicable to non-differentiable (such as 

the uniform) distributions. Here, we apply the generalized i
P 

(with p = 1) centering algorithm to the Chebyshev lowpass filter, 

assuming a uniformly distributed 1.5% relative tolerance for each 

component. The nominal design by standard synthesis was used as a 

starting point. It has a yield of 49%. A yield of 84% is achieved 

by our centered solution which involved a sequence of three design 

cycles with a total CPU time of 66 seconds on the VAX 8600. The 
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Fig. 5.6 The Chebyshev lowpass filter (Singha! and Pinel 1981). 
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one-sided 11 algorithm developed in Chapter 2 was employed to solve

the optimization problem. Some details are provided in Table 5.1. 

For the second example, we consider the design centering of 

multi-coupled cavity filters. The nominal optimization of these 

filters has been described in detail in Section 4.3. This example 

involves a 6th-order filter. The center frequency is 4GHz and the 

bandwidth 40MHz. We have for the passband (3980MHz - 4020MHz) a 

lower specification of 20dB on the return loss and for the stopband 

(below 3976MHz or above 4024MHz) a lower specification of 20dB on 

the insertion loss. Five couplings of the filter as well as the 

input and output transformer ratios are considered as variables. 

With respect to the given specifications, a minimax nominal 

design was obtained at which the yield is 41%, assuming a uniformly 

distributed 2. 5% relative tolerance for each variable. Using our 

centering algorithm a 65% yield was achieved, after two design 

cycles and a total CPU time of 23 seconds on the VAX 8600. The 

details are given in Table 5.2. 

In (5.27), for numerical reasons, we have defined a bound 

on the multipliers. In the examples of this section, a = 0.01 was 

used (i.e., the bound on the multipliers was 100). 

We conclude this section with a discussion on the computa

tional efficiency related to our centering algorithm. Notice that 

as long as the yield is less than 100%, negative error functions do 

not contribute to the generalized 1
P 

objective. Therefore, under 

certain conditions, the circuit analyses corresponding to these 

error functions can be saved. Such a saving becomes increasingly 
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TABLE 5.1 

GENERALIZED 1
1 

CENTERING OF THE CHEBYSHEV LOWPASS FILTER 

Nominal Values 

Component 
Case 1 Case 2 Case 3 Case 4 

Xl 0.2251 0.21954 0.21705 0.21530 

Xz 0.2494 0.25157 0.24677 0.23838 

X3 0.2523 0.25529 0.24784 0.24120 

X4 0.2494 0.24807 0.24019 0.23687 

X5 0.2251 0.22042 0.21753 0.21335 

X5 0.2149 0.22628 0.23565 0.23093 

X7 0.3636 0.36739 0. 37212 0.38224 

Xa 0.3761 0.36929 0.38012 0.39023 

Xg 0.3761 0.37341 0.38370 0.39378 

XlO 0.3636 0.36732 0.37716 0.38248 

Xll 0.2149 0.22575 0.22127 0.23129 

Yield 49% 78% 80% 84% 

Number of circuits so 100 100 

Starting point Case 1 Case 2 Case 3 

Number of iterations 16 18 13 

CPU time (VAX 8600) 10 sec. 30 sec. 26 sec. 

A uniformly distributed 1.5% relative tolerance is assumed for each 
component. The yield in this table was estimated by Monte Carlo 
analyses with 300 samples. The parameter values in Case 1 were 
obtained by standard filter synthesis (Singha! and Pinel 1981). 
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TABLE 5.2 

GENERALIZED 1
1 

CENTERING OF A MULTI-COUPLED CAVITY FILTER 

Nominal Values 

Component 
Case 1 Case 2 Case 3 

M
1 2 

= M21 
= M55 

= M
5 5 0.93240 0.93795 0. 93728

M23 
= M

3 2 
= M45 

= M54 0.52648 0.51946 0.50747 

M
3 4 

= M43 
0.88160 0.90228 0.92950 

M
1 5 

M
5 1 

0.16173 0.16798 0.26720 

M2s Ms2 -0.44036 -0.46782 -0.54209

n
1 

= n2 1.25824 1. 25778 1.27982

Yield 41% 55% 65% 

Number of circuits 100 100 

Starting point Case 1 Case 2 

Number of iterations 20 17 

CPU time (VAX 8600) 11 sec. 12 sec. 

A uniformly distributed 2.5% relative tolerance is assumed for each 
component. The yield in this table was estimated by Monte Carlo 
analyses with 300 samples. The parameter values in Case 1 were 
obtained by a minimax nominal optimization. 
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significant as the yield is improved (since more functions become 

negative). This technique has been incorporated in our implemen-

tation. More specifically, at the ith iteration, we calculate a 

first-order estimate by 

; j ( � ) = e j ( � - 1 ) + gT ( � - � - 1 ), (5.31)

where � denotes the parameters for the kth circuit at the ith 

iteration and g contains the sensitivities of e
j 

with respect to 

the circuit parameters. If this estimate e
j 

< -6, where 6 is a 

small positive number, then the computation of e
j (�) is saved and 

e
j 

is used as an approximation, otherwise an exact simulation is 

required. The sensitivities g are updated whenever a relevant 

exact simulation is performed or otherwise kept constant. 6 is 

intended as a safe margin to allow for the accumulated errors in 

the first-order estimation. A suitable value may depend on each 

application. In the examples we have set it to 10% of the corres-

ponding specification. The computational saving realized by this 

method can be significant. Without the benefit of this technique, 

it took 203 seconds, instead of 66 seconds, to achieve the same 

result for the first example. 

5.5 CONCLUDING REMARKS 

Realistic approaches to circuit design have been studied in 

this chapter. The common aim of all these approaches has been to 

improve the yield and reduce the production cost in the presence of 

tolerances and uncertainties. The various possible uncertainties 

associated with circuit models at different levels have been iden-
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tified. The concept of multiple circuits has been defined and 

related to yield estimation, design centering, optimal tolerancing 

and tuning. We have also reviewed some important techniques in 

statistical design including the worst-case approach, the simpli

cial and multidimensional approximations, the gravity method and 

the parametric sampling method. 

A generalized 1P centering algorithm has been proposed as a 

natural extension to the 1P nominal circuit optimization and the 

minimax worst-case design. It has provided a unified approach to 

design centering and yield enhancement. The theoretical implica-

tions of the proposed formulation have been discussed. Also, two 

circuit examples have illustrated the practical usefulness of the 

algorithm. The incorporation of suitable simulation saving tech

niques, such as the one that we have introduced, as well as the 

rapid progress in mass computation hardware will certainly further 

reduce the expense of statistical design. 



CHAPTER 6 

A MULTI-CIRCUIT APPROACH TO DEVICE MODELING 

6.1 INTRODUCTION 

Device modeling essentially involves approximating measured 

responses of a system by calculated responses using a suitable 

model. It is also related to verifying a proposed model based on 

its consistency with respect to physical perturbations. Also, we 

may employ modeling techniques to establish an analytical relation

ship between the physical parameters and the parameters of an 

equivalent circuit. 

The traditional approach to modeling is almost entirely 

directed at achieving the best possible match between the measured 

and calculated responses. When the presence of uncertainties 

causes an imperfect match between model responses and measurements 

or a family of nonunique solutions (with respect to the responses 

selected), the traditional approach has serious shortcomings. 

Recently, a novel approach to robust device modeling was 

presented by Bandler, Chen and Daijavad (1986b). It exploits the 

unique properties of the 11 optimization and employs the concept of

simultaneous processing of multiple circuits. It has the advantage 

of establishing not only a good circuit model whose responses match 

as much as possible the measurement, but also a reliable measure of 

the self-consistency of the model. 

This chapter is devoted to describing the motivation, the 

116 
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theoretical foundation and the practical applications of this new 

approach. The unique properties of the 11 optimization are

discussed and a superlinearly convergent 11 algorithm described by

Bandler, Kellermann and Madsen (1987) is employed. We show that 

the use of multiple circuits may increase the identifiability of a 

problem, leading to the identification of a unique set of model 

parameters. An illustrative simple RC circuit as well as an actual 

FET device are provided as examples. 

The new approach is also applied to automatic model verifi

cation, where the consistency of the identified model parameters 

with respect to physical perturbations is checked. If successful, 

the method provides confidence in the proposed model; otherwise it 

proves the model's incorrectness. This technique is demonstrated 

by an 8th-order multi-coupled cavity filter example. 

The multi-circuit formulation is also employed to establish 

a local relationship between the physical parameters and the equi-

valent circuit parameters for a 6th-order cavity filter. Such an 

experimental relationship will be extremely useful in guiding post

production tuning of an actual device. 

6.2 EXTENSION OF THE NOMINAL DESIGN CONCEPT TO MODELING 

Traditionally, the approach of nominal design has been 

extended to solving modeling problems. A set of measurements made 

on the physical system, denoted by ¥1, serves as single specifica-

tions. Error functions are created from the differences between 

the calculated responses F(</R) and the measured responses ¥1, 
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similarly to (4.3), as 

e
j 

(</i1) = w
j I Fj 

(</i1) - F1 I , j 1, 2, ... , m. (6.1) 

By minimizing an l
P 

norm of the error functions, we attempt 

to identify a set of model parameters <JJ1 such that F((/J') best 

matches F1. 

Such a casual treatment of modeling as if it were a special 

case of design is often unjustifiable, due to the lack of conside-

ration to the uniqueness of the solution. In circuit design, one 

satisfactory nominal point, possibly out of many feasible solutions 

(i.e., not unique), will suffice. In modeling, however, the uni-

queness of the solution is almost always an essential part of the 

problem. Affected by the uncertainties at many levels as well as 

unavoidable measurement errors, the model obtained by a nominal 

optimization is often nonunique and unreliable. 

6.3 

6.3.1 

MODELING USING MULTIPLE CIRCUITS 

Uncertainties that Affect Modeling 

For the convenience of discussion, we replicate the nota

tion introduced in Section 5.2.1 for tolerances and uncertainties 

as 

F1 F1 , 0 ( <IP ) + Li¥1 , 

<IP <IP , 0 + Lic/P ,

pi pi, o (FL ) + fipi ,
(6.2) 

FL FL , O (qJl) + LiFL ,

qP qP, O (qf) + Li</P , 

<If <If , 0 + Lic/f ,
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where the superscript O identifies a nominal value and the prefix Li 

indicates an associated uncertainty or inaccuracy. 

The adverse effect of these uncertainties on modeling can 

be discussed under the following categories. 

1) Measurement errors will inevitably exist in practice, as

represented by Lipf in (6.2). 

2) Even without measurement errors, the calculated response

F8' 0 may never be able to match pf, 0 perfectly, due to, e.g. , the

use of a simulation model of insufficient order or inadequate 

complexity. Such an inherent mismatch is accounted for by LiF8. 

3) Even if neither Lipf nor LiF8 exists so that FH , 0 = pf, we

may still not be able to uniquely identify the model parameters 

from the set of measurements that has been selected. This happens 

when the system of (generally nonlinear) equations F8, 0 (ct,) - pf= 0 

is underdetermined. It typically occurs when, for any reason, many 

internal nodes are inaccessible to direct measurement. An over-

complicated equivalent circuit model is often at the heart of this 

phenomenon. 

4) The parasitic effects that are not adequately modeled by

</11 contribute to the uncertainty LiFL , which becomes another source 

of interference with the modeling process. 

Consider the case in which modeling is applied to obtain a 

suitable (/, such that F8 ((/,) approximates pf. The nominal circuit 

approach, as described in Section 6. 2, may be able to cope with 

measurement errors and the uncertainties due to the use of a lower

order model, identified by 1) and 2), and comes up with a (/,  which 
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minimizes �¥1 and �pH in a certain sense. But it will not be able 

to overcome the problem of nonunique solutions. 

Often in practice, we are not able to determine unambiguou

sly the identifiability of a system and the uniqueness of a model, 

because all the uncertainties described above can be present at the 

same time. There will be, typically, a family of solutions which 

all produce reasonable and similar matches between the measured and 

the calculated responses. We can not, therefore, rely on any par

ticular set of parameters. 

6.3.2 Multiple Circuits and Common Variables 

The use of multiple circuits in device modeling was origi

nally considered by Bandler, Chen and Daijavad (1986b). Multiple 

circuits are created by making deliberate adjustments on some of 

the physical parameters. For example, we can change the biasing 

conditions of an active device and obtain multiple sets of measure

ments. By doing so, we introduce perturbations to the model which 

cause some parameters in </) to change by an unknown amount. For 

this approach to be successful, each physical adjustment should 

produce changes in only a few parameters in</). 

Although we do not know the changes in</) quantitatively, it 

is often possible to identify which model parameters may have been 

affected by each of the physical adjustments. Such a qualitative 

knowledge may be apparent from the definition of the model or may 

come from practical experience. In the attempt to process the 

multiple circuits simultaneously, we define those model parameters 
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that are not supposed to change as common variables and, at the 

same time, allow the others to vary between different circuits. 

By doing so, we subject the solution to the anticipated topological 

constraints. In other words, from a family of possible solutions 

we give preference to the one that exhibits the desired consistency 

with respect to physical perturbations, thus increasing the reliab

ility of the result. 

To formulate this mathematically, let 

(6.3) 

where '/1c contains the common variables and� contains the indepen

dent variables, i.e. , model parameters that are allowed to vary 

between the kth circuit and the reference circuit � . 

define the optimization variables by 

X 

and state the optimization problem as to 

minimize U(x) = llfllP , 
X 

where 

We then 

(6.4) 

(6.5) 

(6.6) 

The concept of common and independent variables is depicted 

in Fig. 6 .1. 

Now, suppose that we do not have a clear idea as to which 

model parameters may have been affected by the adjustment on </f1. 
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1 

<Ao¢�¢; 
\fl 

(a) 

______ ...__ __ --l._/4
1 

¢� 
\fl 

(b) 

Fig. 6 .1 An illustration of common and independent variables in 
multi-circuit modeling. Three circuits are created by 
making two physical adjustments. Assume that we know 
that ¢1 should not be affected by the physical adjust
ments. c

0 , c
1 and c

2 are contours of the error functions 
corresponding to the three circuits. 
(a) The three circuits are processed separately. ¢£, ¢l
and¢! turn out to have different values (which is incon
sistent with our knowledge) due to uncertainties.
(b) Consistent results are obtained by defining ¢1 as a
common variable and processing three circuits simulta
neously.
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In this case, we let 

X (6. 7) 

and change the objective function to an 1
P 

norm of 

e(</i') 

f= (6.8) 

where a
1

, a2, ... , a
K 

are nonnegative multipliers (weights).

Using this formulation, while minimizing the errors e, we 

penalize the objective function for any deviates between <If and <ti',

since our only available knowledge is that only a few parameters in 

<If should have any significant changes. 

6.3.3 Computational Considerations 

A brief discussion on computational considerations, related 

to coordinating the multi-circuit formulation with an optimizer, is 

in order. In the process of solving the optimization problem given 

by (6.5), a new set of values is obtained for x at each iteration. 

The following steps should then take place. 

Step 1 Recover from x the multiple sets of circuit parameters, 

name 1 y <If , k = 1 , 2 , ... , K.
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Comment If common variables are defined as in ( 6. 4) , then ( 6. 3) 

should be used to construct t/i. Otherwise, qi- is simply a 

subset of x, as in (6.7). 

Step 2 Perform K circuit simulations to obtain the model responses 

F(</i-) as well as their sensitivities 8F/8</i-. 

Step 3 From the calculated and measured responses formulate the 

error functions e(</i-), and from the sensitivities of F 

formulate the Jacobian matrices Jk = [aeT (qi-)/8</i-] T . 

Step 4 Construct the multi-circuit error functions f according to 

( 6. 6) or ( 6. 8) as appropriate. The Jacobian of f with 

respect to x is given by 

if (6.6) is used, where Ak = [8((/i)T /ax] T , k = 1, ... , K, 

are constant index matrices. If (6.8) is used, then 

J
O 

0 0 0 

8fT 0 0 0 JK

[-] T 

ax -a11 a11 0 0 

-a
K

l 0 0 a
K

l 

where the multipliers ak are defined in (6.8). 

Usually, the values of f and its Jacobian obtained after 

these steps are sufficient for the optimizer to proceed with the 

next iteration. Here, we have assumed that exact network sensiti

vities are made available using, e.g., the approach described in 
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Chapter 3. Efficient methods of gradient approximations will be 

presented in Chapter 7. 

6.3.4 Exploiting the Unique Property of the 1
1 

Optimization 

The use of the 1
1 

norm as compared to the other norms has a 

distinct property that some large components off are deemphasized, 

i.e., at the solution it allows for a few f
j 

's which are much

larger than the others. This means that a few gross measurement 

errors are better tolerated by the 1
1 

than any other norm, as has 

been discussed by Bartels and Conn (1981). Furthermore, in the 

context of this chapter, the 1
1 

norm is particularly suitable for 

the formulation given by (6.8). An 1
1 

solution is most likely to 

produce fewer deviates between <Ji- and c/P, which is consistent with 

our assumption that only a few model parameters should change due 

to a deliberate adjustment on the physical device. 

To illustrate the above assertion, consider the example 

used by Bandler, Chen and Daijavad (1986b). We wish to find the 

rational approximant of the form 

X
1 

+ x
2
w + x

3
w 2

K(x) (6.9) 
1 + X

4
W + x

5
w2 

to the function Jw in the interval w e [ 0, 1] using 51 uniformly 

spaced sample points. Without errors in the data, both the 1
1 

and 

1
2 

solutions to this problem give a virtually perfect match to the 

actual function (/w) over the given interval. Let this be case A. 

We now introduce a few large deviations in the actual function in 

two separate cases. In case B, Jw is replaced by zero at five 
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points, namely w = 0.2, 0.4, ... , 1.0. In case C we use zero at 0.4 

and 0.8, and one at 0.2 and 0.6. The 11 solutions in these two

cases are consistent with the 11 solution in case A. On the other

hand, the presence of large deviations has severely affected the 1
2 

solutions, as clearly shown in Fig. 6.2. 

This unique property of the 11 optimization has also found

applications in fault-isolation in analog circuits (Bandler and 

Salama 1985a) as well as the functional approach to postproduction 

tuning (Bandler and Salama 1985b). 

6.4 

6.4.1 

PRACTICAL APPLICATIONS 

Unique Identification of Model Parameters 

The concept of parameter identifiability of a system has 

been discussed by Bandler and Salama (1985a) in the context of 

fault diagnosis in analog circuits. We can apply this concept to 

device modeling. 

A measure of identifiability of (/J from the system 

e((/J) = F((/J) - F1 = 0 

is determined by testing the rank of the Jacobian matrix 

J = [ 8eT /8(/J] T = [ 8FT /8(/J] T • 

(6.10) 

(6 .11)

If J is not of full rank, then (/J is not uniquely identifiable from 

the set of measurements that has been selected. Usually J has more 

rows than columns (i.e., there are more functions than variables), 

therefore the rank of J is equal to its column rank. 

To emphasize the partitioning of the parameters into common 

and independent variables, as in (6.3), we define 
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Fig. 6.2 Approximations using i1 and 12 optimization. The solid 
line is the actual function. Diamonds identify the 
approximation using 11 and circles represent approxima
tions with 12. Stars represent data points after large 
deliberate deviations. (a) and (b) correspond, respec
tively, to cases B and C. 
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J
C 

( "'c '"'a ) = [ a FT / acpc ] T ' 

J
a 

((/,c ,(/,
a

) = [8FT /8(/,
a 

] T , 
(6.12) 

The Jacobian matrix corresponding to the multi-circuit 

formulation, namely G = [8fT /8x] T with f and x given by (6.4) and 

(6.6), can be constructed as 

0 

G 

0 

0 

0 

0 

0 

where the superscript identifies different circuits. 

(6.13) 

Assuming that a unique solution is not possible by using a 

single circuit, i.e., the matrix J is rank-deficient, we show two 

necessary conditions for G to be of full rank. If these conditions 

are met, we may be able to increase the identifiability of the 

system under consideration by using multiple circuits. 

Necessary Condition 1 

The matrices J! = J
8

((/,0 ,#a) must have full rank for k= 0, 

1, ... , K. Otherwise, suppose that for at least one k J! is rank-

deficient, then the corresponding submatrix of G, namely 

0 

0 

0 

0 

is rank-deficient and so is the matrix G. 
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This necessary condition imposes a restriction on the se

lection of independent variables. It requires that each single set 

of measurements must be at least sufficient to identify� (with t 

fixed). 

Necessary Condition 2 

The matrix J
0

(q,0
,q,a

) must be a function of q,a. Otherwise,

the matrices J�, J�, ... , J� would be identical and, consequently, 

the following submatrix of G 

Jl 0
C 

would have the same rank as [ J� J� ] which is the Jacobian for a 

single circuit. In that case, G would be rank-deficient if J is. 

The second necessary condition states mathematically the 

fact that if the designated common and independent variables are 

completely decoupled with respect to the measurements, then we can 

not expect to increase the identifiability by using multiple cir-

cuits. This is a mild condition since in most cases the network 

responses are nonlinear functions in circuit parameters. 

We now illustrate the theory by a simple RC circuit as 

shown in Fig. 6.3 (Bandler, Chen and Daijavad 1986b, also Daijavad 

1986). The parameters to be identified are q, = [R
1 

C R2] T . If we 

have measurements only on 

(6.14) 
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Fig. 6.3 Simple RC network. 
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where s = jw, it is clear by inspection that� can not be uniquely 

determined regardless of the number or choice of frequency samples, 

simply because R1 and R2 are observed in exactly the same way by

V
2• 

Formally, we define the Jacobian matrix as 

8F 

ac 

8F 
] 

8R
2 

where F contains V
2 

evaluated at m frequencies. 

(6.15) 

We find that J can not have a rank greater than 2, since 

8F R
2 8F 
2 

------ - - --

R2 1 ac

0. (6.16) 

Therefore, a unique identification is impossible using only V
2

• 

Adjusting R2 by an unknown amount, we create a two-circuit

modeling problem in which the variables, i.e., the parameters to be 

identified, are x = [R� c
0 Rg R}] T . 

We proceed to show that in this example the necessary 

conditions for a unique parameter identification are satisfied. 

The first necessary condition requires that for each k (k 

0 and 1 in the present example) J! has full rank. Since 
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s
1

CR
1
(l+s

1
CR

1 ) 

[l+s
1 

C(R
1 

+R�) ] 2 

[ 1 +sm C (R
1 

+R� ) ] 2 

(6.17) 

is a column vector, it has a rank of one (full rank) if nonzero 

frequencies are used. Also, from (6.15) it is quite obvious that 

(6.18) 

is a function of R
2

, hence the second necessary condition is also 

satisfied. Bandler, Chen and Daijavad (1986b) have shown that by 

using two different frequencies a full rank Jacobian G can be 

obtained, hence R�, c
0 , R� and R½ can be uniquely identified from 

the measurements on V
2

• This simple example has demonstrated the 

potential of improving identifiability by using multiple circuits. 

In practice, especially for a complicated circuit, we may 

not observe a clean-cut deficiency in identifiability. 

difficulties may arise from an ill-conditioned Jacobian. 

Still, 

In such 

cases we may be able to formulate a better conditioned problem by 

the multi-circuit approach. 

6.4.2 Multi-Circuit Modeling of a FET Device 

The development of an equivalent circuit model for FET 

devices is an important part of the design process of monolithic 

microwave integrated circuits (MMIC). The small-signal equivalent 

circuit model shown in Fig. 6.4 is widely used in the literature 
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Fig. 6.4 Small-signal equivalent circuit model for a FET device. 
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(e.g., Curtice and Camisa 1984) and by commercial packages like 

TOUCHSTONE (1985) and SUPER-COMPACT (1986). Practical modeling of 

FET devices has been frequently troubled by nonunique solutions. 

To demonstrate the multi-circuit modeling approach, we 

utilize three sets of actual measurements on scattering parameters 

of a FET device which were taken at 17 frequency points from 2GHz 

to 18GHz, 1GHz apart, under the following biasing conditions (Pucel 

1986). 

0. OOV, Id s 

-1.74V, Id s 

-3.lOV, Id s 

Eleven model parameters, namely 

177mA. 

92mA. 

37mA. 

are taken as variables. The first four parameters are considered 

to be bias insensitive and, therefore, treated as common variables. 

Following formulas (6.3) and (6.4), we have 

X - [: l (6.19) 

The vector of reference parameters actually has two parts as 

(6.20) 

where <Pc consists of the common variables as 

<Pc 
= [R

g 
Rd L

s 1"] T (6.21) 

Also, for k= 0, 1, 2, we have 

41a = [R� s 
R� Rk c� s 

c�
g 

c� s �]T,
1 s 

(6.22) 
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The total number of variables is 25. 

For each circuit and each frequency, by treating the real 

and imaginary parts of the four scattering parameters separately, 

we created 8 discrete error functions. 

error functions was considered. 

Overall, a total of 408 

The superlinearly convergent 1
1 

algorithm described by 

Bandler, Kellermann and Madsen (1987) was utilized to solve the 

resulting optimization problem. The identified model parameters 

are given in Table 6.1. The match between the model responses and 

the measurements, at both the starting point and the solution, is 

shown in Figs. 6.5, 6.6 and 6.7. Here, the exact sensitivities of 

the scattering parameters as required by the optimization algorithm 

were calculated following the approach described in Chapter 3. In 

Chapter 7 we will solve the same problem without requiring exact 

sensitivities but, instead, utilizing approximate gradients. 

6.4.3 Model Verification for a Multi-Coupled Cavity Filter 

The multi-circuit approach can also be applied to model 

verification. This is typically related to cases where the para-

sitic uncertainty �F1 (Section 6. 3 .1) has put the validity of a 

model in doubt. Instead of explicitly defining common and indepe

ndent variables, we use the formulation given by (6.7) and (6.8), 

where all the parameters are allowed to vary and the deviation of 

each parameter from its reference value forms a penalty term in the 

11 objective function. By this formulation, our confidence in the

model is strengthened if the result not only produces a reasonable 
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TABLE 6.1 

PARAMETER VALUES OF THE FET MODELS 

Solution 

Parameter Starting Point 

R
g 

(OH) 

R
d (OH) 

R
ds (OH) 

R
i (OH) 

R
s (OH) 

L
s (nH) 

C
g s (pF) 

C
dg 

(pF) 

eds (pF) 

&n (/OH)

T (ps) 

Circuit 

Circuit 

Circuit 

1.0 

1.0 

143.0 

1.0 

1.0 

0.02 

1.4 

0.07 

0.4 

0.09 

7.0 

Circuit 1 Circuit 2 Circuit 3 

2.6025 2.6025 2.6025 

3.7630 3.7630 3.7630 

199.1591 163.8249 163.1911 

0.0099 0.0999 0.3891 

1.0016 0.9220 0.6482 

0.0039 0.0039 0.0039 

0.7181 0.4417 0.3454 

0.0306 0.0475 0.0609 

0.2228 0.2229 0.2151 

0.0696 0.0521 0.0410 

3.9558 3.9558 3.9558 

Biasing Conditions 

1: Vds=4V Vgs= 0.00V Ids=l77mA 

2: Vds=4V Vgs=-1. 74V Ids= 92mA 

3: Vds=4V Vgs=-3.lOV Ids= 37mA 

The three circuits start with identical model parameter values. 
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MS11 MS21 MS12 MS22 

AS11 AS21 AS12 (a) 

MS11 MS21 MS12 MS22 

AS11 AS21 AS12 (b) 

Fig. 6.5 The scattering parameter match between the FET model and 
the measurements at (a) the starting point and (b) the 
solution, with the biasing conditions being Vds

= 4V, Vgs
= OV and Ids

= 177mA.
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MSU MS21 MS12 MS22 

/ 

ASU AS21 (a) 

\ 

MSU MS21 MS12 MS22 

AS11 AS21 AS12 (b) 

Fig. 6.6 The scattering parameter match between the FET model and 
the measurements at (a) the starting point and (b) the 
solution, with the biasing conditions being Vds

= 4V, Vgs
= -1.74V and Ids

= 92mA. 
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MS12 MS22 

MS12 MS22 

I 
� 

(a) 

(b) 

Fig. 6.7 The scattering parameter match between the FET model and 
the measurements at (a) the starting point and (b) the 
solution, with the biasing conditions being Vds = 4V, Vgs
= -3.lV and Ids = 37mA.
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match between the measured and calculated responses, but also 

demonstrates consistency with respect to the physical adjustments. 

Otherwise we should probably reject the current model and consider 

a more adequate one. 

As a practical example, consider an 8th-order multi-coupled 

cavity filter centered at 11902.5MHz with a 60MHz bandwidth. The 

general structure and equivalent circuit model of these filters 

have been described in Chapter 4. The return loss and insertion 

loss measurements of an optimally tuned filter and the same filter 

after an adjustment on the iris which dominantly controls coupling 

M
23 

were provided by ComDev Ltd. (1985). Based on the physical 

structure of the filter, screw couplings M12 , M34 , M56 and M
78 

and 

iris couplings M23 , M45 , M67 and M58 , as well as all cavity reso

nant frequencies and input/output transformer ratios are considered 

as possible nonzero parameters to be identified. 

In the first attempt, the stray coupling M36 
(a parasitic

element) was ignored. The parameters of the equivalent circuit 

model, which did not include M36, were identified from the measure

ments and summarized in Table 6.2. An examination of the results 

shows no apparent trend for the change in parameters, i.e. , it 

would have been impossible to guess the source of perturbation (an 

adjustment on the iris controlling M23 ) from these results. This 

kind of inconsistency would not have been discovered if only a 

single circuit had been considered. 

Consequently, the inconsistent model was rejected. A new 

model which included the stray coupling M36 was introduced and we
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TABLE 6.2 

IDENTIFIED PARAMETER VALUES FOR THE 8TH-ORDER FILTER 

M3s ignored M3s present 

Coupling Original Perturbed Original Perturbed 

M11
-0.0306 -0.1122 -0.0260 -0.0529

M22 0.0026 -0.0243 0.0354 0.6503*

M33 -0.0176 -0.0339 -0.0674 -0.6113*

M44 -0.0105 -0.0579 -0.0078 -0.0151

M55 -0.0273 -0.0009 -0.0214 0.0506

Mss -0.0256 0.0457 -0.0179 -0.0027

M77 
-0.0502 0.0679 -0.0424 -0.0278

Maa -0.0423 0.0594 -0.0426 -0.0272

M12 0. 7789 0.7462 0.3879 0.2876*

M23 0.8061 0.8376 0.9990 0. 8160*

M34 0.4460 0.4205 0.0270 -0.1250*

M45 0.5335 0.5343 0.4791 0.5105

Mss 0. 5131 0.5373 0.5006 0.5026

M67 
0.7260 0.7469 0.6495 0.6451

M7a 0.8330 0.8476 0.8447 0.8463

M14 0.3470 -0.3582 -0.7648 -0.7959

Msa -0.1995 -0.1892 -0.1000 -0.0953

M3s 0.1314 0.1459

Input and output couplings: nf = n� = 1.067 

* Significant change in parameter value.
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processed exactly the same measurements as before. The filter 

parameters identified in this case are also contained in Table 6.2. 

A comparison of the original and perturbed filter parameters shows 

significant changes in M12 , M23 , M34 , M22 and M33 (all related to 

cavities 2 and 3), which is absolutely consistent with the actual 

adjustment. By inspecting the change in model parameters, it is 

possible to deduce which physical parameter has been adjusted. The 

match between the model responses and the measurements is shown in 

Figs. 6.8 and 6.9. 

It is worth mentioning that the calculated responses of the 

inconsistent model, which ignored M36, match the measured responses 

almost as well as the correct model. This justifies the essence of 

the multi-circuit approach, which attempts to identify the most 

consistent set of parameters among many that produce a reasonable 

and similar match between measured and calculated responses. 

6.4.4 Modeling of the Relationship Between Physical and 

Equivalent Circuit Parameters 

Another important application of multi-circuit modeling is 

to create analytical formulas which relate the model ct, to the 

physical parameters (/J1. Such formulas will become extremely useful 

in guiding an actual production alignment or postproduction tuning 

procedure. 

A sequence of adjustments on <JJ1 can be systematically made 

and multiple sets of measurements can be taken. By single-circuit 

optimization, these measurements would be processed separately to 
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Fig. 6.8 (a) Input return loss and (b) insertion loss of the 8th
order filter before adjusting the iris. The solid line
represents the model response and the dashed line shows
the measured response.
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Fig. 6.9 (a) Input return loss and (b) insertion loss of the 8th
order filter after adjusting the iris. The solid line
represents the model response and the dashed line shows
the measured response.
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obtain a set of static models. In the presence of uncertainties, a 

single change in </1'1 may seem to cause fluctuations in all the model 

parameters. Obviously, such results are of very little use. By 

including penalty terms in the objective function (6.8) and using 

the 11 optimization, we may be able to suppress small fluctuations

in the model parameter values and emphasize the dominant relation-

ships. In other words, the multi-circuit approach is more likely 

to produce models that are meaningful and useful in practice. 

Simply put, it certainly makes sense to process simultaneously the 

measurements that are made systematically. 

Actually, the variables to be optimized need not always be 

the model parameters. They can as well include the coefficients of 

a proposed formula. 

As an example, consider a 6th-order multi-coupled cavity 

filter centered at 11783MHz with a 56MHz bandwidth. Three coupling 

screws, whose positions are represented as elements of </1'1, were 

adjusted. These screws were assumed to control the couplings M
12

, 

M
3 4 and M5 6 , which are model parameters in (/,. Starting from a

reference position, each screw was adjusted four times, twice in 

the clockwise direction (screw increasingly penetrates the cavity) 

for 90 and 180 degrees, as well as twice counterclockwise. After 

each adjustment, filter responses (input and output return loss, 

insertion loss and group delay) were measured (the measurement data 

was furnished by ComDev Ltd. (1986)). Using the techniques we have 

described, the model parameters were identified. 

The variation of the identified coupling values versus the 
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relative position of the screws is shown in Figs. 6.10, 6.11 and 

6.12 (these figures were originally produced by Daijavad (1986)). 

The correlation between each screw and the coupling it dominantly 

controls is clearly pronounced while fluctuations in other parame

ters are kept minimal. 

6.5 CONCLUDING REMARKS

In this chapter, we have discussed under several categories 

uncertainties which tend to deteriorate the results of modeling. 

We have introduced a multi-circuit approach which, compared with 

the more traditional concept of nominal circuit formulation, is 

more likely to produce consistent and reliable results in the 

presence of various uncertainties. 

The mathematical formulations of the new approach as well 

as some relevant computational considerations have been presented. 

The unique property of the 11 optimization in relation to modeling

has been exposed. A suitable measure of identifiability has been 

defined and two necessary conditions for improving a rank-deficient 

system by using multiple circuits have been developed. Practical 

applications to the unique identification of model parameters, 

model verification and tuning-related modeling have been described 

in detail. These applications have been illustrated and justified 

through significant examples including the modeling of a FET device 

and multi-coupled cavity filters. 
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CHAPTER 7 

OPTIMIZATION WITH INTEGRATED GRADIENT APPROXIMATIONS 

7.1 INTRODUCTION 

Many powerful gradient-based algorithms have been developed 

in recent years for nonlinear optimization. However, the effort to 

extend their application to a wide range of practical problems has 

been frustrated by the requirement of exact gradients of all func

tions with respect to all variables. For some applications, either 

an explicit sens i ti vi ty expression is not available, e.g. , when 

time-domain analysis and nonlinear circuits are involved, or the 

actual evaluation of such an expression is very tedious and time-

consuming, e.g., for large-scale networks. Partly due to these 

difficulties, exact sensitivity calculations have yet to be imple

mented in many general-purpose CAD software packages, although the 

concept of the adjoint network has been in existence for nearly two 

decades and has had success in many specialized applications. The 

inability or inconvenience in calculating the exact derivatives has 

created a gap between the theoretical advances in gradient-based 

nonlinear optimization techniques and their actual implementation. 

With only the function values available, as is the case for 

many CAD packages on the market, one usually resorts to the method 

of perturbations (finite differences) for gradients. However, 

except for rather simple problems, the computational labor for 

estimating gradients entirely by perturbations is very expensive. 

150 
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This chapter addresses itself to a flexible and effective 

approach to optimization with integrated gradient approximations 

(Bandler, Chen, Daijavad and Madsen, 1986, 1987). It is a hybrid 

approach which incorporates the use of perturbations, the Broyden 

update (Broyden 1965) and the special iterations of Powell (1970a). 

Approximations to second-order derivatives have been exten-

sively studied in the context of quasi-Newton methods. Those 

results are not directly applicable to gradient approximations, 

because certain important properties of a Hessian such as symmetry 

and positive definiteness are not generally relevant to a Jacobian. 

Previous work on gradient approximations has been reported 

by Madsen (1975) and Zuberek (1984). They have used the Broyden 

rank-one formula in conjunction with the special iterations of 

Powell in their work. Such an implementation may not be able to 

provide sufficiently accurate results for highly nonlinear problems 

or for certain optimization techniques. In the approach described 

in this chapter, perturbations are integrated in a flexible manner 

to allow regular corrections to the approximate gradients. There

fore, a suitable compromise between accuracy and computational 

labor may be achieved for various applications. We also propose a 

modification of the Broyden update which incorporates a knowledge, 

if available, of the structure of the problem (e.g., one that has a 

sparse Jacobian). 

Suitable methods of integrating gradient approximations 

with an optimization algorithm are also discussed in this chapter. 

A general-purpose transparent interface is described. Specific 
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examples of integrated optimization are provided through a minimax 

and an 11 implementation. The performance of these algorithms is

tested using several standard problems. The practical usefulness 

of the new method is demonstrated through significant and diversi

fied circuit applications, including examples of worst-case design, 

multiplexer optimization, fault location and FET modeling. 

7.2 

7.2.1 

GRADIENT APPROXIMATIONS 

Estimating Gradient by Perturbations 

The first-order derivative of f
j

(x) with respect to x
i 

can 

be estimated by 

af
j 

(x) f
j

(x+hui ) - f
j 

(x) 
---� 

axi 
h 

(7.1) 

where u
i 

is a column vector which has 1 in the ith position and 

zeros elsewhere, as has been consistently used throughout this 

thesis. The accuracy of such an estimate may be improved by using 

a smaller h as well as by averaging the results of a two-sided 

approximation (using both positive and negative perturbations). 

This method has been widely used by commercial packages such as 

TOUCHSTONE (1985) and SUPER-COMPACT (1986), since it is straight 

forward and quite reliable. However, the computational labor 

involved grows in proportion to the dimension of the problem. 

In the new algorithm described in this chapter, perturba

tions are used to obtain an initial approximation to the gradient 

at the starting point of an optimization process, unless such an 

initial approximation is already available (e.g., it may have been 
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stored from a previous optimization) and can be retrieved. During 

the optimization, we may also incorporate a regular use of pertur

bations to maintain the accuracy of gradient approximations at a 

desirable level. 

7.2.2 The Broyden Update 

The Broyden update refers to a rank-one formula proposed by 

Broyden (1965) as 

f(xk+hic) - f (Xie) - Git hie
11i Gk+l Git + (7.2) 

11ihk 

where Gk is an approximation of the Jacobian [afT /8x] T at xk, hie is

an increment vector and Gk+l provides an updated Jacobian. The 

values of the function f at Xie and (xk +hie) are assumed available. 

If these two points (Xie and (Xie +hie)) are iterates of the optimiza

tion algorithm, then the Broyden update requires no additional 

function evaluations, regardless of the dimension of the problem. 

Apparently, the approximate Jacobians generated by the 

Broyden update are in general less accurate as compared with those 

obtained from perturbations. Hence, the optimization may require 

more steps to reach the solution or may not reach the correct solu

tion at all. Broyden (1965) has shown that for quadratic functions 

the Broyden update will converge and will reduce the overall compu

tational effort. Although such properties can not be proved for a 

general nonlinear problem, the Broyden update still provides an 

efficient alternative for approximating derivatives. 

From (7. 2), we can verify that the updated approximation 
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Gk+l satisfies the following equation 

f(Xic) = Gic+1hie (7. 3)

In other words, Gk+l provides a perfect linear interpolation bet

ween the two points x
k 

and (Xie +hie) .

Some difficulties in the application of the Broyden update 

have been observed by many researchers (Powell 1970a, Madsen 1975 

and Zuberek 1984). 

(1) If some functions are linear in some variables and if

the corresponding components of hie are nonzero, then the approxima

tion of constant derivatives are updated by nonzero values. We 

illustrate this difficulty by a simple example. Let f
j 

= xf + 2x
3 

be a function in f. Denote the variables by x = [x
1 

x
2 

x
3

] T and 

the gradient by f� (x) = [ g
1 

g
2 

g
3 

] T . Two components of the gra

dient, namely g
2 

= 0 and g
3 

2, are constants and can be found 

accurately by perturbations. g1 is the only component that needs 

to be updated. Suppose that Xie =  [1 1 l] T , hie= [0.5 0.5 0.5] T and 

a perfect estimation of f� (Xie) is available as [ 2 0 2] T . The 

approximation to f� (xk +hie) , as given by the Broyden update, would

be [2.167 0.167 2.167] T (the true value is [3 0 2] T ). 

(2) Along directions orthogonal to hie the Jacobian is not

updated. Mathematically it can be verified from (7.2) that 

Gic+1P = GicP, for PT hie = 0. (7 .4)

To overcome these difficulties, we implement a weighted 

updating formula and the special iterations of Powell (1970a). 
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7.2.3 A Weighted Broyden Update 

The weighted update is to be applied to the Jacobian matrix 

on a row-by-row basis, i.e., we update the gradient vectors of 

individual functions. The jth row vector of the approximate Jaco

bian, denoted by (gj 
)k , is an approximation to f� (Xie), the gradient

of f
j

. 

Suppose that the Hessian of f 
j 

is available to us and 

denoted by Hj
, then 

f� (xk +hie) � f� (Xie) + Hj 
(Xie) hk . (7. 5)

Analogously to (7. 5), we devise an updating formula to obtain an 

approximation to f� (Xie +hie) as 

(gj 
)k+l = (gj 

)k + a Hj 
(xk) hie. (7. 6)

If we choose the coefficient a as 

a = -------------- (7. 7) 

hi Hj (Xie) hk 

then the linear model as given by (7.3) will be preserved, namely 

(7.8) 

In practice we are very unlikely to have access to the 

Hessian of any f
j

. Even so, two basic facts are obvious: the Hes

sian of a quadratic function is constant, and if f
j 

is linear in x
i 

then the ith row and the ith column of the Hessian contain only 

zeros. Hence, we propose the use of a constant diagonal matrix 

w
ji 

� 0, i = 1, ... , n, (7.9)

where n is the dimension of x. This leads to a weighted Broyden 

update as follows. 
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(gj 
)k + 

f
j (Xie +I\) - f

j (Xie) - (gj 
)ii\ 

(7.10) 
qj k = Wj I\ = [ W j 1 hk 1 • • • W j n hk n ] T • 

The weights w
j

i provide a measure of the linearity of f
j

. 

If f
j 

is linear in x1, we set w
j 1=0, and if f

j 
is nearly linear in 

x
i

, we assign a small value to w
ji

· It should be clear from (7.10) 

that only the relative magnitude of the weights is important, not 

their absolute values. 

Consider the simple example we have used in Section 7.2.2, 

namely f
j

= xf + 2x
3 • Since f

j 
is independent of x2 and linear in 

x
3

, we set w
j 2 = w

j3 
0 and w

j 1 = 1. Under the same conditions as 

in Section 7.2.2, we obtain an approximate gradient using (7.10) as 

[2.5 0 2] T , compared to the result given by the Broyden update as 

[2.167 0.167 2.167] T , and the true gradient [3 0 2] T . 

The assignment of weights requires some knowledge of the 

functional relationship of f
j

(x). Such a knowledge may come from 

experience or may be gained from sensitivity analyses by performing 

a few perturbations. For instance, for a particular circuit, it 

may be known that some designable parameters have little influence 

on the performance function over some frequency or time intervals. 

Using an adaptive method to find Wj 
might be of some theoretical 

interest. But it was felt to be unnecessary and too complicated to 

be practical at the present time. 

The applications of the weighted update to practical cir

cuit optimization are demonstrated later in this chapter. 
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7.2.4 The Special Iterations of Powell 

As has been shown in (7.4), along directions orthogonal to 

I\ the approximate Jacobian is not updated by the Broyden formula. 

If some consecutive steps of optimization happen to be collinear, 

the updating procedure may not converge. Powell (1970a) suggested 

a method which produces strictly linearly independent directions. 

For this purpose, special iterations are introduced which intervene 

between the ordinary iterations of optimization. The increment 

vector of such a special iteration is not calculated to minimize 

the error functions, instead it serves the purpose of improving the 

accuracy of gradient approximations. 

The algorithm for computing the increment vector for a 

special iteration, as derived by Powell (1970a), is given in the 

Appendix. Powell has shown that the application of the Broyden 

update on these specially generated directions is likely to improve 

the accuracy of derivative approximations. 

7.2.5 A Hybrid Approximation Algorithm 

Our hybrid algorithm for gradient approximations consists 

of an initial approximation, the Broyden update, Powell's special 

iterations and regular corrections provided by perturbations. 

At the starting point of optimization, the initial approxi

mate Jacobian G
0 

is usually computed by perturbations. However, G
0 

may be already available, for example, it may have been stored from 

a previous optimization, and can be utilized to avoid unnecessary 

computations. This option would be useful if similar problems are 
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being solved repetitively (e.g., the same circuit is optimized with 

respect to different specifications). The accuracy of G
0 

is not 

very critical to the overall approximation. We have observed for 

some examples that convergence was achieved despite the erroneous 

estimates of G
0

• 

There is little hard evidence as to how frequently the 

special iterations should be used. Numerical experience, ours as 

well as other authors', has suggested the use of a special itera

tion between every two ordinary ones (i.e., every third iteration 

is a special iteration). Also, in our implementation, a special 

iteration is skipped provided that the changes in the functions 

agree fairly well with the linear prediction by the approximate 

gradient. This is considered to be true if 

(7 .11) 

The purpose of this provision is to avoid unnecessary computations. 

Whether perturbations should be used during optimization 

depends on the application. For small or mildly nonlinear prob-

lems, the Broyden update may suffice. For large-scale problems, 

especially in circuit applications where highly nonlinear functions 

are involved, the correction provided by perturbations is likely to 

be necessary. We have incorporated in our algorithm the use of 

perturbations with prescribed regularity, say, at every kth optimi

zation iteration. 

The Broyden update with or without weights, depending on 

whether the necessary knowledge of f(x) is available, is employed 

between perturbations. 
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This hybrid approximation method has proved to be flexible, 

effective and efficient for a large variety of applications. 

7.2.6 Integration with Optimization Methods 

Software for gradient-based optimization typically requires 

a user-defined routine which accepts a set of values for x as input 

and returns the values of f(x) as well as the first-order deriva

tives. 

We have implemented an interface which integrates gradient 

approximations with optimization. Taking a set of values for x 

from an optimizer, it calls a user-defined routine for the function 

values, carries out necessary operations for gradient approxima

tions, and then returns to the optimizer the values of f(x) as well 

as the approximate Jacobian. The interface is transparent to both 

the optimizer and the user-defined simulation routine. The optimi

zer is provided with the required gradients, and the user-defined 

routine (typically a circuit simulation module) works as if the 

optimizer did not require gradients. 

Some sophisticated optimization algorithms have distinct 

stages of operations. Typically, one of the stages is to be 

employed near the solution to accelerate the rate of convergence, 

for which the accuracy of the approximate gradient may become 

critical. Hence, it is desirable to allow the use of different 

approximation schemes at different phases of optimization. This 

and the other options related to gradient approximations (e.g., the 

use of perturbations) should be selected by the user. 
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We illustrate the actual integration of our algorithm 

through two specific implementations for the minimax and the 1
1 

problems, respectively. 

7.3 

7.3.1 

A MINIMAX ALGORITHM USING APPROXIMATE GRADIENTS 

Implementation of a Fortran Subroutine 

The gradient approximations described in this chapter have 

been integrated with the Hald and Madsen (1981) algorithm for the 

minimax problem as 

minimize max {f
j

(x)} (7.12) 

X j 

subject to possible linear constraints. As has been described in 

Chapter 2, the Hald and Madsen algorithm consists of two stages, 

Stage 1 being a trust region Gauss-Newton method which provides 

global convergence and Stage 2 a quasi-Newton method which is 

intended to achieve a fast rate of convergence near a solution. 

The original algorithm requires a user-supplied subroutine 

which calculates the values of the error functions as well as their 

first-order derivatives. This is replaced in the new algorithm by 

an interface which organizes gradient approximations as outlined in 

Section 7. 2. 6. The user's subroutine is required to supply only 

the function values. Also, the user is allowed to specify, via 

common block parameters, whether an initial approximate Jacobian is 

already available and how frequently perturbations should be used 

during optimization. When Stage 2 of the algorithm is activated 

near the solution, it is desirable to acquire and maintain a higher 

accuracy of the approximate gradients. To this end, the user may 
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request intensified corrections be provided by perturbations in 

Stage 2 (at a different rate than Stage 1). 

The complete Fortran implementation is included in the KMOS 

software library which has been described in Chapter 2. 

7.3.2 Performance on Some Test Problems 

A large variety of problems have been solved using the new 

algorithm. 

problems. 

In this section we present the results for some test 

Convergence was achieved for all the test problems. 

More precisely, the solutions obtained using approximate gradients 

agree with those using exact gradients to five significant figures. 

A comparison of computational effort between the new algorithm and 

a method that uses perturbations only is given in Table 7.1. 

Problem Ml 

Consider the classical two-section 10:1 transmission-line 

transformer shown in Fig. 7.1. Originally proposed by Bandler and 

Macdonald (1969), this problem has been widely used to test minimax 

algorithms. The error functions (f
j

) are given by the reflection

coefficient sampled at 11 frequencies normalized with respect to 

1GHz: {0.5, 0.6, 
. . . ' 1.5}. Madsen and Schjaer-Jacobsen (1976) 

have shown that when we take the characteristic impedances Z1 and

Z2 as variables and keep the lengths 1 1 
and 1

2 
constant at their

optimal values (the quarter wavelength at the center frequency), 

the minimax problem is singular. To solve it effectively, the 

quasi-Newton iteration (Stage 2) of the algorithm is necessary. 

Fig. 7.2 illustrates, on a minimax contour diagram, the 
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TABLE 7.1 

COMPARISON OF COMPUTATIONAL EFFORT FOR THE MINIMAX EXAMPLES 

Number of Function Evaluations 

Problem 
Entirely by Perturbations By the New Algorithm 

Ml 24 (8) 18 (10) 

M2 24 (8) 18 (12) 

M3 59 (11) 30 (18) 

M4 84 (11) 66 (41) 

MS 9 (3) 5 (3) 

M6 32 (10) 19 (14) 

M7 29 (9) 14 (11) 

The entries in parentheses are numbers of optimization iterations. 
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. 1 .n 10n 

Fig. 7.1 Two-section, 10:1 transmission-line transformer. 
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Fig. 7.2 Minimax contours for problem Ml (a two-dimensional sin
gular minimax problem arising from optimization of the 
two-section transmission-line transformer). Eight itera
tions using exact gradients are illustrated. 
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optimization process and the solution given by Bandler, Kellermann 

and Madsen (1985) which used exact derivatives. If the gradients 

were estimated entirely by perturbations, 24 function evaluations 

would have to be performed. Using approximate gradients, the solu

tion, shown in Fig. 7.3, required only 18 function evaluations. 

Problem M2 

For the same two-section transformer, we can define a 

regular minimax problem by choosing 2
1 

and i
1 

as variables while 

keeping Z
2 

and i
2 

at their optimal values (Bandler, Kellermann and 

Madsen 1985). Figs. 7. 4 and 7. 5 illustrate, respectively, the 

solution using exact derivatives and the solution using approximate 

gradients. 

Problems M3 and M4 

Two examples are considered of the design of multi-coupled 

cavity filters. These filters have been discussed in general in 

Chapter 4. Example M3 is a 4th-order filter having 4 designable 

couplings. M4 is of 6th-order and has 6 variables. The reflection 

coefficient in the passband is minimized and the transducer loss 

over the stopband is maximized. 

Problems MS, M6 and M7 

This is a test problem proposed by Brent (1972) for which 

the Newton-Raphson method is not globally convergent. We wish to 

solve the system of equations 

4(x1 + x
2

) = 0, 
(7.13) 

(x1 - x
2

)((x1 - 2)2 
+ x�) + 3x1 + Sx

2 
= 0.

We treat h
1 

as a linear equality constraint which can be 
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Fig. 7.3 Problem Ml is solved after 10 iterations of the minimax 
algorithm using approximate gradients. 
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Fig. 7.4 Minimax contours for problem M2 (a two-dimensional regu
lar minimax problem). Using exact gradients, a total of 
8 iterations is required to reach the solution. The 
first 5 iterations are shown. 
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Fig. 7.5 Problem M2 is solved after 12 iterations of the minimax 
algorithm using approximate gradients. The first 8 
iterations are illustrated. 
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handled directly by the minimax algorithm. 

error functions as f1 = h2, f2 = -h2•

We also define two 

The problems MS, M6 and M7 correspond to three starting 

points used to solve (7 .13), namely [2 2] T , [2 Q] T and [2 l] T , 

respectively. 

7.3.3 Worst-Case Design of a Microwave Amplifier 

The worst-case fixed tolerance design of a microwave ampli-

fier is considered. Section 5.3.1 has addressed worst-case design 

in general. The amplifier, as shown in Fig. 7.6, consists of an 

NEC70000 FET and five transmission-lines. The FET is characterized 

by tabulated scattering parameters provided by the manufacturer 

(see TOUCHSTONE 1985). The design variables are the characteristic 

impedance Z and the lengths i
i 

of the transmission-lines. The 

design specifications are given by 

7.0SdB � 20loglS
21

1 � 8.2dB, for w
j 

= 6, 7, ... , 18GHz. 

Assuming a five percent tolerance associated with each 

length i
i

, we seek an optimally centered design through a minimax 

optimization, as 

minimize max max {f
j

(c/f)} 
<111 j k 

(7 .14) 

where the error functions f
j 

, j = 1, 2, ... , 26, are derived from 

the upper and lower specifications at 13 frequency points. The 

vertices of the tolerance region are considered as candidates for 

the worst cases, denoted by c/f. 

The worst-case design was accomplished by two phases of 

optimization. In the first one, we predicted an initial set of 
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NEC70000 

Fig. 7.6 A microwave amplifier. 
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worst-case vertices by first-order changes. For each f
j

, a � was

defined by 

where €
i 

is the tolerance associated with ¢
i

. The derivatives at 

the starting point, which were also required for gradient approxi-

mation, were estimated by perturbations. Consequently, 26 worst 

cases (one for each f
j

) were considered and the minimax problem 

minimize max { f
j 

(�)}

qi> j 

(7.16) 

was solved. At the solution, by using (7.15) with respect to the 

new nominal point, we found that 10 of the worst cases had changed 

(i.e., the signs of some 8f
j

/8¢
i 

had changed). The new vertices 

were added to the worst-case set. The corresponding old vertices 

were kept, instead of replaced, in order to stabilize the algori-

thm. We had, therefore, a total of 36 worst cases. A second 

optimization was performed and at the solution the worst-case set 

was found to be complete (i.e., no more sign change in (7.15)). 

The nominal parameter values at the starting point and the 

final solution are given in Table 7.2. The total number of func-

tion evaluations is 280, opposed to 585 required if perturbations 

were used throughout the optimization. Fig. 7.7 depicts the worst

case envelop at the solution. 

7.3.4 Design of a 5-Channel Multiplexer 

Manifold multiplexer optimization has been discussed in 

Section 4.4, where a 16-channel contiguous band multiplexer was 

presented as an example. 



172 

TABLE 7.2 

PARAMETER VALUES OF THE MICROWAVE AMPLIFIER 

Parameter Starting Point Solution 

,el 52.96 69.01 

,e2 148 .13 152.01 

13 26.80 18.48 

14 24.01 5.10 

15 46.63 36.49 

z 81. 27 126.39 

The starting point is a minimax nominal design. 
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Fig. 7. 7 Worst-case envelope for the amplifier response at the 
centered solution. 
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A minimax solution of a 5-channel 11GHz noncontiguous band 

multiplexer was given in detail by Bandler, Kellermann and Madsen 

(1985). To obtain the exact sensitivities required, the theory due 

to Bandler, Daijavad and Zhang (1986) was implemented in a computer 

program which has taken months of effort to develop and test. 

Furthermore, because the sensitivity expressions depend highly on 

the circuit structure and vary from component to component, every 

change to the problem, such as assigning different variables, 

requires expert modification to the software. In fact, sensitivi

ties with respect to all possible variables were computed even 

though some of them have not been actually used, otherwise the 

coding scheme would have become unmanageable. Large amounts of 

computer memory were required to store various adjoint solutions 

and intermediate expressions. 

By utilizing our gradient approximation, it is possible to 

efficiently design a multiplexer without all these troubles asso

ciated with computing the exact sensitivities. The complexity and 

size of the program can therefore be considerably reduced. It is 

obvious that to evaluate responses alone is more straightforward 

than to evaluate responses and sensitivities simultaneously. 

The 5-channel multiplexer can be an excellent illustration 

of efficient gradient approximations for two reasons. First, it 

involves 75 variables and, therefore, to rely on perturbations 

would be prohibitively expensive. To be more specific, suppose 

that we use the initial parameter values and specifications sugges

ted by Bandler, Kellermann and Madsen (1985). The multiplexer res-
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ponses at the starting point are depicted in Fig. 7.8. An optimi

zation after 50 iterations resulted in the responses of Fig. 7.9 

(45 seconds on the FPS 264 via IBM 4381), when exact sensitivities 

were provided. To reach a similar result relying on perturbations 

for gradients, we would have to compute multiplexer responses 3800 

times (SO x 76). We will show that efficient gradient approxima

tions reduce the number of response evaluations significantly. 

Also, this example is naturally suited for the use of the 

weighted Broyden update described in Section 7.2.3. From Fig. 7.9 

it is intuitively obvious that the response functions at lower 

frequencies should be almost independent of the variables that are 

related to the filters of channels 1 and 2 (channel 1 has the 

highest center frequency). Similarly, the responses at higher 

frequencies are almost independent of the variables related to the 

filters of channels 3, 4 and 5. We will show that the use of 

appropriate weights improves the performance of the optimization. 

The center frequencies and bandwidths of the five channels 

are given in Table 7. 3. In the following experiments, all the 

channel filters start with the same 6th-order coupling matrix: 

0 0.62575 0 0 0 0 

0.62575 0 0.57615 0 0 0 

0 0.57615 0 0.32348 0 -0.74957 
K= 

0 0 0.32348 0 1.04102 0 

0 0 0 1.04102 0 1.04239 

0 0 -0.74957 0 1. 04239 0 

The filters are lossy with an estimated Q factor of 12000. The 
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TABLE 7.3 

MULTIPLEXER CENTER FREQUENCIES AND BANDWIDTHS 

Channel 

1 

2 

3 

4 

5 

Center Frequency (MHz) 

11618.5 

11495 

11155 

11075 

10992.5 

Bandwidth (MHz) 

154 

76 

76 

76 

81 
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initial spacing for the waveguide section associated with each 

channel is set equal to half the guide wavelength evaluated at the 

center frequency of the corresponding channel. The input and out

put transformer ratios start from nf = 0.68820 and n� = 2.04417. 

A lower specification of 20dB is imposed on the common port 

return loss, for which a total of 52 frequency points is used. 

These points are spaced 10MHz apart in the passband of each channel 

with additional single frequencies at the crossover of two conti-

guous channels. A lower specification of 20dB on the transition 

band insertion loss is also imposed at frequencies of 10935, 11210, 

11215, 11440, 11442, 11712 and 11725MHz. Table 7.4 summarizes the 

parameter values of the solution obtained using exact gradients. 

Experiment 1 

In the first experiment, perturbations were used only at 

the starting point but not during the optimization. The approxi

mation of gradients relied on the Broyden update with special 

iterations, which was similar to the methods of Madsen (1975) and 

Zuberek (1984). The optimization stopped after 266 response eva

luations (81 seconds on the FPS 264), of which 75 were used for 

the initial perturbations. The responses at this solution as shown 

in Fig. 7.10 are obviously not as good as the ones shown in Fig. 

7.9. The optimization has stopped prematurely. This experiment 

has demonstrated that the Broyden update may not be sufficient for 

large-scale and/or highly nonlinear problems. 

Experiment 2 

In a second experiment, regular corrections were provided 
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TABLE 7.4 

MULTIPLEXER PARAMETERS OPTIMIZED USING EXACT GRADIENTS 

Parameter Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 

M
11 

-0.0417 0.2194 -0.0859 0.0454 0.0459 

M
22 

-0.0708 0.0301 -0.0596 -0.0098 0.0310 

M33 -0.0209 -0.0215 -0. 0119 -0.0097 0.0069 

M44 -0.0196 -0.0621 0.0158 -0.0121 -0.0070

M55 0.0414 -0.0172 0.0121 0.0023 0.0141

M66 0.0402 0.0117 0.0339 -0.0058 0.0104

M
12 

0.7598 0.7383 0.7091 0. 6115 0.6592

M
2

3 0. 5723 0.6096 0.5845 0.5551 0.5873

M34 0.4239 0.4221 0.4086 0.3048 0.3644

M3s -0.5326 -0.6346 -0.6021 -0.7519 -0.6948

M45 0. 8971 1.0266 0.9916 1.0317 1.0468

M55 1.1023 1.1518 1.1715 1.0558 1.1186

Ill 
1.0547 0.9358 0.9343 0.8188 0.8031

Il2 
1. 4350 1.4311 1.4286 1.4153 1.4120

1 0.7033 0.6039 0.9219 0.7191 0.7295
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by perturbations for every 20 iterations. After 500 response 

evaluations, of which 375 were used for perturbations, we obtained 

the responses shown in Fig. 7. 11. Continuing the process for 

another 500 response evaluations the responses shown in Fig. 7.12 

were achieved, which are as good as the ones in Fig. 7.9. 

7.5 summarizes the parameter values of the final solution. 

Table 

From 

the starting point, a total of 1000 response evaluations (298 

seconds on the FPS 264) was performed. Recall that 3800 response 

evaluations would be required if the gradient calculations were 

simply replaced by perturbations. 

Experiment 3 

Experiments one and two have both used the original Broyden 

update. Our third experiment demonstrates the weighted update 

described in Section 7.2.3. For this formula, a weight w
j

i is set 

to zero when we know that a function f
j 

is almost independent of 

a variable x
i 

. For instance, the insertion loss of channels 3, 4 

and 5 and the common port return loss over the passbands of these 

channels are almost independent of the filter couplings in channels 

1 and 2. Similarly, the responses within the frequencies of chan

nels 1 and 2 are almost independent of the filter couplings in 

channels 3, 4 and 5. 

to zero. 

Therefore, we set the corresponding weights 

Utilizing the weighted update, we optimize the multiplexer 

without any regular correction by perturbations. The responses 

shown in Fig. 7. 13 were obtained after 500 response evaluations 

(166 CPU seconds on the FPS 264). By comparing this result with 



Oj "'-\- ...... -----.----...? ""-- ,? I 

rn 

0 

Ul 
Ul 

5 

10 

0 15 

_J 

z 

0 
H 

I-
er 
w 

U) 

z 
H 

0 
z 
<{ 

z 

20 

25 

30 

35 

er 40 

1-

w 
er 45 

50 ....... -'---'1,..,4,.---..a..t---------..----_.....--__,_.,._ ___________ .,.... _____________ ...

10880 10960 11040 11120 11200 11280 11360 11440 11520 11600 11680 11760 11840 

FREQUENCY (MHZ) 

Fig. 7.11 Responses of the 5-channel multiplexer obtained after 500 response evalua
tions. Approximate gradients were used with regular corrections provided 
by perturbations. 

....... 
00 

w 



O I ""\ r , ....------... � r" 2\ - r , ? I 

m 

0 
-

U) 

U) 

5 

10 

0 15 
_J 

� 20 
H 

1-

(I 25 
w 
m 

z 
H 30 

0 
z 
4: 

z 

35 

(I 40 
:J
1-
w 

(I 45 

so----_._ ....... _______ ......_ __ .,_._ __ .......,_.__.__._ _______ _._ ___ ._. ________ __..., 

10880 10960 11040 11120 11200 11280 11360 11440 11520 11600 11680 11760 11840 

FREQUENCY (MHZ) 

Fig. 7.12 Responses of the 5-channel multiplexer at the solution of experiment 2, 
after 500 response evaluations from the point shown in Fig. 7 .11 (1000 
response evaluations from the start). 

I--' 
00 
+:" 



185 

TABLE 7.5 

MULTIPLEXER PARAMETERS OPTIMIZED USING APPROXIMATE GRADIENTS 

Parameter Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 

M11 
-0.0432 0.1801 -0.0788 0.0384 0.0401 

M22 -0.0526 0.0294 -0.0514 -0.0067 0.0254 

M33 -0.0082 -0.0178 -0.0082 -0.0055 0.0044 

M44 0.0158 -0.0582 0.0160 -0.0064 -0.0102

Mss 0.0160 -0.0206 0.0090 0.0021 0.0038

M66 -0.0255 0.0100 -0.0248 -0.0037 0.0066

M12 0.7427 0.7077 0.6969 0.6124 0.6495

M23 0. 5796 0.5951 0.5815 0.5567 0.5800

M34 0.3855 0.3876 0.3780 0.3050 0.3491

M35 -0.6314 -0.6699 -0.6540 -0.7520 -0.7083

M45 0.9657 1.0338 1.0064 1.0325 1.0324

M55 1.1330 1.1279 1.1346 1.0553 1.0983

Ill 0.9976 0.8915 0.8997 0.7993 0.7862

nz 1.4416 1.4236 1.4223 1.4140 1.4154

J, 0.6958 0.6132 0.9235 0. 7228 0.7360
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t,-1 
00 

°' 



187 

experiment 1 we can clearly see that the use of appropriate weights 

has prevented the optimization from stopping prematurely. We can 

also conclude from a comparison between experiments 2 and 3 (also, 

between Figs. 7.11 and 7.13) that applying the weighted update has 

effectively reduced the use of time-consuming perturbations. 

7.4 

7.4.1 

AN 11 ALGORITHM USING APPROXIMATE GRADIENTS

Implementation of a Fortran Subroutine 

We have also integrated gradient approximations with the 

Hald and Madsen (1985) algorithm for the 1
1 

problem as 

m 
minimize I lf

j
(x)I

X j=l 

subject to possible linear constraints. 

(7.17) 

Similar to the minimax 

algorithm in its structure, the 11 algorithm also consists of two

stages, Stage 1 being a trust region Gauss-Newton method which 

provides global convergence and Stage 2 a quasi-Newton method which 

is intended to achieve a fast rate of convergence near a solution. 

The original algorithm requires a user-supplied subroutine 

which calculates the values of the error functions as well as their 

first-order derivatives. This is replaced in the new algorithm by 

an interface which organizes gradient approximations as outlined in 

Section 7 . 2 . 6 . From the user's point of view, the 11 package is

almost identical to the minimax package which has been described in 

Section 7. 3 .1. An external subroutine is required to supply the 

function values. The user specifies, via common block parameters, 

the method of obtaining the initial approximate Jacobian and the 
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use of regular perturbations during optimization. Different rates 

of perturbations for Stage 1 and Stage 2 are allowed. 

The KMOS software library described in Chapter 2 has also 

included the Fortran implementation of this algorithm. 

7.4.2 Performance on Some Test Problems 

We have tested the 11 algorithm using approximate gradients

on a large variety of problems. Some of the tests are described in 

this section. Convergence was achieved for all these problems and 

our solutions agree with the exact solutions to at least five sig-

nificant figures. The computational effort required by the new 

algorithm and the effort required for estimating gradients entirely 

by perturbations are compared in Tables 7.6 and 7.7. 

Problem Ll 

The two-section transmission-line transformer, which we 

have used in Problem Ml of Section 7.3.2, is considered here for 

parameter identification using the 1
1 

optimization. The reflection 

coefficient of the transformer at the solution of Problem Ml was 

taken as the measurement, from which we attempt to identify the 

values of Z1 and Z2 • Figs. 7 .14 and 7 .15 illustrate, on the 11

contours, two solutions, one obtained with the gradient estimated 

entirely by perturbations and the other by our approximate gradient 

algorithm. 

Problem L2 

This is a data-fitting problem considered by Madsen (1975) 
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TABLE 7.6 

COMPARISON OF COMPUTATIONAL EFFORT FOR EXAMPLES Ll TO L4 

Problem 

Ll 

L2 

L3 

L4 

Number of Function Evaluations 

Entirely by Perturbations 

42 (14) 

54 (9) 

105 (15) 

71 (17) 

By the New Algorithm 

27 (19) 

32 (19) 

63 (40) 

65 (48) 

The entries in parentheses are numbers of optimization iterations. 
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TABLE 7.7 

COMPARISON OF COMPUTATIONAL EFFORT FOR EXAMPLE LS 

Number of Function Evaluations 

Size of the Problem 

n = 5 

n = 10 

n = 20

Case 1 

36 (6) 

66 (6) 

126 (6) 

Case 2 

17 (9) 

25 (10) 

39 (13) 

Case 3 

13 (7) 

19 (7) 

29 (7) 

Case 1: The gradients were estimated entirely by perturbations. 

Case 2: Using the Broyden update without weights. 

Case 3: Using the weighted update. 

The entries in parentheses are numbers of optimization iterations. 
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Fig. 7 .15 Problem Ll is solved after 19 iterations (27 function 

evaluations) of the 11 algorithm using approximate
gradients. The first 9 iterations are illustrated. 
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in which eY is approximated by a third-order rational function over 

the interval -1 � y � 1. The error functions are 

Xl + X
2 Yj 

f
j 

(x) - exp(y
j

),
1 + X3Yj +

2 X4Yj +
3 XsYj 

y
j 
= -1 + 0.l(j - 1), 

where exp(y) represents eY . 

Problem L3 

j=l, ... , 21, 
(7.18) 

This is a problem due to El-Attar, Vidyasagar and Dutta 

(1979) of finding a third-order model for a seventh-order system. 

The problem involves 6 variables and 51 functions. 

y
j 
= 0.5exp(-t

j
) - exp(-2t

j
) + 0.5exp(-3t

j
) 

(7.19) 
+ 1.5exp(-1.5t

j
)sin(7t

j
) + exp(-2.5t

j
)sin(5t

j
),

t
j 
= 0.l(j - 1), j = 1, ... , 51.

This problem has also been solved by Bandler, Kellermann 

and Madsen (1987) using exact derivatives. 

Problem L4 

This problem involves a set of nonlinear equations given by 

f
2 (x) 

f
3 (x) 

f
4 

(x) 

f
5 

(x) 

f
6 

(x) 

x2 
1 

+ x2 
2 + (x3 - 2)2 '

Xl + X
2 

+

X1 + X
2 

2x3 
+ 6x2 

1 2 

xf - 9x
3 . 

X3 1, 

X3 1, 

+ 2(5x3 - Xl + 1) 2 , 

(7.20) 

El-Attar, Vidyasagar and Dutta (1979) have attempted an 1
1 

solution to (7. 20). Bandler, Kellermann and Madsen (1987) have 
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also considered this problem, and their solution was reported to be 

singular. 

Problem LS 

In Section 7. 2. 3, we have proposed a weighted Broyden 

update. Using the weighted update, possible special structure of a 

system, such as a sparse Jacobian, can be exploited. 

class of equations (Broyden 1965) given by 

f 
1 

( x) ( 3 0 . Sx
1 

) x
1 

+ 2x
2 

- 1 , 

x
j-l (3 - O.Sx

j
)x

j 
+ 2x

j
+l - 1, 

j = 2, 3, ... , n-1, 

fn (x) = �- 1 
- (3 - 0. 5� )� - 1. 

Consider a 

(7.21) 

In this tridiagonal system f 
j 

is linear in x
1 

for all i # j . 

Following the discussion in Section 7. 2. 3, we define a set of 

weights as w
j j 

= 1 and w
j 1 = 0 for i # j . Using the weighted 

update we have solved (7.21) for n = 5, 10 and 20. The results in 

Table 7.7 show clearly that the weighted update is more efficient 

than the original Broyden formula in this example. The saving in 

computation becomes more significant as the size of the system 

increases. The potential advantages of the weighted update in 

practical ,e
1 

optimization will be further demonstrated later in 

this chapter through applications to FET modeling. 

7.4.3 Fault Location of a Mesh Network 

Fault location of a resistive mesh network has been solved 

by Bandler, Kellermann and Madsen (1987) using an ,e
1 

algorithm 

which requires exact derivatives. As shown in Fig. 7.16, the 
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Fig. 7.16 A resistive mesh network. 
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network consists of 20 elements with the nominal values Gi = 1.0

for i = 1, 
. . . ' 

20 . Two faults are assumed in the network, namely 

G2 = G18 = 0.5. A five percent tolerance is associated with each

of the non-faulty elements. All outside nodes are assumed to be 

accessible and a single excitation is applied to node 1. 

Utilizing our 11 algorithm with integrated gradient appro

ximations, the faulty elements were correctly located after 34 

network simulations. The same problem was also solved using per-

turbations for the gradients, which required a total of 147 network 

simulations. 

7.4.4 Multi-Circuit Modeling of a FET Device 

In Chapter 6 we have described a novel approach to device 

modeling which exploits the unique properties of the 1
1 

optimiza-

tion and employs the concept of simultaneous processing of multiple 

circuits. Its application to the modeling of an actual FET device 

has also been presented in Section 6.4.2. 

In the context of this chapter, the same FET modeling 

problem is solved, this time without calculating the exact sensiti

vities, to illustrate practical 1
1 

optimization with integrated 

gradient approximations. 

A detailed description of the small-signal equivalent cir

cuit, the model parameters and the measurements of the FET device 

was given in Section 6.4.2. From 11 model parameters 

{Rg, Ra, Ls, T, Rds' Ri' Rs, cgs' cdg' eds' �} 

the first four were selected as common variables. Three sets of 
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measurements on scattering parameters were utilized. The overall 

optimization problem involved 25 variables and 408 error functions. 

In Section 6.4.2, we have solved the problem using exact 

sensitivities. The programming was quite involved because a comp

rehensive coding scheme was needed to identify the appropriate 

sensitivity expressions for the functions and variables associated 

with different circuits. It would be difficult to change the 

circuit topology or the variable designation without considerable 

labor. In comparison, a subroutine which calculates the function 

values only is much less complex. 

Three experiments were conducted which have used different 

schemes to estimate the gradients. From the starting point given 

in Table 6 .1, they have reached practically the same solution, 

which has also been given in Table 6.1. 

In the first experiment the gradients were estimated solely 

by perturbations. A total of 468 circuit simulations were required 

to reach the solution. 

In the second case, the Broyden update without weights was 

used. Regular corrections were also provided by perturbations for 

every five iterations. 

for this solution. 

Only 128 circuit simulations were needed 

For the third experiment, we took advantage of an inherent 

decomposition in the multi-circuit formulation. The responses (and 

error functions) of one circuit are absolutely unrelated to the 

independent parameters of any other circuits. Obviously, the deri

vatives corresponding to such decoupled functions and variables are 
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always equal to zero. However, when we use the Broyden update 

without weights, these derivatives may be changed to some nonzero 

values, thus introducing apparent errors to the approximation. We 

can avoid this by using the weighted update. By assigning zero 

weights to decoupled functions and variables, we can keep the zero 

derivatives undisturbed throughout the optimization process. The 

application of this concept has reduced the use of perturbations 

and led to the solution after only 79 circuit simulations. This 

represents less than 1/5 of the simulations required by the first 

experiment as well as a 38% saving in computational effort as 

compared to the second experiment. 

7.5 CONCLUDING REMARKS 

In this chapter, we have described a new approach to gra

dient approximations. Combining perturbations, the Broyden update 

and the special iterations, the new approach has significantly 

improved the computational efficiency as compared with the more 

conventional methods. A weighted update has also been proposed 

which exploits possible sparsity and decoupled structures of a 

system to further reduce the computations involved in estimating 

gradients. Integration of our approach with powerful gradient-

based optimization techniques has been described and illustrated by 

the minimax and .21 implementations. The effectiveness and effi

ciency of our algorithm have been demonstrated through a large 

variety of problems. Examples of significant practical interest 

have been given in detail, including worst-case design, multiplexer 
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optimization, fault location and multi-circuit modeling. 

Knowing that many CAD packages currently used in industry 

are not capable of providing exact sensitivities, the author stron

gly believes that efficient gradient approximations will contribute 

greatly to extending the application of advanced optimization tools 

to a much broader range of practical problems. 



CHAPTER 8 

CONCUJSIONS 

This thesis has offered a unified and integrated approach 

to the application of the state-of-the-art optimization techniques 

to circuit design, nominal as well as statistical, and modeling 

problems. Essential aspects related to both the formulation of the 

problems and an effective and efficient solution method have been 

addressed. 

At the heart of our formulation of the design and modeling 

problems is a hierarchy of circuit models which unified the presen

tation of Chapters 4, 5 and 6. The use of idealized models has led 

to the optimization of a single set of nominal circuit parameters 

by minimizing a suitable l
P measure of the errors between the per

formance specifications and the circuit responses of interest. The 

explicit consideration of tolerances, model uncertainties as well 

as measurement inadequacy and inaccuracy has given rise to the more 

realistic multi-circuit approaches. In design centering, the 

multiple circuits are generated according to a suitable statistical 

assumption, whereas in modeling they are created from deliberate 

manipulations of the system. In both cases, our aim has been to 

expose and overcome the uncertainties that inevitably exist in an 

engineering problem. 

In this thesis, gradient-based optimization techniques have 

not only served as powerful tools for solving abstract mathematical 

200 
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problems, but also contributed as an integral part to the overall 

strategy. The extensive use of minimax optimization in design is 

justified by the fact that equal-ripple responses are both feasible 

and desirable for the filters, amplifiers and multiplexers that we 

have considered. Without exploiting the theoretical properties of 

the 1
1 

norm, the multi-circuit modeling approach might not have 

been successful. The discontinuity in derivatives has in the past 

frustrated the application of the minimax and 11 objectives. The

critical contributions made by Hald and Madsen have resulted in a 

class of fast and reliable algorithms for nonlinear ,eP optimization

as we have described in Chapter 2. These algorithms have demons-

trated a superior performance in numerous circuit applications, 

including design, modeling, tuning and fault diagnosis. 

The supply of derivatives, exact or approximate, is also an 

integral part of gradient-based circuit optimization. In Chapter 

3, we have described efficient approaches to exact sensitivity 

calculation, applicable at both terminated network and unterminated 

subnetwork levels. When an exact sensitivity expression is not 

available, we have developed gradient approximations in Chapter 7 

which effectively and efficiently integrate the optimization algo-

rithm with the circuit simulation module. Since many commercial 

CAD programs currently available lack the capability of providing 

exact sensitivities, gradient approximations can and should be 

utilized to facilitate the practical implementation of advanced 

optimizers. 

The theoretical results presented in this thesis have been 
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supported amply by circuit examples. These examples served both as 

illustrations of the feasibility and efficiency of the proposed 

algorithms and to maintain the engineering relevance of the work. 

Particularly, the applications to cavity filters, multiplexers and 

FET devices are of current significance and their development has 

been motivated by industrial demand. The close cooperation with 

industry has proved invaluable to the theoretical development. For 

instance, the model verification technique described in Chapter 6 

was investigated only after some limitations of the experimental 

environment became evident as the actual data was processed. In 

return, the theoretical advances will undoubtedly further the indu

strial application of modern CAD techniques. 

A number of problems related to the topics in this thesis 

are worth further research and development. 

(a) In Chapter 5, we have described a generalized i
P 

centering

algorithm. Like most statistical design methods, its major

computational effort is related to the Monte Carlo analyses

of the circuit (i.e., simulation of the multiple circuits).

Although we have proposed a simulation saving technique, it

would be extremely useful to incorporate multidimensional

approximations, which we have reviewed in Section 5. 3. 2,

into the algorithm. By this approach, a suitable model,

linear, maximally flat or quadratic, is constructed for

each error function by performing exact simulations at a

number of base points. During optimization, such models

are used to provide function values and derivatives instead
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of requiring new circuit simulations. This would improve 

the efficiency . of the centering algorithm tremendously, 

especially for large networks. 

(b) The multi-circuit modeling technique described in Chapter 6

can be combined with the functional tuning approach pro

posed by Bandler and Salama (1985a) to develop a strategy

for computer-aided actual tuning (as opposed to simulated

tuning). From measurements made on a manufactured device,

the modeling technique is used to produce a consistent and

reliable relationship between the physically adjustable

elements and the parameters of an equivalent circuit. Such

a relationship must be updated automatically and adaptively

as the tuning proceeds. Using this result the algorithm

would suggest the necessary adjustments on the physical

device. Anticipating imprecisions in the implementation,

the determination of tuning adjustments may have to be

toleranced. In other words, such algorithms may have to

integrate the relevant concepts of multi-circuit design and

modeling.

(c) Another recent research direction in device modeling has

been model evolution, i.e., automatic modification of the

equivalent circuit topology. At the present time, such

strategies are usually heuristic and of limited use. How

ever, for specific applications, it may be possible and

useful to combine a circuit topology modification technique

with the modeling approach introduced in this thesis. For
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instance, we can process simultaneously a simplified model 

using DC or low-frequency measurements and a more complica-

ted model at the normal operating frequencies. Common 

variables can be identified between these models since they 

are supposed to represent the same device. 

(d) In Chapter 7, we have developed a weighted update for the

gradient approximation algorithm. At the present time, the

weights are defined prior to and kept constant during the

optimization. The application of the weighted update may

be broadened if we can develop an automatic and adaptive

scheme for modifying the weights during the optimization.



APPENDIX 

FORKUIAS FOR POWELL'S SPECIAL ITERATIONS 

The algorithm for computing the increment vector for a 

special iteration, as derived by Powell (1970a), is as follows. 

An n by n (n being the dimension of x) orthogonal matrices 

I\ is constructed at each iteration. Denote the rows of I\ by di, 

i = 1, 2, ... , n. At a special iteration, the increment vector is 

set to a multiple of the first row vector of I\, as 

where Ak is a parameter controlling the step size of l\· Usually 

it is set to the step size of the latest ordinary iteration. 

At the starting point D
1 

is set to an identity matrix. At 

the kth iteration I\ is revised to produce l\
+i

· We use Yi for the 

rows of J\
+i

· For a special iteration, we simply let 

i = 1, 2, ... , n-1, 
(A. 2) 

For an ordinary iteration, the following steps take place. 

Step 1 Compute ai 
= dih

k
, i = 1, 2, ... , n. 

Step 2 Find t which is the greatest integer such that at �  0. 

Step 3 Let at = 0 and zt = 0. For i = t-1, t-2, . . .  ' 
1, compute 

z
i Zi+l + ai + 1 di + 1' 

ai ai +l + 
2 ai + 1, 

Yi (ai di 
- a i 

z
i ) / [ ai 

( ai 
+ af) ]\. 

Step 4 Let Y
i

= di +l' i = t, t+l, ... , n-1. 
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(A.3) 

Let Yn 
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