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ABSTRACT 

This thesis addresses itself to the computer-aided design and modelling of 

microwave circuits using efficient minimax and f1 optimization techniques. 

Recent algorithms for nonlinear minimax and f1 optimization are 

reviewed. The features of the e 1 norm, its theoretical properties and the necessary 

conditions for optimality are discussed. 

A comparative example with f2 optimization illustrates the robustness of f1 

for the particular applications of this thesis. Efficient gradient approximation 

techniques, applicable to both minimax and e 1 optimization, are presented. 

A simplified and straightforward treatment of sensitivities for two-port 

networks, cascaded and branched cascaded structures is introduced. The objective is 

to calculate the sensitivities efficiently, without appealing to the adjoint network 

concept. A novel proof of a recent result in sensitivity analysis of lossless and 

reciprocal two-ports is presented. 

Design of manifold type waveguide multiplexers has been considered as a 

major application for both minimax optimization and the theoretical work in 

branched cascaded network sensitivity analysis. Components of the multiplexer 

structure and nonideal effects such as dissipation and dispersion are discussed and a 

step-by-step implementation of an algorithm to calculate particular responses and 

sensitivities is presented. Examples of the design of 3-, 12- and 16-channel, 12 GHz 

multiplexers illustrate the practicality of the approach presented. 

A new approach to modelling of microwave devices which exploits the 

theoretical properties of the e 1 norm is presented. The concept of multi-circuit 

111 



measurements is introduced and its merits in obtaining unique and self-consistent 

parameters are discussed. The technique is applied to modelling of multi-coupled 

cavity filters and GaAs FET's. The application of efficient modelling techniques in 

developing algorithms for postproduction tuning and in establishing the relationship 

between physical parameters of a device and its equivalent circuit model parameters, 

is discussed. 
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1 
INTRODUCTION 

Over the past 20 years, computer-aided design (CAD) techniques have 

developed into an integral part of methods used for solving most engineering 

problems. In the past decade, the astonishing cost reduction in computer components 

and the availability of personal computers has generated further enthusiasm to use 

efficient and powerful CAD techniques. The use of highly interactive software 

systems and the capability of high resolution graphical displays has changed the 

image of CAD techniques from a topic understandable only by specialists to a 

powerful tool serving every practicing engineer. 

Design of microwave filters using optimization methods is one of the 

earliest applications for CAD techniques in electrical engineering. In recent years, 

software systems for modelling and design of microwave circuits have been developed 

which are capable of handling most commonly used microwave devices. The applica­

tion of such general purpose software systems to design problems requiring multiple 

objectives of cost reduction, design centering, tolerance optimization and post­

production tuning, and modelling problems with complex and uncertain circuit 

equivalent topologies, necessitates the use of state-of-the-art optimization techniques. 

Unfortunately, while highly efficient optimization algorithms have been developed in 

the last decade, the algorithms used in most microwave software systems are the ones 

described by mathematicians 10-15 years ago. There are two major factors 

contributing to such a sizeable gap. 
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The first factor is that the implementation of nonlinear minimax and e 1 

algorithms, whose characteristic features can be exploited in many engineering 

problems and have been the subject of most recent advancements in optimization 

techniques, is generally complicated. This has led, for instance, to the use of the more 

straightforward least squares optimization with the limitation on linearity of 

constraints in most microwave software systems. It should be mentioned that a 

nonlinear programming problem with nonlinear constraints can be easily formulated 

as a minimax problem. 

The second factor which has helped the use of rather old non-gradient 

optimization techniques (e.g., the random optimization in SUPER-COMPACT 1986 

and TOUCHSTONE 1985) to continue, is the difficulties related to sensitivity 

analysis of many microwave circuits as required by the advanced gradient-based 

optimization methods. Deriving explicit sensitivity expressions is difficult or 

impossible in some microwave problems. On the other hand, using numerical 

differentiations to estimate the gradients at every iteration of an optimization 

procedure becomes prohibitively expensive when attempting to solve large problems. 

This thesis addresses itself to modelling and design of microwave circuits 

using recent minimax and e 1 optimization techniques. A major part of the thesis is 

concerned with a simplified treatment of sensitivity analysis applicable to general 

two-ports, cascaded and branched-cascaded structures frequently encountered in the 

microwave area. The sensitivities are directly used in conjunction with powerful 

minimax and f1 algorithms which will be described in some detail. We do not 

presume to be able to calculate exact sensitivities for all microwave structures. 

Therefore, efficient gradient approximation techniques will be described which enable 
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us to use minimax and e1 algorithms in problems in which exact gradient evaluation 

is not feasible. 

The concepts described in design and modelling are applied to microwave 

devices such as multi-coupled cavity filters, waveguide manifold type multiplexers 

and GaAs FET's. These devices are all of current significant interest to researchers 

and engineers due to their application in satellite communication systems. 

Chapter 2 deals with the use of minimax and e 1 optimization techniques in 

computer-aided design. Problem formulations for both types of optimizations are 

given. The existing minimax algorithms are reviewed briefly and the Hald and 

Madsen algorithm (Hald and Madsen 1981) is described. For nonlinear e 1 

optimization, the Hald and Madsen algorithm (Hald and Madsen 1985) is reviewed 

and the features of the e 1 norm are explained using necessary conditions for 

optimality. For problems in which exact gradient evaluation is not feasible, a recent 

method for efficient gradient approximations, as applied to both minimax and e 1 

optimizations, is described. 

In Chapter 3, simple algebraic approaches are presented which reduce the 

networks described by their nodal admittance matrices to equivalent unterminated 

two-ports with simultaneous sensitivity analysis. The originality of the approach lies 

in the fact that there is no need to appeal to the adjoint network concept. Second-order 

sensitivities and computational effort are discussed. The original idea by Bandler, 

Rizk and Abdel-Malek (1978) in efficient simulation and sensitivity analysis of 

cascaded networks is extended to the branched cascaded structures with arbitrary 

junctions. The individual components of the structure, apart from the three-port 

junctions, are two-ports which may have been deduced by the reduction of complicated 

networks using the aforementioned algebraic approaches. A new proof for a recent 
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result in sensitivity analysis of lossless reciprocal two-ports is presented and a new 

and interesting result in sensitivity evaluation of branched cascaded networks is 

derived. 

Chapter 4 covers the design of multiplexing networks using the minimax 

optimization in detail. This is one of the largest nonlinear optimization problems ever 

demonstrated in microwave circuit design. Models for individual components of the 

multiplexer with nonideal effects such as dissipation, dispersion and junction 

susceptances are presented. The branched cascaded sensitivity analysis is effectively 

used and 3-, 12- and 16-channel multiplexers are designed in reasonable 

computational times. 

In Chapter 5, microwave device modelling techniques are considered. The 

existing techniques in typical commercially available software systems as well as 

more advanced techniques in modelling are reviewed. A new formulation for 

modelling using the concept of multi-circuit measurements is presented. We discuss 

the merits of this technique in obtaining unique and self-consistent models. The 

technique is applied to modelling of multi-coupled cavity filters and GaAs FET's. The 

application of efficient modelling techniques in developing algorithms for post­

production tuning is briefly discussed. 

We conclude in Chapter 6 with some suggestions for further research. 

The author contributed substantially to the following original 

developments presented in this thesis: 

(1) An integrated treatment of sensitivities for two-ports, cascaded and 

branched cascaded structures using simple algebraic approaches. 

(2) A new proof of a result in sensitivity analysis of reciprocal lossless 

two-ports. 
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(3) A new result in sensitivity analysis of branched cascaded networks. 

(4) Application of the theoretical results for branched cascaded network 

simulation and sensitivity analysis to the design of manifold type 

multiplexers using efficient minimax optimization, and an implementation 

with realistic and nonideal effects included. 

(5) Presentation of a new formulation for modelling which exploits 

multi-circuit measurements with a discussion of its implementation. 

(6) Establishing the relationship between physical and model parameters of a 

multi-coupled cavity filter using efficient modelling. 



2 
MINIMAX AND f 1 OPTIMIZATION TECHNIQUES - NEW ADVANCES 

2.1 INTRODUCTION 

A wide class of microwave circuit and system design problems can be 

formulated as minimax optimization problems. Therefore, efficient minimax 

algorithms have been of great interest to microwave engineers and researchers for the 

past 20 years. On the other hand, f1 optimization has just begun to gain popularity in 

the microwave area and it is the author's belief that the formulation of the modelling 

problem using the f1 norm marks one of the first attempts to solve a well-known and 

widely encountered microwave problem with this type of optimization. Unique 

properties of l1 optimization and the modelling technique which utilizes such 

properties are discussed in this thesis. 

In the context of integrated-circuit design, Brayton, Hachtel and 

Sangiovanni-Vincentelli (1981) have surveyed the advances in the multiple objective 

optimization techniques up to 1981. Many of the techniques reviewed are also used in 

the microwave area. In the past few years, mainly due to the work of Hald and 

Madsen (1981, 1985) at the Technical University of Denmark, highly efficient 

minimax and l1 optimization algorithms have been developed. Very recently, 

applications of these new methods to solve general engineering problems and 

particularly problems in the microwave area have been discussed (Bandler, 

Kellermann and Madsen 1985a, 1985b; Kellermann 1986). 

6 
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In this chapter, the existing minimax and e 1 optimization techniques are 

briefly reviewed. In both cases, we conclude the discussion by describing the efficient 

algorithms of Hald and Madsen. 

For the e 1 problem, the necessary conditions for optimality and the role of 

zero-valued functions are discussed in detail due to their significance in the modelling 

technique which utilizes them. Also, an e1 approximation example is presented for 

direct comparison with the least squares (e2) approximation. 

To extend the practical applications for gradient-based minimax and e 1 

optimizations, efficient gradient approximations are described. Such approximations 

become extremely useful for problems in which exact gradient evaluation is not 

feasible. 

2.2 MINIMAX OPTIMIZATION TECHNIQUES 

From its early applications in the design of microwave filters with 

Chebyshev type responses, minimax optimization has been used extensively in many 

circuit design problems. Most commonly, the minimax functions result from lower 

and/or upper specifications on a performance function of interest. In this section, 

formulation of minimax optimization problems and minimax algorithms are 

reviewed. 

2.2.1 Design Specifications and Error Functions 

In a general design problem there are A response functions Fl(4>, wl), 

F2(4>, w2), ... ,F.A.(4>, w.A.) that have to meet given specifications. 4> represents the 

network parameters and qJj, j = 1,2, ... ,A is an independent parameter such as 

frequency, time, temperature, etc. (Bandler and Rizk 1979). As an example, a filter 
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can be designed to meet desired specifications in both the frequency and time domain 

as illustrated in Fig. 2.1 (Rizk, 1979). The performance specifications are usually 

functions of the independent parameter only. They are denoted by Sl(wl), 

S2(w2), ... ,SA(wA). The corresponding error functions are given by 

j=l,2, ... ,A, (2.1) 

where wj is a positive weighting function. It is necessary in practice, to consider a 

discrete set of samples for each wj, such that satisfying the specifications at these 

sample points implies satisfying them almost everywhere. Thus, for the discrete case, 

taking Ij as the index set for the jth functions, 
• !:::. • • • • • 

~(q,) = e1(q,, ~) = ~ (F~ (q>) - ~)' 
1 1 1 1 1 

(2.2a) 

is the error function evaluated at the ith sample point for the independent variable wt 

Notice the following notation: 

(2.2b) 

(2.2c) 

and 

s~ ~ s\~). 
1 1 

(2.2d) 

In typical microwave design problems, we have only one independent 

variable, namely, frequency. Therefore, superscriptj is dropped and w is used in place 

of w in the following formulations. Considering upper and lower specifications, the 

error functions will be of the form 

!:::. e .(q,) = e (q,, w.) = w .(F.(q,) - S .) , 
m u 1 m 1 w 

iEI 
u 

(2.3a) 

and 

!:::. 
ee.(<P) = ee(<P, w.) = we.(F.(q,) - Se.) , 

1 1 1 1 1 

(2.3b) 

where subscripts u and e refer to the upper and lower specifications, respectively. lu 

and le are not necessarily disjoint. Let 



Fig. 2.1 
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F1 51 
' 

(a) 

(b) 

An example of multiple objectives in filter design, (a) the insertion loss 
specification in the frequency domain of a lowpass filter, (b) an impulse 
response specification in the time domain of the lowpass filter (Rizk 
1979). 
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where 
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[ 

e . ' UJ 

-eek' 

jEI , 
u 

6 I = {1,2, ... ,n } , 
u u 

6 I = {1,2, ... ,m} 
C 

and m = nu+ ne. The m functions 

iEI , 
C 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

characterize the circuit performance which is monitored during the optimization 

proce.ss. If we let 

6 M/4>) :=· max f/4>) , (2.9) 
iEI 

C 

then the sign of Mr indicates whether the specifications are satisfied or violated. 

2.2.2 Formulation of the Minimax Optimization Problem 

The mathematical formulation of the linearly constrained minimax 

problem, which is applicable to design problems addressed in this thesis, is the 

following. Let 

6 f.(x) = f.(x
1
, x

2
, ... , x ) , 

J J n 
j=l,2, ... ,m, 

be a set of m nonlinear, continuously differentiable functions. The vector 

6 T 
x = [x 1 x2 ... xn] 

is the set of n parameters to be optimized. 

subject to 

We consider the optimization problem 

. . . F( ) 6 m1mm:iz.e x = max 
X j 

f.(x) , 
J (2.10a) 



T a. X + b. = 0, 
l l 

a!x + b. ~ 0, 
l l 
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i=1,2, ... ,e , 
eq 

i=Ce + 1), ... ,e, 
eq 

where ai and bi, i = 1,2, ... , e, are constants. 

2.2. 3 Nonlinear Programming Using Minimax Optimization 

(2.10b) 

(2.10c) 

In problems such as tolerance optimization and tuning where usually a cost 

function is to be minimized, the specifications on circuit responses are handled by 

nonlinear constraints. An efficient and robust minimax algorithm, in addition to its 

application in designs which are directly formulated as minimax problems, can be 

used in general nonlinear programming. The transformation of a general nonlinear 

programming problem to minimax optimization often results in a singular minimax 

problem (defined in Section 2.2.4) for which only minimax algorithms using 

second-order information are efficient. The minimax algorithms will be described in 

more detail in the next section. Here, the transformation is presented. 

subject to 

Consider the problem 

minimize U(x) 
X 

g.(x) ~ 0 , 
l 

i=1,2, ... ,e, 

(2.lla) 

(2.llb) 

where U and gi, i = 1,2, ... ,e, are nonlinear functions ofx. Charalambous (1973) and 

Bandler and Charalambous (1974) suggested the transformation of (2.11) to an 

equivalent unconstrained minimax problem, namely, 

minimize M(x, a)~ max [U(x), U(x)-a.g.(x)] , i = 1, 2, ···, e, 
l l 

(2.12a) 

j 

where 

ai > o, i = 1,2, ... ,e. (2.12b) 
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Any design problem which is naturally formulated as a nonlinear 

programming problem is transformed to the minimax problem via (2.12) and then 

solved using minimax optimization algorithms. 

2.2.4 Review of Minimax Algorithms 

Linear Programming Methods 

Methods of solving the minimax problem via linear programming 

techniques have been considered by many researchers over the past fifteen years. 

Here the method suggested by Madsen et al. (1975) is presented. At the kth stage of 

the method, let Xk be the current best point. Each function fj(x) is linearized at Xk. Let 

Then fj(x) is approximated by 

af/xk) 
f.'(x) = --

J k ax 

, T 
f/xk +b)::::: f/xk) + f/xk) b , j= 1,2, ... ,m . 

(2.13) 

(2.14) 

A step b = [h1 h2 ... hn]T which simultaneously decreases each fj is found by the 

linear program 

subject to 

minimizey 
y,b 

j=l,2, ... ,m, 

i=l,2, .. .p. 

(2.15a) 

(2.15b) 

(2.15c) 

The value of the scalar 6k controls the step size b so that a decrease in max {fj(x)} is 

made. If Ok is small enough, then the linear approximations to the fj are accurate and 

a decrease is guaranteed. The value of Ok is adjusted at each step. For example, 

suppose bk is the solution to (2.15). The new point, Xk+l = Xk + bk, may not have 

achieved a decrease in max {fj(x)} since (2.15) only uses a linear approximation to fj(x). 

If no decrease is obtained, then the last step bk is rejected and 6k is replaced by !3llbklloo 
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where ~ < 1. If a decrease in max {fj(x)} occurs, then Ok may be increased if a test, 

measuring the goodness oflinear approximations, succeeds. 

This method may work well if m>n, i.e., the number of functions exceeds 

the number of parameters. However, if m <n, the method may behave like the 

steepest descent method with slow convergence. If m>n, then in many cases the 

solution can be expected to be a point (x, y), where n + 1 of the function fj's are equal to 

each other as well as being equal to y. Thus, in effect, we are solving a system of 

equations where x and y are the unknowns. The linearization of each function fj(x) 

would correspond to the same linearization found in Newton's method on the above 

equations and quadratic convergence is expected. In general, one can expect this 

method to work quite well when the final answer is tightly constrained, (called the 

regular case), but may revert to a method related to steepest descent if fewer than 

n + 1 of the functions are constraining the final answer (singular case). Madsen and 

Schjaer-Jacobsen (1976) give a complete discussion of when quadratic convergence is 

expected for this method. 

Methods Using Second-Order Information 

All linear programming methods are first-order methods, i.e., the search is 

based on first-order derivatives only. They all have problems with singular solutions 

in which the rate of convergence may be very slow. In order to overcome this problem, 

some second-order (or approximate second-order) information must be used. Hettich 

(1976) was the first who proposed doing this. He used a Newton iteration for solving a 

set of equations which expresses the necessary condition for an optimum. Hettich's 

method is only local and requires the initial point to be close to the solution. Han 

(1981) suggested nonlinear programming techniques for solving the minimax 
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problem. He uses a nonlinear programming formulation of the minimax problem 

which is solved via successive quadratic programming (Powell 1978). A line search is 

incorporated using the minimax objective function as merit function. 

Watson (1979) introduced a method that switches between a first-order and 

a second-order method. Hald and Madsen (1981) use a similar method, however their 

method has the following advantages over Watson's method: 1) the user is required to 

provide only exact first-order derivatives, 2) a suitable set of criteria for switching 

between the first-order and the second-order methods are defined, 3) the method has 

guaranteed convergence to the set of stationary points. 

The Hald and Madsen Algorithm 

The Hald and Madsen algorithm for nonlinear minimax optimization (Hald 

and Madsen 1981) is a two-stage one. Initially, Stage 1 is used and at each point the 

nonlinear residual functions are approximated by linear functions using the 

first-order derivative information (provided by the user). If a smooth valley through 

the solution is detected, a switch to Stage 2 is made and the quasi-Newton iteration is 

used. Necessary second derivative estimates are generated by the algorithm. If it 

turns out that the Stage 2 iteration is unsuccessful (for instance, if the set of active 

functions has been wrongly chosen) then a switch is made back to Stage 1. The 

algorithm may switch several times between Stage 1 and Stage 2 but normally only a 

few switches will take place and the iteration will terminate in either Stage 1 with 

quadratic rate of convergence or in Stage 2 with super linear rate of convergence. 

The algorithm, which handles linear equality and inequality constraints, is 

a feasible point algorithm. This means that the residual functions are only evaluated 
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at points satisfying the linear constraints. Initially a feasible point is determined by 

the algorithm, and from that point feasibility is retained. 

For this thesis, we have used the MMLC version of the algorithm (Handler 

and Zuberek 1982). 

2.3 f 1 OPTIMIZATION TECHNIQUES 

2.3.1 Formulation of the Problem 

The optimization problem to be considered has the following mathematical 

formulation. Let fj(x), j = 1,2, ... ,m, be a set of m nonlinear, continuously 

differentiable functions. The vector 

jj,_ T 
x = [x1 x2 ... xn] 

is the set of n parameters to be optimized. We consider the following problem: 

subject to 

m 

minimize F(x) ~ L I~ (x)I 
X j=l 

T a. X + b. = 0, 
l l 

i=1,2, ... ,e , 
eq 

(2.16a) 

(2.16b) 

T (2.16c) a. x+b. ~o, i=f +1, ... ,e, 
1 1 eq 

where ai and bi, i = 1,2, ... ,e, are constants. This is called the linearly constrained f1 

problem. 

2.3.2 Review of f1 Algorithms 

One of the first attempts to solve the f1 problem was published by Osborne 

and Watson (1971). The method is iterative and at the kth iterate Xk the following 

approximation of the nonlinear e 1 problem is used: 
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m 

minimize F(xk' h) ~ L lf/xk) + r/xklhl. 
h j=l 

(2.17) 

This is similar to the linearization of minimax functions as given by (2.14). The linear 

model problem is solved using linear programming. The direction bk found is then 

used in a line search. The global convergence properties of this method are rather 

poor and the method may provide convergence to a nonstationary point, i.e., a point 

which is not a local minimum. 

The more recent papers on the f1 problem use some second-order 

information. Most of the methods require that the user supplies exact second (as well 

as first) derivatives. 

The linearly constrained f1 problem can be formulated as a nonlinear 

programming problem. Then, it can be solved by standard techniques from that field. 

When Powell's method (Powell 1978) for nonlinear programming is applied to the f1 

problem, we obtain a method which in its final stages is similar to the Hald and 

Madsen method (Hald and Madsen 1985). However, in the neighbourhood of a 

solution, Hald and Madsen have to solve only a set of linear equations whereas in 

Powell's method a quadratic program must be solved in every iteration. 

The Hald and Madsen Algorithm 

The Hald and Madsen algorithm (Hald and Madsen 1985) is a hybrid 

method combining a first-order method with an approximate second-order method. 

The user supplies only first derivatives. The first-order method is based on the linear 

model problems of the type (2.17). These are solved subject to the constraints of the 

original problem (2.16) and a bound on the step length 11h11. The latter bound reflects 

the neighbourhood of the iterate Xk in which the kth model function (see (2.17)) is a 
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good approximation to the nonlinear e1 function. If the solution approached by the 

first-order method is "singular" (see definition which follows), then a higher-order 

method must be used in order to obtain a fast ultimate rate of convergence. Therefore, 

a switch is made to a quasi-Newton method that solves a set of nonlinear equations 

that necessarily hold at a solution of (2.16). This method has superlinear final 

convergence. Several switches between the first-order and the quasi-Newton method 

may take place. The reason for allowing this is that the latter method works only 

close to a solution, so if it started too early, a switch back to the more robust first 

method is necessary. The second derivative information required in the quasi-Newton 

method is generated by the algorithm. 

Definition 

We say that the solution x* of the linearly constrained e 1 problem is 

regular if the set 

(f'. (x*) I f.(x*) = O] U (a. I a! x* + b. = O] 
J J l l l 

spans the space Rn. Otherwise the solution is singular (Bandler, Kellermann and 

Madsen 1985c). 

The set of zero functions, i.e., the functions which are equal to zero at the 

solution, are called active functions for the e1 problem. A problem is regular if the 

(total) number of zero-valued functions (active functions) and active contraints is at 

least n. For regular problems the method of Hald and Madsen is quadratically 

convergent. For singular problems the convergence is super linear. 
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2.3.3 Necessary Condition for Optimality of e1 Problems 

The use of the e 1 norm in the problem of approximating a function to data 

that might contain some wild points has been discussed by many researchers. 

Recently, e 1 optimization has found new applications in many circuit and system 

problems based on its unique properties which result from the necessary conditions 

for optimality. The applications include fault isolation techniques for linear analog 

circuits (Bandler and Salama 1985a), functional approach to postproduction tuning 

(Bandler and Salama 1985b) and microwave modelling (Bandler, Chen and Daijavad 

1986b). The insensitivity of e1 optimization to a few large fj's in (2.16) and the fact 

that many fj's are zero at the solution, has led to formulations that are designed to 

exploit these properties. 

In this section, we follow the approach of Kellermann (1986) based on the 

earlier work of El-Attar, Vidyasagar and Dutta (1979) to derive the necessary 

conditions for optimality of the nonlinear e1 problem with nonlinear constraints. 

Therefore, we derive some insight into the features of the e1 norm in engineering 

problems in general, and the microwave device modelling approach presented in 

Chapter 6 in particular. 

The nonlinear e 1 problem with nonlinear constraints may be stated as 

subject to 

m 

minimire F(x) ~ L I f.(x) I 
J 

j=l 

g.(x) ~o, 
1 

i=l, ... ,m , 
C 

where the g/s are, in general, nonlinear constraints. 

(2.18a) 

(2.18b) 

Problem (2.18) can be transformed into the following nonlinear 

programming problem 
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m 

minimize F(x,y) ~ L, y i 
x,y 

y. -f.(x) ~ 0 , 
1 1 

y. +f.(x) ~ 0 , 
l 1 

g.(x) ~ 0 , 
1 

i=l 

i=l,2, ... ,m, 

i =1,2, ... ,m, 

i=l, ... ,m , 
C 

where the fi(x), gi(x) are as in (2.18) and F:Rn+m~R is a new objective. 

The gradient of the objective function is 

F'=[:J. 

(2.19a) 

(2.19b) 

(2.19c) 

(2.19d) 

(2.20) 

where u = [11 ... l]T is an m-dimensional vector representing the gradient with 

respect toy and O = [O O ... O]T is an n-dimensional vector representing the gradient 

with respect to x. 

Suppose that (x*, y*) is a solution to (2.19), then 

/ = If. Cx*) I , 
1 1 

i=l,2, ... ,m. (2.21) 

Define the sets 

I(x*) ~ {i I f.(x*)> O} , 
1 

(2.22) 

J (x*) ~ {i I f. (x*) < 0} , 
1 

(2.23) 

Z(x*) ~ {i I f.(x*)= O} , 
1 

(2.24) 

A(x*) ~ {ii g.(x*)=O}. 
1 

(2.25) 

The gradients of the active constraints for the problem (2.19) are given by 

[ -f~~x*) ] , 
l 

iE I(x*), 
(2.26) 
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iEJ(x*), (2.27) 

iEZ(x*) , (2.28) 

[ O l iEA(x*) , 
g'.(x*) , 

1 

(2.29) 

where ei is an m-dimensional vector with 1 in the ith position and zeros elsewhere. 

By applying the Kuhn-Tucker conditions we get the following necessary 

conditions for optimality 

[ 
u l [ -e. l [ -e. l + L A. , 1 + L A. , l + 
0 iEI 1 f/x*) iEJ 1 - f/x*) 

(2.30) 

L \A. [ ~ei l + µ. [ -,ei l) + L 
iEZ 1 f/x*) 1 - f /x*) iEA 

where Ai~ 0, and µi ~ 0 are the corresponding multipliers. 

Splitting equation (2.30) we get 

' A. f'.(x*)+' A. (-f'.(x*)) + '(A. - µ.)f'.(x*) +' A. (-g'.(x*))=O, L 11 L 1 1 .L 1 1 1 L 1 1 

iEI iEJ iEZ iEA 

A.= 1 iEI 
1 

A.= 1, iEJ 
1 

A.+µ.= 1 ) (2.31) 1 1 iEZ, 
A.~0,µ.~0 

1 1 

A.~ 0, iEA 
1 

or 
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""' a. f'.(x*) + ""' 6. f'.(x*) = ""' A. g'.(x*) L 11 L 11 L 11 

i~Z iEZ iEA 

iEZ (2.32) 

iEA, 

where 

a. g sign f.(x*) . 
1 l 

(2.33) 

The necessary conditions for optimality of the nonlinear f1 problem 

indicate that zero-valued functions fi(x*), iE Z, play an important role in the 

characteristics of the e 1 problem. This fact can be exploited in formulating practical 

engineering problems in which zero (or nonzero) functions at an e 1 solution have 

physical interpretations. 

2.3.4 Illustration of e 1 Approximation 

The robustness of the f1 optimization in dealing with large fj's in (2.16), as 

discussed in the literature (Hald and Madsen 1985, Bartels and Conn 1981), is a 

consequence of the optimality conditions. Since the f1 solution is usually situated at a 

point where one or more fj's are equal to zero, some large fj's are in effect ignored 

completely. In Chapter 5, we introduce a formulation for modelling in which some fj's 

are designed to have large_values at the solution,justifying the use of f1 as opposed to 

the other norms fp with p> 1. In that formulation which uses the concept of multi­

circuit measurements, the change in parameters between different circuits form part 

of the objective, i.e., they are some of the fj's. These fj's are expected to have only a few 

large values but many zeros at the solution. 

In this section, we illustrate the unique properties of f1 optimization by 

considering a rational approximation problem. In particular, the insensitivity of f1 
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optimization to a few large fj's will become evident when the same problem is solved 

using f 1 and the least squares (f2) and the results are compared. 

We want to find the rational approximant of the form (El-Attar, 

Vidyasagar and Dutta 1979) 

2 
xl + x2 w + x3w (2.34) 

K(x) = 
2 1 + x

4 
w + x

5
w 

to the function Vw on the interval wE[O, 1]. Using 51 uniformly spaced sample points 

on the given interval, parameter vector x was obtained by f1 and f2 optimizations. 

The results are summarized in Table 2.1 under case A. Using both sets of parameters, 

the approximating function virtually duplicates the actual function over the whole 

interval. We now introduce a few large deviations in the actual function in two 

separate cases. In case B, the actual function value is replaced by zero at 5 points in 

the interval, namely, at 0.2, 0.4, ... ,1.0. In case C, we use zero at 0.4 and 0.8 and one 

at 0.2 and 0.6. In both cases, f 1 and f2 optimizations are performed and the 

parameters obtained are summarized in Table 2.1. 

The parameters obtained by f1 optimization in cases Band Care consistent 

with their values in case A. On the other hand, the presence of large deviations has 

affected the e2 optimization results severely, and inconsistent parameters are 

obtained. Figs. 2.2(a) and 2.2(b) illustrate the approximating and the actual functions 

for cases B and C. Whereas the approximation using f 1 has ignored the large 

deviations completely and has achieved an excellent match for both cases, the f2 

approximation which was as good as f 1 in case A, has deteriorated. For instance, the 

particular arrangement of deviations in case B has caused the approximating function 

to underestimate the actual function over the whole interval. 
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TABLE 2.1 

APPROXIMATION PROBLEM USING e1 AND e2 OPTIMIZATION 

Case A CaseB CaseC 

Parameter 

x1 0.0 0.0071 0.0 0.0391 0.0 -0.0261 

x2 8.5629 8.5660 8.6664 5.8050 8.5506 12.8828 

x3 29.3124 29.7515 30.5684 30.0523 29.1070 26.0012 

x4 24.7375 25.0108 25.4261 19.6892 24.6452 32.1023 

x5 12.2285 12.3699 12.9234 21.8794 12.0887 7.4300 
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Approximations using e1 and e2 optimizations. The solid line is the 
actual function. Diamonds identify the approximation using e 1 and 
circles represent approximations with e2. Stars represent data points 
after large deliberate deviations. (a) and (b) correspond to cases Band C. 
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2.4 EFFICIENT GRADIENT APPROXIMATIONS 

2.4.1 Introductory Remarks 

One difficulty in extending the practical applications for powerful 

gradient-based minimax and e 1 optimization described previously is that exact 

gradients of all functions with respect to all variables are required. For some 

applications, either an explicit expression of the exact gradients is not available or the 

computational labor for evaluating such gradients is prohibitive. Moreover, it is 

highly desirable to utilize many existing circuit simulation programs which provide 

only the values of the functions (or responses). 

Recently, Bandier, Chen, Daijavad and Madsen (1986) proposed a flexible 

and powerful approach to gradient approximation for nonlinear optimization. It is a 

hybrid method which utilizes parameter perturbations (i.e., finite differencing), the 

Broyden update (Broyden, 1965) and the special iterations of Powell (1970). Finite 

differencing requires one additional function evaluation to obtain the gradient with 

respect to each variable. It is the most reliable but also the most expensive method. 

The Broyden rank-one formula has been used in conjunction with the special 

iterations of Powell to update the approximate gradients. See, for example, the work 

by Madsen (1975) and Zuberek (1984). Such an update does not require additional 

function evaluations but its accuracy may not be satisfactory for some highly 

nonlinear problems or for a certain stage of optimization. Bandier, Chen, Daijavad 

and Madsen (1986) use parameter perturbations to obtain an initial approximation 

and to provide regular corrections. The subsequent approximations are updated using 

the Broyden formula. Special iterations are introduced to improve the performance of 

the Broyden update. The Broyden formula is also modified to incorporate a 



knowledge, if available, of the structure of the Jacobian (e.g., the sparsity of the 

Jacobian). 

The gradient approximation is rather independent of the optimization 

technique and can be used in conjunction with both the minimax and e 1 algorithms 

described in Sections 2.2.4 and 2.3.2. 

2.4. 2 Method of Perturbations 

For a nonlinear optimization problem with m functions fj(x), j = 1, ... ,m, 

the first-order derivative offj(x) with respect to Xi can be approximated by 

af.(x) f.(x+te.) - f.(x) 
_J_=J 1 J (2.35) 
ax. t 

1 

where ei is a unit vector and t is the perturbation on Xi. An approximation of the 

Jacobian 

T T 

J(x) ~ [: l 
using perturbations requires n + 1 evaluations of the functions f(x) where n is the 

number of variables. 

2.4.3 Broyden Update 

Having an approximate Jacobian Jk at a point Xk and the function values 

at Xk and Xk + hk, we can obtain Jk+l using the Broyden rank-one update (Broyden 

1965) 

f(xk + hk) - f(xk) - J khk 

J k + 1 = J k + h Th hr . 
k k 

(2.36) 

The new approximation Jk+l provides a linearized model between two points Xk and 

(2.37) 
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Notice that if Xk and Xk + hk are iterates of optimization the Broyden formula does 

not require additional function evaluations. 

The application of the original Broyden update has shortcomings. As has 

been observed by Zuberek (1984), if some functions are linear in some variables and if 

the corresponding components of hk are nonzero, then the approximation to constant 

derivatives are updated by nonzero values. Applying the Broyden formula to each 

fj(x) as a single function and associating with fj a weighting vector defined by 

we have 

where 

!),, T 
w. = [ w ·1 ... w. ] , 

J J Jll 
W .. ~O' 

Jl 

!),, T 
qjk = [wjl hkl ·· · wjn hkn] · 

(2.38) 

(2.39) 

(2.40) 

Iffj is linear in Xi, we set Wji = 0. In circuit design problems, it may be known that the 

performance function is linear or independent of some parameters over certain 

frequency or time intervals. An approximate Jacobian evaluated using (2.39) also 

satisfies (2.37). 

2.4.4 Special Iterations of Powell 

The Broyden formula updates the approximate gradients along the 

direction hk, If the directions of some consecutive steps of optimization are collinear, 

the Broyden update may not converge. To cure this problem, Powell (1970) suggested 

the method of "strictly linearly independent directions" generated by special 

iterations. Unlike an ordinary iteration where a step is taken in order to reduce the 

objective function, a special iteration is intended to improve the gradient 

approximation. After every p ordinary iterations the function values are calculated at 
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a point obtained using the formula given by Powell (1970) and a Broyden update is 

applied. As suggested by Powell and also Madsen (1975), p = 2 gives satisfactory 

results. 

2.5 CONCLUDING REMARKS 

In this chapter, we reviewed minimax and e 1 optimization techniques 

which are used for design and modelling of microwave circuits in this thesis. The 

emphasis was on the efficient and new techniques developed in the past few years. In 

particular, we have described the Hald and Madsen algorithms for both minimax and 

e1 optimizations. 

The necessary conditions for optimality and the role of zeros of the 

nonlinear functions and active constraints in e1 optimization were discussed and a 

simple illustration of the e 1 approximation compared with the e 2 was presented. 

We described efficient gradient approximation techniques which use a 

hybrid method utilizing parameter perturbations, the Broyden update and special 

iterations of Powell. These techniques, which are rather independent of the 

optimization method, can be used in conjunction with minimax and e 1 algorithms. 

Their use obviates exact calculation of gradients and hence expands the range of 

applications for powerful gradient-based algorithms to many microwave problems in 

which exact gradient evaluation is not feasible. 
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SENSITIVITY ANALYSIS OF TWO-PORTS AND CASCADED 

STRUCTURES - SIMPLE ALGEBRAIC APPROACHES 

3.1 INTRODUCTION 

In Chapter 2, we reviewed recent gradient-based minimax and £1 

optimization techniques. When these techniques are applied to the design and 

modelling of electrical circuits, exact and efficient evaluation of circuit response 

sensitivities with respect to equivalent network parameters becomes of significant 

interest. For linear networks, Director and Rohrer (1969) introduced the concept of 

the adjoint network, which is used in efficient calculation of sensitivities based on 

Tellegen's theorem. They showed that the sensitivities of a particular response with 

respect to all the parameters in a linear network can be evaluated with two network 

analyses: one corresponding to the original network and one corresponding to a 

hypothetical network called the adjoint. Director (1971) showed that, once the 

original circuit has been analyzed, the analysis of the adjoint network is performed 

with minimal extra effort. 

In this chapter, we develop a systematic way of evaluating sensitivities 

without appealing to the adjoint network concept. The computations involve simple 

algebraic manipulations of vectors and matrices. This simple treatment was 

originally suggested by Branin (1973). Starting with the admittance or impedance 

matrix description of a network, we develop formulas to evaluate first- and 

second-order sensitivities of its two-port equivalent with respect to a generic variable 

<)> appearing in the matrix. These formulas are then used to evaluate input and output 

29 
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port response sensitivities. To accommodate active devices, we consider the use of 

controlled sources in the network and present formulas for sensitivities of two-port 

S-parameters which are commonly used for both active and passive devices. 

Recently, an important result in sensitivity analysis of lossless two-ports 

was presented by Orchard et al.(1983, 1985). Using the matrix notation of this 

chapter, we prove their result in an elegant and simple way and further develop it to 

the computation of group delay. 

Finally, in preparation for the design of multiplexing networks which 

belong to the class of branched cascaded networks, we review some of the concepts in 

sensitivity analysis of cascaded 2-ports by Bandler et al. (1978, 1981). Utilizing a 

method which obviates the use of auxiliary or adjoint networks, we discuss the sensi­

tivity of branched cascaded circuits with examples on specific frequency responses. 

3.2 GENERAL TWO-PORTS 

3.2.1 Unterminated Two-Ports 

Assume that the admittance matrix description of an equivalent circuit 

model is available. All derivations and formulas presented in this chapter have dual 

counterparts for the case of a circuit described by its impedance matrix. The general 

case of a hybrid matrix could also be handled, however, we avoid generalization for 

the sake of the simplicity of notation. 

From the four types of controlled sources, the voltage controlled current 

source (VCCS) can be easily handled in an admittance matrix description. The other 

three types are converted into VCCS through an intermediate step involving 

gyrators. This is an exercise described in Chua and Lin (1975), as well as other text 

books. 
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Consider an nXn admittance matrix Y arranged such that the input and 

output responses of interest are evaluated using the voltages at nodes 1 and n. In this 

section, we develop a comprehensive set of formulas for first- and second-order 

sensitivities of the two-port open-circuit impedance matrix obtained from Y. 

Figure 3.1 illustrates the block representation of the circuit and its two-port 

equivalent. We have 

YV= I (3.1) 

where I = [110 ... 0 In]T and V = [V1 V2 ... Vn]T are the current excitation and the 

voltages, respectively. Denote the two-port currents and voltages by Ip = [I1 In]T and 

V p = [V 1 V nlT. By defining 

where e1 = (1 0 ... O]T and en = (0 ... 0 l]T, we have 

Vp = UTV 

and 

I= Ulp. 

From (3.1), (3.3) and (3.4) we can solve for 

V p = UT y- l I = UT y- l U Ip 

which gives 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

using the definition of two-port open-circuit impedance matrix z. By solving the 

system of equations 

(3.7a) 

and 

Yq = en, (3.7b) 
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we evaluate z as 

Differentiating (3.6) with respect to a variable q> in Y, we have 

z<t> = - uTy- 1 Yq, y- 1 u, 

where Zq, and Y q, denote the derivative of z and Y with respect to q>. Now, 

Ty-1 ·AT 

UTy-1= [el ] = [P] =[A A]T 
T -1 AT p q ' 

e y q 
n 

where p and q are obtained by solving the systems of equations 

and 

Also, using the identity 

y-l U = [Y- 1 e1 y- 1 enl = [p q], 

(3.9) becomes 

A AT 
Zq, = -[p q] Yq, [p q] . 

As an example, suppose that q> appears in Yin the following positions: 

k e 

i -4> 
Y= 

j -4> 

then (3.13) becomes 

(3.8) 

(3.9) 

(3.10) 

(3.lla) 

(3.llb) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Having evaluated Zq,, we can calculate Zx, i.e., the sensitivity of z with respect to 

actual circuit parameters, by applying the chain rule of differentiation. Table 3.1 
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shows some possible circuit parameters and the relationship between zx and zq,. The 

circuit parameters considered are conductance G, resistance R, capacitance C, 

inductance L, and two parameters associated with a VCCS with a transconductance 

gme-j2rrfi, namely delay i; and gm which denotes the magnitude of transconductance 

atdc. 

3.2.2 Second-Order Sensitivities 

In optimization of responses such as group delay and gain slope, 

second-order derivatives of z are needed. In such cases, zw, which denotes the 

sensitivity of z with respect to angular frequency w, is used to evaluate the response 

itself. The sensitivities with respect to circuit parameters are then calculated using 

Zq,w, which is a second-order sensitivity expression. 

Using (3.9) we have 

Zw = -UTy-l Yw y-l U, 

which can be differentiated with respect to cp as 

z = q>W 

/I.AT -- AAT T 
[p q] y <t> [ p q ]- [p q] y q>W[p q] + [p, q '] y <t> [p q] . 

Four systems of equations are solved to obtain [p q] and [p' q']. They are 

Yp = y P, 
(,J 

Yq=Y q, 
(,J 

yT , - yT A 

and 
p - wP' 

yTq, = yT q. 
(,J 

(3.16) 

(3.17) 

(3.18a) 

(3.18b) 

(3.18c) 

(3.18d) 
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TABLE 3.1 

SENSITIVITIES OF OPEN-CIRCUIT IMPEDANCE MATRIX 

W.R.T. SOME POSSIBLE NETWORK PARAMETERS 

X 

G 

R 

C 

-1 
L -z 

sL2 <l> 

-sg e-s-c z 
m <l> 

s =ju>= j2nfis the complex frequency 
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3.2.3 Computational Considerations 

For a general two-port, it has been established that solving eight systems of 

equations, namely (3.7), (3.11) and (3.18), provides complete information for 

evaluation of first- and second-order sensitivities of the open-circuit impedance 

matrix z, which in turn leads to sensitivity evaluation of input and output responses. 

From a computational point of view, this means one LU factorization of matrix Y 

followed by eight forward and backward substitutions (FBS). If matrix Y is 

symmetrical, only four FBS are required since p = p , q = q, p' = p and q' = q. 

For those familiar with the concept of the adjoint network, an explanation 

is in order here to justify the need for performing as many as eight FBS's in a complete 

sensitivity analysis. Using the adjoint network approach, the first-order sensitivity of 

a particular response is calcuated via 2 FBS's and the second-order sensitivity 

requires 4 FBS's for any linear network. An example of second-order sensitivity 

evaluation can be found in calculation of group delay sensitivities discussed by 

Bandler, Rizk and Tromp (1976). The important difference here is that with the 

unterminated two-port, we have not committed ourselves to excitation or termination 

at either port and this freedom has doubled the number of possible FBS's required. By 

designating excitation and termination ports, the matrix manipulation method is 

computationally equivalent to the adjoint network approach with the difference that 

algebra has replaced circuit interpretation. 

The use of an unterminated two-port model has the advantage that we can 

obtain the transmission matrix and its first- and second-order sensitivities of a 

two-port equivalent for a complicated subnetwork inside a large network in an 

independent fashion. This means that the excitations and terminations in other parts 

of the large network are ignored. Later in this chapter, we will describe efficient 
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methods for simulation and sensitivity analysis of cascaded networks with the 

requirement that the. transmission matrix and its sensitivities for each two-port be 

known. 

3.2.4 Terminated Two-Ports 

If the two-port equivalent obtained by reduction of admittance or 

impedance matrix is part of a larger network, e.g., a filter in a multiplexer structure, 

then we evaluate the transmission matrix and its sensitivities for the two-port and 

use the cascaded network approach. However, in many of the examples in this thesis, 

such as modelling of multi- coupled cavity filters and GaAs FET's, the entire analysis 

is almost completed after reduction to two-ports since the input and output responses 

and their sensitivities could be readily evaluated once the unterminated two-port 

analysis is done. 

Assume that the two-port is terminated by an arbitrary load YL and a 

sourceJ =1 A with an admittance Ys. We have 

and 

Denoting 

T~ [Ys o] 
0 YL 

we write (3.19) and (3.20) in a compact form, as 

Using the fact that VP = z Ip subject to (3.22), we solve for VP as 

V p = (1 + z T)- 1 z e1 = H z e1 , 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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where 

H ~ (1 + z T)- 1 . 

Furthermore, the first-order sensitivities ofV P can be derived as 

(V p)<t> = [H<t> z + H z<t>] e1 

= [-H (H- 1)<1> Hz+ Hz<t>] e1 

= H [ - (z<t> T + z T <I>) H z + z<t>] e1 

= H [-(z<t> T + z T<t>) VP + z<t> ei] 

= H [z<t> ( -T V p + e1) - z T <I> V p] 

= H (z<t> Ip - z T <I> V p). 

(3.24) 

(3.25) 

The derivation of the second-order derivative is similar. Here we state the result, 

which is derived in Appendix A, as 

(V p)<t>w = - H {zw [T <t> V p + T (V p)<t>] + z<t> [Tw V p + T (V p)w] 

+ z [T<t> (V p)w + Tw (V p)<t> + T<t>w V p] - z<t>w Ip}. (3.26) 

Sometimes, as for the evaluation of the output reflection coefficient, it is 

also of interest to solve the network excited at the output port. The solution, denoted 

A 

by V p, can be obtained by simply replacing e1 by en in (3.23), where en= [O l]T. The 

A 

sensitivity expressions ofV Pare the same as those of VP except that e1, Ip and VP are 
A A 

replaced by en, Ip and V p, as appropriate. 

Various frequency responses and their sensitivities can be calculated using 

the formulas obtained for the two-port. Table 3.2 summarizes some useful formulas 

for various responses. The formulas have been derived from their conventional 

definitions, having in mind that we have already presented formulas for 

VP = [V 1 V nJT and its first- and second-order sensitivities. The sensitivities for each 

response are obtained by simple differentiation, e.g., for the group delay denoted by 

Ta, we have 
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TABLE3.2 

VARIOUS FREQUENCY RESPONSE EXPRESSIONS 

Response 

input reflection 
coefficient (Pin) 

input return 
loss 

transducer loss 

insertion loss 

gain slope 

group delay 

Formula 

- 2 0 log 10 IV n Y Tl 



40 

(T ) = -Im [ (V )<t>w - (V n\p(V n\" + (Y S)<t>w - (Y s\CY s\" l . 
G 4> V y2 y y2 

n n S S 

(3.27) 

As mentioned earlier, starting with the impedance matrix description of a 

network, we can derive dual formulas for all equations derived in this chapter. Such 

formulas for a symmetrical impedance matrix have been presented by Bandler, Chen 

and Daijavad (1985a, 1986a). 

3.2.5 S-parameter Sensitivities 

The use of scattering coefficients or S-parameters is popular in the 

microwave area. Scattering coefficients are usually defined from a wave point of 

view. However, in this section we relate two-port S-parameters to the open-circuit 

impedance matrix of the two-port and derive their sensitivities. 

From the definition ofS-parameters, we have 

(3.28a) 

(3.28b) 

(3.28c) 

where 11, V 1 and In, V n are the current and voltage at ports 1 and 2, respectively, of a 

two-port network, a1, b1 and a2, b2 are the incident and reflected waves at ports 1 and 

2, respectively, and Zo is the normalizing impedance. The reason for using subscript n 

for voltage and current at port 2 is to be consistent with the previous notation. 
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Denoting the normalized open-circuit impedance by z, we have 

1 
z = -z z ' 

0 

(3.29) 

where z and its sensitivity with respect to <l> denoted by z<P have been derived in (3.8) 

and (3.13). From the definition ofz, we have 

and after simple manipulation of (3.28) and (3.30), we get 

or 
- -

(z-l)=S(z+l). 

From (3.32), it follows that 

where 
-

2 z12 l 
Ll-2( z +l) 

11 

Ll = ( z11 + 1) ( z
22 

+ 1) - z
12 

z
21 

. 

Also, differentiating both sides of (3.32) w.r.t. <)>, after simplification, gives 

1 
S = - (1-S)z (1-S) 

<P 2Z <t> ' 
0 

i.e., S<P can be readily evaluated from z<P. 

3.3 LOSSLESS TWO-PORTS 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

Lossless reciprocal two-ports, usually arranged as ladder networks, have 

been the preferred circuit arrangement for filters from the time that filters were first 

used. Many types of filters, e.g., microwave, RC-active, digital, and, most recently, 

switched capacitor filters, are often modelled on a prototype lossless ladder. Recently, 

Orchard, Ternes and Cataltepe (1983, 1985) presented new and simple first-order 
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sensitivity expressions for reciprocal lossless two-ports. From the time the formulas 

were introduced by Orchard et al. (1983) until their proof was presented in 1985, three 

different and original proofs were presented by Handler, Chen and Daijavad (1984a, 

1984b, 1985b). In this section, we present a proof which is based on the ideas of the 

previous publications, however, it is consistent with the notation used in this chapter. 

Starting with an admittance matrix Y and assuming excitation J with its 

corresponding conductance Gs at port 1 and the load conductance GL at port 2, we 

have 

YV = J e1, (3.36) 

where 

Y = G8 e 1ei + GLene! + Y'. (3.37) 

The reason for the partitioning of Y will become clear as we proceed. We will now 

show that it is possible to obtain av 1/aq> and av n/aq> by solving only (3.36), i.e., by 

avoiding any auxiliary system, given certain conditions on Y'. 

From (3.36), it immediately follows that 

1 T aY 
--V -V 

J iJq> 

given that Y is symmetrical, which requires Y' to be symmetrical, i.e., 

(Y'l = Y'. 

(3.38) 

(3.39) 

Also, differentiating (3.36) with respect to q> and premultiplying it by (V*)T gives 

T av T aY 
(V*) Y - = - (V*) - V . 

iJq> iJq> 
(3.40) 

If Y' has the property that 

Y' = -(Y')*, (3.41) 

then 
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y +(Y*)T 2{G e eT +G e eT} + Y' + [(Y')*f 
S 1 1 L n n (3.42) 

T T 
= 2{G8 e 1e 1 + GL en en} . 

Evaluating Y from (3.42) and substituting the result in (3.40) gives 

(V*)T [2{G e eT +G e eT} -(Y*)Tl av= -(V*)T aY V. 
Sll Lnn a4> aq> 

(3.43) 

Now, by noticing that 

(V*l (Y*l = Jei, (3.44) 

(3.43) gives 

* aV 1 * aV n aV 1 T aY 
2G

8
V

1
-+2G V --J-=-(V*) -V. 
dq> L n aq> aq> dq> 

(3.45) 

Finally, by substituting (3.38) in (3.45) and using the input reflection coefficient .P
1 

given by 

(3.46) 

we get 

av y 
n 1 * Ta 

- (p V - V*) - V . 
2G v* 1 a4> 

L n 

(3.47) 

To summarize the above derivations, it has been proved that given 

conditions (3.39) and (3.41) for matrix Y', av nldq> can be evaluated by solving only one 

system of equations, namely (3.36). Conditions (3.39) and (3.41) translate into having 

a lossless reciprocal network. 

We can use (3.47) to derive some formulas in the form presented by 

Orchard, Ternes and Cataltepe (1983) and in the calculation of group delay. Given the 

definition of the transducer coefficient 8 as 

8 ~ fnH, 
(3.48) 

where 

(3.49) 



we have 

Using (3.47), we get 

ae 
a4> 

44 

1 avn 
--
v aq> 

n 

ae 1 • T av - = - (V*-p V) - V 
aq> 2P 1 aq> ' 

n 

where P n is the power in the load, given by P n = GL V n V n *. 

(3.50) 

(3.51) 

As an example, assume that q> represents Yij which denotes the admittance 

connected between nodes i and j, therefore 

and (3.51) gives 

ae 
ay .. 

lJ 

aY T - = (e.-e.)(e.-e.) , 
aq> 1 J 1 J 

1 [ * * * * l - (V. -p
1
V.) - (V. - p

1
V.) (V. - V.) 

2P 1 1 J J 1 J 
n 

2 * 2 IV .. I - p 1V .. 
lJ lJ 

2P 
n 

(3.52) 

(3.53) 

where V ij = Vi- Vj represents the voltage across nodes i and j. This form of the 

equation can be found in the work by Orchard et al. (1985). 

We can evaluate the group delay using (3.51) as 

[ ae ] 1 \ • T aY J T = Im - = - Im (V*-p V) - V 
G aw 2P 1 aw 

(3.54) 

n 

Many elements of solution vector V are usually used in calculation of group delay 

since. aY/aw has many nonzero elements. 

As has been noted by Orchard et al. (1985), for purely numerical work, the 

new formulas for lossless reciprocal two-ports have little to offer over other methods, 

e.g., the adjoint network method. Their value lies primarily in their simple analytic 

form. Orchard et al. have also shown the application of the new formulas to active 

switched-capacitor filter design. This is merely an exercise to prove the usefulness of 
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first-order sensitivity information in applications where nonideal effects which can be 

represented by a first-order change are present. 

3.4 CASCADED STRUCTURES 

3.4.1 Review of Concepts 

The analysis of cascaded networks plays an important role in the design 

and optimization of microwave circuits. Bandler, Rizk and Abdel-Malek (1978, 1981) 

presented an attractive, exact and efficient approach to network analysis for cascaded 

structures using the concept of forward and reverse analysis. The fundamental 

assumption is that the transmission matrices for the individual components of the 

network and their sensitivities with respect to possible variables inside them are 

available. Bandler et al. discussed the use of their approach in large-change 

sensitivity analysis, in analysis of simple branched circuits (branches in series or 

parallel) and in analysis of2p-port cascaded networks. 

In this section, we use some of the original ideas by Bandler et al. and 

further develop them to general branched cascaded networks with arbitrary 

junctions, in preparation for the analysis of multiplexer structures. 

To fulfill the requirement of having transmission matrices and their 

sensitivities for individual components of the network, we refer to Section 3.2 and 

specifically the discussions on the unterminated two-port. We derived the two-port 

impedance matrix z and its first- and second-order sensitivities for a complicated 

subnetwork represented by an n X n admittance matrix. The transmission matrix and 

its sensitivities can be readily evaluated from z and its sensitivities. We have 

A = [ A B l = _!__ [ z11 

CD z21 1 

'11 "22- '1i'21 l 
z22 

(3.55) 
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and 

2 
A <I>= ~ [ (zll) 4> z21 -(z21\ zll (z 11) 4> z22"21 + (z~ <j>zll z21 - (zl~ <j>z21 -(z21) <I> z 11 z22 l . (3.56) 

(z21) -(z21)q> (z2~cpz21-(z21)cpz22 

In considering the cascaded structures, the network is divided into 

subnetworks by reference planes. We define the equivalent transmission matrix 

between reference planes i and j by 

where 

[

A .. 
Q .. ~ [r.. S . .] ~ lJ lJ B ·· 1 

11 11 11 C 
. ij 

D .. , 
lJ 

[ 
A .. ] 

r .. ~ IJ ' 
lJ C 

ij 
[
B .. l 

s .. ~ lJ . 
lJ D 

ij 

(3.57) 

(3.58) 

In a forward (reverse) analysis, Qij is computed by initializing row vectors 

e1T and e2T (column vectors. e1 and e2) at reference plane i(j) and successively 

premultiplying (postmultiplying) each transmission matrix by the resulting row 

(column) vector until reference plane j(i) is reached. e1 and e2 are unit vectors given 

by [1 O]T and [O l]T, respectively. 

Sensitivities of Qij with respect to any variable q> located between reference 

planes i andj are evaluated as 

aQ.. [ (A . .) .-1' 
--21= lJ'i:' 

aq> (C • .) .-1' 
lJ 'i:' 

(B.J.-1' l a 
lJ 'i:' = L - cQ~.), 

(D . .) eE I a<p IJ 
lJ <p ct> 

(3.59) 

where Iq, is an index set whose elements identify the transmission matrices 

containing <p and aQl!a<p is the result of a forward or reverse analysis between 

reference planes i andj with the eth matrix replaced by its derivative with respect to 

<p. Second-order sensitivities can be derived in a similar manner as 

2 a Q .. 
__ IJ = 
a<paw [ 

(A . .) .-1' 
lJ 'i:'(u 

(C . .) .-1' 
lJ 'i:'(u 

(B . .) .-1' l 
lJ'i:'Cu =L L 

(D . .).-1' eEI mEI 
lJ 'i:'(u ct> u) 

(3.60) 
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where I$ and Iw are index sets, not necessarily disjoint, identifying those matrices 

which are functions of q> and w. Also we defined a2Qi/m/(aq>aw) as the second-order 

sensitivity of Qij as if q> and w exist only in the eth and mth matrices; respectively. 

3.4.2 Thevenin and Norton Equivalent Circuits 

Using the method of forward and reverse analysis, Thevenin or Norton 

equivalent circuits can be evaluated at the ports of interest. The equivalents are then 

readily employed to calculate the responses of interest. Consider the network shown 

in Fig. 3.2 where it is desired to evaluate the Thevenin equivalents in a forward 

analysis and Norton equivalents in a reverse analysis. Denoting the Thevenin 

equivalent voltages and impedances at reference points i andj by Vsi, zsi, v,d and z,d, 

we have 

yi 
vj = s s . 

A .. + z
8
1 c .. 

1 J 1 J 

(3.61) 

and 

B .. + z1S· D.. (3.62) 
zj = lJ lJ 
s . ' 

A .. + z1

8
c .. 

lJ lJ 

where reference plane i is located towards the source with respect to j. The 

sensitivities are obtained as 

(3.63) 

and 

[ 1 Z~] (Qijl.i, [ -Z1 l + (Z~)<I> (Dij - z1 cij) 
(Zj) = _______ 1 ________ _ 

s <I> A . . + zsi c .. 
lJ lJ 

(3.64) 
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Performing reverse analysis and denoting Norton equivalent currents and 

admittances at reference planes i andj by ILi, YLi, Ir) and Yr), we have 

and 

Also, 

[-Yi 
L 

yi = 
L 

C .. + yJL. D .. 
1 J 1 J 

A .. + yJL. B .. 
l] lJ 

Ii = Ij = 0 L L . 

l](~}q, [ ~j l + (Y~)q, (Dii -Y~ Bii) 
(Y~\ = ________ L ___ -------

A .. +YJL B.. 
lJ lJ 

(3.65) 

(3.66) 

(3.67) 

The use of Thevenin and Norton equivalent circuits in evaluation of 

various frequency responses in branched cascaded networks will be described in 

Section 3.4.4. 

3.4.3 Branched Cascaded Circuits 

Simulation and sensitivity analysis of branched cascaded circuits using the 

method of forward and reverse analysis, which was considered briefly by Bandler et 

al. (1978), has become more important due to their application in multiplexing 

networks. Bandler, Daijavad and Zhang (1985a, 1985b, 1986) introduced a unified 

notation, considered arbitrary junctions and showed the effective use of the analysis 

in the design of multiplexers. The multiplexing networks will be described in more 

detail in Chapter 4. In this section, we consider general branched cascaded networks 

without describing details of subnetworks. 

A branched cascaded structure is shown in Fig. 3.3. For such a structure, 

we want to calculate reflection coefficients at the common port and branch output 
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ports as well as branch output voltages. Simultaneously, first- and second-order 

derivatives are to be calculated. 

The basic components of the structure are 2-port elements or 3-port 

junctions. The 2-ports, as has been mentioned before, may represent equivalents for 

complicated networks such as filters. For the 3-port junctions, a 3-port description in 

the form of an arbitrary hybrid matrix must be given. To simplify the structure to a 

cascade of2-ports, the junctions are reduced to 2-port representations. 

Consider the 3-port junction shown in Fig. 3.4. To carry the analysis 

through the junction along the main cascade, we terminate port 3, e.g., by calculating 

the equivalent admittance seen at this port given by Y 3 = -13/V 3 and represent the 

transmission matrix between ports 1 and 2 by A. The analysis can also be carried 

through the junction into the branch by terminating port 2, e.g., calculating 

Y 2 = -12/V 2 and denoting the transmission matrix between ports 1 and 3 by D. 

As an example, suppose the 3-port junction is characterized by a hybrid 

matrix H such that 

(3.68) 

where H = [hijlax3· Then A = [%fax2 can be found from 

·-1 
a .. = ( - 1 Y [h .. - h. 3 h3 ./ (Y3 + h33) ] . 

lJ lJ 1 J 
(3.69) 

For various forms of hybrid matrices H, the 2-port representation A or Dis 

evaluated in a similar manner using elements of Hand the equivalent termination at 

port 3 or 2. 

Having reduced the junctions to 2-port representations, the network 

structure is transformed to a simple cascade of two-ports. The reference planes in the 

entire network are defined uniformly and numbered consecutively beginning from the 

main cascade termination, which is designated reference plane 1. Refer to the 
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A 3-port junction in which ports 1 and 2 are considered along a main 
cascade and port 3 represents a channel or branch of the main cascade. 
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network of Fig. 3.3 which consists of N sections. A typical section, e.g., the kth one, 

has a junction, n(k) cascaded elements of branch k, and a subsection along the main 

cascade, as shown in Fig. 3.5. Moving along the main cascade first, the source port is 

reference plane 2N + 2. The termination of the kth branch is called reference plane 

i;(k) and the branch main cascade connection (branch input port) is reference plane 

o(k), k = 1,2, ... ,N, where 

i;(l) = 2N +3 

o (k) = i; (k) + n (k) , k = 1, 2, ... , N (3.70) 

i; (k) = o (k - 1) + 1 , k = 2, 3, ... , N . 

3.4.4 Various Frequency Response and Sensitivity Formulas 

Thevenin and Norton equivalents evaluated at reference planes of interest 

which were discussed for simple cascaded structures, are used for branched cascaded 

networks as well. By reduction of junctions to 2-ports along the main cascade, 

(terminating port 3 of the junction) we have a simple cascaded network as shown in 

Fig. 3.2. To evaluate branch output voltages, 3-port junctions are reduced to 2-ports 

by terminating their port 2. The result is again a simple cascaded structure as 

illustrated in Fig. 3.6. 

Having numbered all reference planes, we use Norton equivalent 

admittances to evaluate admittances Y 3 and Y 2 required in reduction of junctions to 

2-port representation. As special cases of (3.65), we have 

C 
yk = yo<k> = o(kl, -c(k) ' k = 1, 2, ... , N . 

3 L A 
a(k), -c(k) 

(3.71) 

Since yL-c(k) = 0. To evaluate Y l, main cascade termination must be given, e.g., for a 

short-circuit termination, 

(3.72) 
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since Y L 1-+oo. 

The common-port reflection coefficient is also computed using the Norton 

equivalent admittance (at the source reference plane) as 

po= l _ 2R y2N +2 
S L 

(3.73) 
2 RS D2N+2,1 

=1- -----
B2N+2,1 

again by assuming a short-circuit main cascade termination. Notice that 2N + 2 is the 

reference plane to the left of Rs, i.e., Rs has been taken into account in evaluation of 

Y L 2N + 2. The corresponding sensitivity formula is 

(3.74) 

whereB=B2N+2,1 andD'=D2N+2,l· 

If the reflection coefficient at the kth branch output port is to be calculated, 

we use Thenevin equivalent impedance at reference plane i; + 1. In this case, (3.62) 

and (3.64) are specialized to 

and 

i;+l B z =-s A 

(B) - (A) zi;+l 
(Z i; + 1) = <l> <l> s 

s <l> A 

(3.75) 

(3.76) 

where A =A2N +2, i;+ 1, B =B2N +2, i;+ 1, and i; =-c(k). This is simply due to the fact that 

there is no impedance to the left of reference plane 2N +2, i.e. Zs2N+ 2 =0. The 

corresponding output reflection coefficient is defined as 

k !!:. ztl - R~ (3.77) 
p = 

zi;+l+Rk, 
S L 

where RL k is the load resistance at the kth channel output. Clearly, (3.76) is utilized 

in the evaluation of (pk)<l> as 
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czi;+ 1) c1- pk) 
(pk) = _S_$ __ _ 

$ zi;+l + Rk 
S L 

(3.78) 

The branch output voltage is also computed by utilizing the Thevenin 

equivalent voltage source and impedance at reference plane i:; + 1. For the kth branch, 

we have 

(3.79) 

assuming a normalized excitation at the source port. This can be explained by 

noticing that Vk is evaluated using a voltage divider once Vsi;+l is known. Using 

(3.61) and taking into account that Vs2N+ 2 = 1 and Zs2N+ 2 = 0, we have 

k k [ CA)$ czt1\ ] 
(V) =-V -+---. 

$ A ~ + z;+1 
(3.80) 

The appropriate reference planes are as in the case of output reflection coefficient, i.e., 

The second-order sensitivity ofVk with respect to q, and w, i.e., a2vk/(aq, aw), 

is obtained via evaluation of a2zsi;+ 1/(aq, aw). Substituting w for q, in (3. 76) and 

differentiating w.r.t. q>, gives 

CB) - zi;+l CA) - CA) czi;+i) - czi;+i) CA) 
«t>w S «t>w wS ¢ S w $ (3.81) 

A 

where double subscript q,w denotes a2/(aq, aw). 

Now replacing q, by win (3.80) and differentiating with respect to q, gives 

k k 
(V ) $ (V t _ yk [ A (A) «t>w - A$ Aw + 

yk A2 
(3.82) 
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Using reflection coefficients at the common-port and branch output ports 

(pO and pk), branch output voltages (Vk) and the first- and second-order sensitivities 

( 
ap

0 al avk avk and a2vk) 

aq> ' cJq> ' aq> ' aw c3q> aw 
we can tabulate some other frequency responses and their sensitivities. Table 3.3 

summarizes some responses of interest and the corresponding sensitivities. 

3.4.5 An Interesting Result in Sensitivity Evaluation of Branched Cascaded 

Networks 

In reporting a novel approach for simulation and sensitivity analysis of 

multiplexers, Bandier, Daijavad and Zhang (1985a) presented an interesting result 

which can be applied to all branched cascaded networks. They proved that for a 

variable parameter at any part of the network, the sensitivities of insertion loss 

between source and a branch output port, for all branches located between the 

variable element and the main cascade termination, have identical values. They also 

introduced an elegant notation for treating terminations. 

Consider the basic geometry of Fig. 3.7 in which a "channel" is equivalent 

to a branch. We have already discussed the reduction of 3-port junctions to 2-port 

equivalents. Denoting the vector containing voltage and current at an arbitrary 

reference plane x by ux, we have 

u 1 = Au2 (3.83) 

or 

u 1 = Du3 
' 

(3.84) 

where 1, 2 and 3 are the port reference planes for the junction (see Fig. 3.4) and A (D) 

is the appropriate transmission matrix. Evaluation of A (D), as discussed in 

section 3.4.3, requires the use of elements of the 3-port hybrid matrix Hand 
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TABLE 3.3 

VARIOUS FREQUENCY RESPONSES AND THEIR SENSITIVITIES 

Response 
Type Formula 

return loss 
(common port or - 20 log10IPI 
channel output port) 

41Vkj2Rs 
transducer loss t -10 log 10 ( Rk ) 

L 

[ [Vk[ (Rs+ Ri'_) l insertion loss t -20 log10 k 
RL 

(Vk) 
gain slope t cRe[~] 

k 

group delay t ['Y),,,l -Im --
yk 

20 
c=---

folO 

t between common port and channel k output port 

Expression for 
Sensitivity w .r. t~ q> 

cRe [ :~] 

(Vk) 

cRe[7] 

(Vk) 

cRe [ v/] 

k k k 
[ ry ) .p., (V \ ry ),,, l 

cRe ---
yk (Vk)2 

k k k 
- Im [ ry ) .p., - (Y \ (V ),,, l 

yk (Vk)2 
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equivalent termination at port 3(2). We also have 

aTu2=.PTu3, 
(3.85) 

where a and Pare obtained from H. For instance, for the hybrid description used in 

(3.68), we have 

(3.86) 

and 

T p = [h33 1]. (3.87) 

Terminations for the structure are treated in a unified manner. If t denotes 

a terminating reference plane (in Fig. 3.3, t could be reference plane 1, reference plane 

2N + 2 or any of the branch terminations i;(k)) we have 

(µt? ut =ct. 
(3.88) 

For example, for a short-circuit termination, a terminating load of impedance Z and a 

terminating voltage source E, we have µ = [1 Q]T, c = 0, µ = [1 -Z]T, c = 0 and 

µ = [1 O]T, c = E, respectively. A termination can be transferred from one reference 

plane to another if the transmission matrix between the two planes is known. For 

instance, from ut1 = Qt
1
¼ ut2, it is easily shown that µt2 and ct2 in (µt2)T ut2 = ct2 are 

evaluated from 

t t t2 tl 
(µ 2) T = (µ 1) T Q , C = C , 

\t2 
(3.89) 

where Qt
1
t

2 
is the equivalent transmission matrix between planes t1 and t2. The 

concept of transferring Thevenin and Norton equivalents from one reference plane to 

another which was discussed before is a specialized variation of the above termination 

transfer. 

Assuming that the branch output port at, say, reference plane i; is of 

interest, the structure is simplified as shown in Fig 3.8. In Fig. 3.8, Qx1 and Q8y are 

the equivalent transmission matrices between the appropriate planes. Their 

evaluation involves the calculation of equivalent terminations looking into the 
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branch from the main cascade, i.e., transferring branch output port terminating 

relationships to the junction and then reducing the three-port junction to two ports. 

By invoking (3.85) at the junction in Fig. 3.8, we get 

aTQ ul=.PTQ ut. 
xl o,; 

Also, we have 

us= Q ul 
sl 

(3.90) 

(3.91) 

where Qs1 represents the equivalent transmission matrix of the whole structure 

between main cascade source and load terminations. To evaluate ul, ut and us 

(6 unknowns) we use (3.90) and (3.91) (3 equations, noting that (3.91) yields two 

relationships) and three terminating conditions at reference planes 1, "I; ands. 

Consider an open-circuit termination at reference plane "I;, e.g., by taking a 

nonzero load impedance as part of Qo,;. Also assume a load impedance Z for the main 

cascade and a voltage source E. We have ul = Il[Z l]T, ut = [Vt O]T and 

us = [E ls]T. Substituting the terminating conditions in (3.90), we get 

(3.92) 

where e1 is the voltage selector vector (1 O]T. Combining (3.91) with the terminating 

condition at s gives 

E=eiQ.111[) (3.93) 

Finally, eliminating Il between (3.92) and (3.93) results in the branch output voltage 

as 

UT~l[:IE 
Vt=---------

(13 T Qot el) (ei Qsl [ : Ji 
(3.94) 
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For a short-circuit termination of the main cascade, [Z l]T is simply 

replaced by e2 = [O l]T in (3.94), since Z = 0. On the other hand, for an open- circuit 

termination, we replace [Z l]T by e1. (notice that [Z l]T = Z[l (1/Z)]T and z~oo for 

the open-circuit). 

Evalution of the braneh output v-oltage and the corresponding insertion loss 

using (3.94) is an alternative method to what was described in Section 3.4.4. Using 

(3.94) we can also show an interesting property for the insertion loss sensitivities. 

From Table 3.3 we know that the sensitivity of insertion loss between the source and 

the branch output port i:; is directly proportional to (V-c)<l> fVT,. Now, for a variable q> 

located between the branch considered and the source (i.e., inside Q8y), Qx1 and Qo,; 

are independent of q>. Applying the mathematical property 

a lax lac 
x=-~--=,_--

bc X aq> C <J<l> 

if a and bare independent of q>, and using (3.94), we have 

(V') ei (Qs1l41 [ : l 
__ <l> = - ------ (3.95) 

eiQs1 [: l 
It is clear that Q8 1 and (Q8 1)~ are independent oh, i.e., for all other branches to the 

right of the branch considered, the insertion loss sensitivity w.r.t. the same q>, has the 

same value. An example clarifies the result of the above argument. For a variable in 

section N of the structure, the insertion loss (between source and branch output port) 

for branches N -1, N -2, ···, 1 have identical sensitivities. Similarly, for a variable in 

section N -1, the insertion loss sensitivities corredponding to branches N -2, ···, 1 are 

identical. 

The result reported in this section leads to considerable computational 

saving in evaluation of insertion loss sensitivities for branched cascaded networks. 
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3.5 CONCLUDING REMARKS 

In this chapter we used simple algebraic manipulation of vectors and 

matrices to develop a unified approach for sensitivity analysis of a general class of 

networks, namely, the branched cascaded structures_ We provided a general scheme 

and useful formulas to evaluate the unterminated two-port equivalents and their 

first- and second- order sensitivities for complicated subnetworks. This allows us to 

conduct the sensitivity analysis of subnetworks inside a cascaded structure in an 

independent fashion. Once the transmission matrices of all subnetworks and their 

derivatives w.r.t. possible variables in them are evaluated, an organized and elegant 

method is used to perform simulation and sensitivity analysis of large branched 

cascaded structures. 

Our method of dealing with the sensitivities is straightforward, since the 

use of the adjoint network concept has been avoided. The method is applicable to 

almost any complex linear circuit structure in the frequency domain. 

We provided the proof for a recent and general sensitivity formula for 

lossless reciprocal 2-ports and derived an interesting result for insertion loss 

sensitivities in branched cascaded structures. 

The importance of efficient sensitivity analysis becomes evident when the 

performance of modern gradient-based optimization algorithms are compared with 

the slow non-gradient older methods. 



4 
DESIGN OF MULTIPLEXING NETWORKS 

4.1 INTRODUCTION 

The design of contiguous band multiplexers consisting of multi-coupled 

cavity filters distributed along a waveguide manifold was a problem of significant 

theoretical interest for several years (Atia 197 4; M.H. Chen, Assal and Mahle 1976), 

however, the manufacturing of such structures with more than five channels did not 

appear to be feasible. Recently, the subject has turned into an important development 

area in microwave engineering practice due to reports by leading manufacturers of 

successful production of 12-channel contiguous band multiplexers for satellite 

applications. The works by Tong et al. (1982,1984) of ComDev, M.H. Chen (1983, 

1985) of TRW, Egri, Williams and Atia (1983) of COMSAT, Holme (1984) of Ford 

Aerospace, and Nomoto (1984) ofNHK (Japan) can be referred to. The employment of 

optimization techniques to determine the best multiplexer parameters has been an 

indispensable part of the design procedures reported. The use of a powerful gradient­

based minimax optimization technique (Handler, Chen, Daijavad and Kellermann 

1984; Handler, Kellermann and Madsen 1985a; Handler, Daijavad and Zhang 1986) 

has reduced significantly the CPU time required in the design procedure. 

Among the many types of contiguous band waveguide multiplexers, we 

only consider the manifold type in this thesis. M.H. Chen (1985) has discussed the 

advantages of this kind of multiplexer compared to the older types such as common 

junction multiplexers or circulator coupled structures. Only the manifold type can 

provide a large number of channels without performance degradation. The equi-

66 
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valent network model of a manifold type multiplexer falls into the category of 

branched cascaded structures. 

Evaluation of the exact sensitivities for the mulitplexer structure is based 

on the sensitivity analysis of individual filters using the methods described for 2-ports 

in Chapter 3 and an application of the branched cascaded network sensitivity 

analysis, also covered in Chapter 3. 

In this chapter we describe details of a multiplexer structure, i.e., the 

subnetworks involved. We discuss models for filters, junctions and possible nonideal 

effects. A minimax formulation of possible optimization problems is presented and a 

particular implementation is described in detail. Finally, specific multiplexer design 

examples are solved which effectively demonstrate the efficiency of the method of 

analysis and the optimization procedure, reflected in the low CPU times required. 

4.2 BASIC COMPONENTS OF A MULTIPLEXER STRUCTURE 

4.2.1 The Overall Configuration 

The structure used for a multiplexer throughout this chapter can be 

utilized in both contiguous and noncontiguous band multiplexer designs depending on 

the way in which performance specifications are defined. The possible equivalent 

circuit of a multiplexer is illustrated in Fig. 4.1. This is a specialization of the general 

branched cascaded network of Fig. 3.3, hence the sensitivity analysis and formulas in 

Chapter 3 are readily applicable. A branch (channel) consists of a coupled-cavity 

filter, together with input-output transformers, and an impedance inverter. A wave­

guide section separates two adjacent channels, and the junction is the equivalent 

circuit model for the physical junction between channel filters and the manifold. The 

main cascade is short-circuited and the responses of interest are common-port return 
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loss, channel output return loss, insertion loss, gain-slope and group delay between 

common-port and channel output ports. 

A typical optimization problem could be finding parameters for which 

common-port return loss and individual channel insertion losses satisfy the 

specifications shown in Fig. 4.2- (3-channel multiplexer). 

To apply the general method of Chapter 3 for simulation and sensitivity 

analysis, the subnetworks, namely, channel filters, waveguide spacings, and 

junctions must be represented by 2-port transmission matrices. We deal with 

subnetworks in the following sections. 

4.2.2 Multi-Coupled Cavity Filters 

The application of multi-coupled cavity microwave filters in modern 

communication systems has received increasing attention since the early 70's. 

Williams (1970) of COMSAT constructed a fourth-order elliptic function filter, in 

which two circular waveguide cavities, each excited by two orthogonal TE111 modes, 

were coupled together by a cross slot. Atia and Williams (1971,1972) introduced the 

theory of narrowband coupled cavities and described a synthesis procedure. More 

recent advances have been reported by Cameron (1982) and Kudsia (1982). Typical 

structures for longitudinal dual-mode cavity filters are illustrated in Fig. 4.3. 

In recent years, the growing variety and complexity of the design and 

manufacture of these filters has necessitated the employment of modern computer­

aided design techniques. The traditional approach to an analytical solution becomes 

cumbersome or inappropriate when asynchronous tuning realizing asymmetric 

characteristics of nonminimum phase designs necessary to meet tight amplitude and 

delay specifications are of interest. To facilitate the CAD approach, Bandler, Chen 
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Daijavad (1986a) described a systematic and efficient approach to the simulation and 

exact sensitivity evaluation of narrowband multi-coupled cavity filters. The approach 

is based on the reduction of a network described by its impedance matrix to a 2-port 

model. 

In Chapter 3, where 2-ports were considered in detail, we emphasized that 

starting with the impedance matrix instead of the admittance matrix description 

leads to dual formulas. Working with the impedance matrix, we first obtain the 

2-port short-circuit admittance matrix and then calculate the transmission matrix 

required in the cascaded analysis. In this chapter we describe the impedance matrix 

model and refer to Chapter 3 or the work by Baudler, Chen and I)aijavad (1986a) for 

reduction to 2-ports as well as sensitivity analysis. 

The symmetrical impedance matrix for a narrowband lumped model of an 

unterminated filter is given by 

Z = j(sl + M) + rl 
(4.1) 

where 1 denotes an n X n identity matrix and s is the normalized frequency variable 

given by 

s~ wo ( ~ _ wo) = f o ( .£ _ f o) 
!::..w w 

O 
w M f 

O 
f ' 

(4.2) 

wo(fo) and !::..w(!::..f) being the synchronously tuned cavity resonant frequency and the 

bandwidth parameter, respectively. Notice that we could use either frequency or 

angular frequency because of the normalization. We assume uniform dissipation for 

all ca vi ties indicated by parameter r where 

r= 
WO 

!::..wQf' 

(4.3) 

Qr representing the unloaded Q-factor. In (4.1), Mis the coupling matrix whose (a,b) 

element represents the normalized coupling between the ath and bth cavities, as 
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illustrated in Fig. 4.4, and the diagonal entries Maa represent the deviations from 

synchronous tuning. Element Mab does not necessarily correspond to a desirable and 

designable coupling. It may as well represent a stray coupling which is excluded from 

the nominal electrical equivalent circuit. Dispersion effects on the filter are modelled 

by both waveguide dispersion and dispersion effects on couplings, the latter causing a 

frequency dependent M matrix. We now describe the dispersion effects in detail to 

complete the discussion on multi- coupled cavity filters. 

Assume circular cavities for the filters with the diameter d. For a TE11 

mode (the dominant mode in circular waveguides), the cut-off wavelength is 1.706d 

(or 3.41r, for a radius r). The filter cut-off frequency is then calculated as 

V 
fF = 0 

C 1.706d' 
(4.4) 

where vo is the velocity of light in free space. Superscript F is used to distinguish the 

filter cut-off frequency from the cut-off frequency for the waveguide manifold in the 

multiplexer structure. At an operating frequency f, the guide wavelength for the 

filter is calculated as 

(4.5) 

Similarly, the guide wavelengths corresponding to the band edges of the filter are 

obtained as 

(4.6a) 

and 

(4.6b) 

where 



--:- M2i 

o------1 ~ 

W1 W2 

M12 M23 

M13. 

M11 

------------------ M1n 

. . M2n . 

M1-1,1 

W• 
I 

Mi,i+l 

Min 

-~ 
wn 

Mn-1,n 

Fig. 4.4 Unterminated coupled-cavity filter illustrating the coupling coefficients. 

-.J 
llf:.. 



and 

75 

M 
f =f - -e o 2 

~f 
f =f + -
h O 2 

(4.7a) 

(4.7b) 

The guide wavelength corresponding to the filter resonant frequency is 

defined as 

b. 
\o= (1gh + 1ge)/ 2 

and corresponding to the bandwidth parameter, we have 

b. 
~1=1e-1h. g g g 

The impedance matrix Z is now defined as 

Z = j (1 1 + M) + r 1 
n 

where An is the normalized wavelength parameter given by 

2(1g0 - 1:) 
1 = ----

n ~1 
g 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Notice the analogy between this case and the nondispersive model, where for 

narrowband applications, the approximate equivalence 

s = wo ( ~ - wo ) = 2(w - w(! 
~u} u} 0 u} ~u} 

(4.12) 

is often conveniently used. Compare (4.1) with (4.10) and (4.11) with (4.12). 

So far, the waveguide dispersion effects have been included based on 

classical textbook material (see, for example, Matthaei, Young and Jones, 1964). 

Dispersion effects on the coupling matrix are now considered. An element of the 

coupling matrix, namely Mab, is modified as (ComDev, 1983) 

K AF ab 

Mab <-Mab (Ag ) , 
gO 

where 

(4.13) 
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t
l, 

K = -1 ab ' 

0, ifa=b. 

ifMab is screw coupled1 

if Mab is iris coupled, (4.14) 

This concludes the formulation of the impedance matrix for the network equivalent of 

a lossy and dispersive multi-coupled cavity filter. Given Z, the 2-port short-circuit 

admittance matrix y of the network equivalent for the filter, using a similar approach 

as in Chapter 3, is evaluated as 

where Pl, q1 and qn are elements of vectors p and q obtained from solving 

and 

Zq = e . 
n 

(4.15) 

(4.16a) 

(4.16b) 

Since matrix Z is symmetrical, p and q also provide complete information for 

evaluation of first-order sensitivities. Recall that for a general Z matrix, similar to a 

general Y matrix, 4 systems of equations are to be solved (refer to Section 3.2.1). 

Given the y matrix, the transmission matrix for the filter 2-port 

equivalent, which is required in the cascaded analysis, is evaluated as 

1 

Yul 
(4.17) 

4.2.3 Waveguide Manifold 

In a rectangular waveguide, for a TE10 mode (the dominant mode) the cut­

off wavelength is 2a, where a is the manifold width. The cut-off frequency is then 

calculated as 

VO 
f = 

C 2a ,· 
(4.18) 
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where, as in Section 4.2.2, vo denotes the velocity of light in free space. The guide 

wavelength, at an operating frequency f, is calculated as 

and the phase constant 13 is given by 

13 = 
2rr 

A 
g 

(4.19) 

(4.20) 

For a waveguide section with a characteristic impedance Zo and length e, 

the transmission matrix is given by 

cos0 

A= [ j sin0 

zo 
where 

e = 13e . 

4.2.4 Junctions 

(4.21) 

(4.22) 

Consider the network equivalent model of the physical junction between 

channel filters and the waveguide manifold, as illustrated in Fig. 4.1. A series 

admittance Y c and two equal shunt admittances Ya constitute the junction model. 

Recalling the discussions in Section 3.4.3 on the reduction of general 3-port junctions 

(Fig. 3.4) to 2-ports with the terminating port given, the transmission matrix for the 

junction is evaluated as 

1 [ Y+Ya 

A= Y 2Y Y+Y2 
a a 

1 

Y+Y ] , 
a 

where Y = Ye+ Y3, and port 3 is terminated by Y3. Similarly, we have 

1 [ Y+Yc 

D = Y Y(Y + Y ) + Y Y 
a c a c 

(4.23) 

(4.24) 
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where Y = Ya+ Y 2, and port 2 is terminated by Y 2· In either case, the junction model 

is complete when Ya and Y care given. 

By considering the equivalent circuit for a T-junction that connects two 

rectangular waveguides through a slot in Marcuvitz (1951) and experimental results, 

M.H. Chen et al. (1976) suggested the following formulas 

y f 
C ·c C - = -J 

YO m 2-J f 2 - f 2 

(4.25) 

C 

and 

y 
a 

-jf 
C (4.26) 

y O [C ( v O )2 _ 1] -J f2 _ f2 
C f C 

where Yo = 1/Zo is the inverse of the characteristic impedance, and fc and vo are as 

defined in Section 4.2.3. Chen et al. (1976) recommended the values Cc = 20 and 

Cm = - 1.0 based on their experiments. Note that Cc = 20 can be used when vo/f is 

given in inches. 

4.2.5 Input-Output Transformers, Impedance Inverters and Summarizing Tables 

Referring to Fig. 4.1, input and output transformers and the impedance 

inverters are the only components of the multiplexer structure, which have not been 

discussed so far. The transmission matrix description of an l:n1 input transformer, an 

n2: l output transformer and an impedance inverter are given by 

A= (4.27) 

A= (4.28) 
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and 

A=[;~]. (4.29) 

respectively, using basic definitions. 

Having described the individual components of the multiplexer structure, 

we summarize all the transmission matrices involved and their sensitivities with 

respect to relevant parameters and frequency in Tables 4.1 and 4.2. Recall from 

Chapter 3, that for a 3-port junction the transmission matrix is denoted by A or D 

depending on the terminating port. The branched cascaded analysis of Chapter 3 is 

now readily applicable. 

4.3 MULTIPLEXER OPTIMIZATION 

A wide range of possible multiplexer optimization problems can be 

formulated and solved by appropriately defining specifications on various frequency 

responses of interest. The branched cascaded analysis of Chapter 3 with or without 

exact sensitivities is used in conjunction with the original gradient-based minimax 

algorithm (Handler, Chen, Daijavad and Kellermann 1984; Handler, Kellermann and 

Madsen 1985a) or with the modified approximate gradient algorithm (Bandler, Chen, 

Daijavad and Madsen, 1986). All design parameters of interest, as related to the 

individual components of the multiplexer structure described in this chapter, can be 

directly optimized. For instance, based on specifications on the common port return 

loss and individual channel insertion losses, waveguide spacing, filter coupling 

parameters and input-output transformer ratios may be optimized. 
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TABLE4.1 

TRANSMISSION MATRICES FOR SUBNETWORKS 
IN THE MULTIPLEXER OF FIG. 4.1 

Transmission Matrix 
Subnetwork 

output transformer 
n2:l 

multi-coupled 
cavity filter t 

input transformer 
l:n1 

series junction 
terminated at port 3 
by Y3, (Y=Yc+ Y3) 

series junction 
terminated at port 2 
by Y2, (Y=Ya + Y2) 

Expre-s-sion 

l [ Y+Ya 1 

y 2Y Y+ Y2 Y+Y a a a 

Y+Y 

~[Y(Y+Y):YY 
a c a c 

1 

Y+Y 

Notation 

A 

A 

A 

A 

D 

a 



Subnetwork 

waveguide spacingtt 

81 

TABLE 4.1 (continued) 

Transmission Matrix 

Expression Notation 

l
cos0 

j sin0 

zo 

j Z0 sin0] 
cos0 

A 

t p/qi) is the ith element of vector p(q) which is the solution of Zp = e1 (Zq = 
e0 ), where Z = j(sl + M) + rl ands = (wo/6.w)(wlwo - wolw) for a filter with 

coupling matrix M centered at wo and having a bandwidth parameter 6.w and 

a uniform cavity dissipation parameter r. 

tt a waveguide section has a characteristic impedance Zo and 0 = pe, 13 = 2rr!Ag, 

where e is the section length and Ag is the guide wavelength. 
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TABLE 4.2 

FIRST-ORDER SENSITIVITIES OF THE TRANSMISSION 
MATRICES IN TABLE 4.1 

Subnetwork 

output 
transformer 

multi-coupled 
cavity filter 

input transformer 

series junction 
terminated at 
port 3 tt 

Identification 

aA 

an2 

aA 

aMab 

jc 

ql 

Sensitivity of the 
Transmission Matrix 

[: -:J 
jct 
- (p qb + q pb) A + 2q a a 

1 

[ qaqb 

plqaqb + qnpapb -q/paqb +pbqa) 

aA s ( [ qTq w T 

aw - p qA+ T T T 
ql plq q+qnp P- 2qlp q 

aA 

aA 
- , 4>EY

3 a4> 
aA 
- A-EJ a4> , '¥ 

aA 

aw (Y3 + y ) Kl + (Y ) K2 
C Cu a Cu 

p:pb l 

p~p]) 
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TABLE 4.2 (continued) 

Subnetwork Identification 

series junction 
terminated at 
port 2 ttt 

waveguide 
spacing 

t c= [ 2 ifa::;t:b 
1 ifa=b 

aD 
- '<l> E y2 
a <l> 

aD 
- cpEJ acp , 

aD 

aw 

aA 

ae 

aA 

aw 

Sensitivity of the 
Transmission Matrix 

(Y
2 

+ Y ) L
1 

+ (Y ) L
2 aw aw 

+ (Y) L
3 C W 

~- sine j Z0 cos0 J 
(3 j cos0 . 
-- -sm0 

zo 

~-sine j Z0 cose J 
e((3) w • cos0 

-sine 
zo 

1 [ Ya 1 l 1 [ 1 01 -j 
tt Kl = - y2 y2 y ' K2 = y 2(Y + Y) 

a a a 
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4.3.1 Formulation of the Problem 

From the possible responses tabulated in Table 3.3, consider a common port 

response, namely, the common port return loss and a channel dependent response, 

namely, the insertion loss. Typical specifications for optimum performance of con­

tiguous multiplexers in satellite communication applications require the common 

port return loss to be above a certain value, e.g. 20 dB, over the entire communication 

band. Individual channels are required to have insertion losses below a value of, say 

1 dB, in their pass-bands and above a value of say 30 dB, in their stop-bands. In 

general, we can formulate an appropriate optimization problem as follows. 

The objective function to be minimized is given by 

F(cp) = max f.(cp) , 
J 

jEJ 

(4.30) 

where cp is a vector of design parameters (waveguide spacings, couplings, etc.) and 

J ~ {1,2, ... ,m} is an index set. The minimax functions fj(cp),jEJ, can be of the form 

(4.31) 

(4.32) 

2 2 2 wu(w.) (F (q,, w.) - Su(w.)), 
1 1 1 

(4.33) 

wL2(w.) (F2(q,, w.) - SL2(w.)), 
1 1 1 

(4.34) 

where Fkl(cp, Wi) is the insertion loss for the kth channel at the ith frequency, 

F2(cp, Wi) is the return loss at the common port at the ith frequency, Sukl(wi)(SLkl(wi)) 

is the upper (lower) specification on insertion loss of the kth channel at the ith 

frequency, Su2(wi)(SL2(wi)) is the upper (lower) specification on the return loss at ith 

frequency, and wukl, WLkl, wu2, wL2 are the arbitrary user-chosen nonnegative 

weighting factors. 
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A typical example of the specifications that can be handled for a five­

channel multiplexer is shown in Fig. 4.5. Frequently, linear constant or piecewise­

linear constant specifications, such as the ones shown in Fig. 4.2 are to be met. 

4.3.2 The Overall Structure of a Computer Implementation 

The sensitivity analysis described in Chapter 3 was specialized to the 

multiplexer structure and the models discussed in this chapter were utilized to 

develop a highly efficient, state-of-the-art computer program package in Fortran for 

simulation, sensitivity analysis and optimization. Having described the general 

approach for simulation and sensitivity analysis of branched-cascaded structures, we 

discuss the details of a particular implementation in Section 4.3.3. It should be 

emphasized that this implementation is highly specialized to the multiplexer 

structure and the generality of the approach in Chapter 3 has been sacrificed. In this 

section, we present the high-level overall structure of the implementation. The 

computer program developed was tested in close cooperation with members of 

ComDev (1983), directly involved in multiplexer design and postproduction tuning. 

Functional blocks of the package are shown in Fig. 4.6, which illustrates the 

user-selected options as related to the required mode of operation. 

Options of the Optimization Mode 

If the multiplexer optimization option is selected, three modes of 

optimization are allowed for, namely, only return loss optimization, only insertion 

loss optimization or simultaneous return and insertion loss optimizaton, all at 

user-defined sets of frequency points. Lower, upper, both or no specifications on a 

response of interest at a certain frequency point can be handled. 
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frequency 

Five channel example, illustrating the flexibility in choice of responses 
to be optimized and frequency bands of interest. See the text for some 
definitions. 

F2 

52 
L 



Fig. 4.6 
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MAJN 

SEGMENT 

Option 1 .. SIMULATION .... 

SIMULATION 
Option 2 AND ... .... SENSITIVITY 

ANALYSIS 

i 
FUNCTION 

AND 
GRADIENT 

EVALUATION 

1 
Option 3 OPTIMIZATION ... .... 

Functional blocks of the computer package for multiplexer simulation, 
sensitivity analysis and optimization. 
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Options Related to the Selection of Optimization Variables 

The package allows a flexible choice of optimization variables. In general, 

all parameters are candidates for optimization variables, however, the user can 

declare any of the parameters to be fixed. 

Options Related to the Model of the Multiplexer 

The package allows the user to select the junctions to be ideal (no junction 

susceptances) or nonideal and the filters to be lossless or lossy, dispersive or non­

dispersive. 

4.3.3 Detailed Description of an Implementation for Response and Sensitivity 

Evaluation 

Here we describe the details of a particular implementation for evaluating 

reflection coefficient at the common port and channel output voltages as well as their 

first-order sensitivities with respect to filter couplings, input-output transformer 

ratios and waveguide section lengths in the multiplexer structure of Fig. 4.1. In 

Table 3.3, the formulas for calculating common port return loss and channel insertion 

losses and their sensitivities using the reflection coefficient and channel ouput 

voltages and their corresponding sensitivities, are explicitly given. 

Assume that there are N channels (as shown in Fig. 4.1) with channel i, 

i = 1,2 ... , N, terminating at an output load conductance GLi· Also, assume a 

normalized excitation with a source resistance Rs. Multi-coupled cavity filters are 

assumed to be of the same order n for all channels. 
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The following step-by-step approach is designed to calculate all the 

required responses and sensitivities at a single frequency f. Therefore, the iteration 

on frequency is external to the steps below. 

We calculate the short-circuit admittance matrix for the filters in all 

channels by solving two systems of equations, a total of N times. The solutions will be 

used in sensitivity calculations as well. 

and 

where 

The sytems of equations to be solved are 

Z. 
1 

Zi pi = e
1

, i = 1 , 2, ... , N 

Z i -.q - e ' 1 n 

j(si 1 + Mi) + ri 1, 

[ j(A i 1 + Mi) + ri 1 , 
n 

i = 1, 2, ... , N, 

if dispersion is not included, 

if dispersion is included. 

(4.35a) 

(4.35b) 

(4.36) 

(see (4.16), (4.1) and (4.10)). For the sake of simplicity, subscript i for matrix Zi and 

superscript i for all other quantities, which is used to distinguish different channels, 

will be omitted from here on. However, it should be clear that all the quantities 

defined in the following steps are channel dependent with all the calculations done for 

every channel separately. 

Repeating (4.15) for convenience, we have the short-circuit admittance 

matrix 

y 
(4.37) 
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In this step, we calculate the transmission matrices of filter-junction 

combinations as seen in the waveguide manifold, for all channels. 

For each channel, the s.c. admittance matrix y of (4.37) is modified to 

include the input and output transformer ratios as 

[ 

n~ Y 11 n1 n2 Y 2~ 
y' = 2 . 

nl n2 Y 21 n2 Y 22 

(4.38) 

This modification is illustrated schematically by Fig. 4.7. Next, we find the input 

admittance Yin of the filter terminated by a load conductance GL as 

I 2 
I (y 21) 

yin= Yu-
Y~2 + GL 

(4.39) 

(see Fig. 4.8). Taking the effect of the impedance inverter into account, we assign as 

per Fig. 4.9 

Y. ~ 1/Y .. (4.40) 
1n 1n 

For a junction modelled by the complex series and shunt admittances Y c 

and Ya (see (4.25)) and (4.26)), respectively, we can combine Ye and Yin as 

Y=Y. +Y, 
1n C 

(4.41) 

and calculate the transmission matrix of the filter-junction combination, namely Tr, 

as 

(4.42) 

(see (4.23) and Fig. 4.10). 

We now calculate the transmission matrices of all waveguide spacings (one 

waveguide section per channel). 
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Fig. 4.7 Modification of the filter equivalent matrix y to include input and output ideal transformers. 
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I 

Y11 

I 

Y21 

Input admittance for a filter terminated by conductance GL after 
inclusion ofn1 and n2 as indicated by Fig. 4.7. 
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impedance 

inverter 

Fig. 4.9 Effect of an impedance inverter on Yin of Fig. 4.8. 



Fig. 4.10 

Yin 

y 

Ye 

Ya Ya Ya Ya Tf 

Filter-junction combination. Yin represents the filter, Ya and Ye the junction admittances. Tr represents the ABCD 

matrix of the combination. 
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Recalling (4.21), for a waveguide spacing of length e and characteristic 

impedance Zo, the transmission matrix denoted by T g is given by 

[ 

cos 13e 

Tg = zo!fle 
(4.43) 

where .(3 is calculated at the operating frequency fusing (4.20), (4.19) and (4.18). 

After evaluation of Tr and Tg for each section, we find the transmission 

matrix of a section, namely T, from (see Fig. 4.11) 
(4.44) 

Hence, we have Ti, i = 1,2, ... , N. 

The multiplexer structure is now a simple cascade ofN sections, where each 

section is represented by its T matrix (see Fig. 4.12). 

To prepare for a complete sensitivity analysis, all possible products of 

adjacent section matrices are needed, i.e., all products shown in Fig. 4.13 should be 

calculated. Denoting the products by Aji, we evaluate 

{

T. 
1 

T. 
2 

.. T., ifi > j 
1- 1- J 

~i = 12 X 2 ' if i = j 
not defined, ifi < j, 

(4.45) 

for j = 1,2, ... , N and i = 1, 2~ ... , N + 1. 

Computationally intensive calculation of all possible products, as opposed 

to the simple forward and reverse analysis, is required in evaluating the sensitivities 

of channel output voltages with respect to variables located between the 

corresponding channels and the short-circuit termination. If only the responses were 

to be evaluated (common port reflection coefficient and channel output voltages), a 

reverse analysis would be sufficient, i.e., only A1,i, i = 1,2, ... , N + 1, were needed. 



Fig. 4.11 
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T 

Cascade combination of a filter-junction and waveguide spacing forming 
a complete section. 



Rs 

Vs TN T· I T, 

Fig. 4.12 Multiplexer structure after reduction to a simple cascaded network using the T matrices defined in Fig. 4.11. 

S.C. 
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Fig. 4.13 All the possible products of adjacent section matrices as defined by (4.45). 
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The reflection coefficient at the common port and channel output voltages 

are calculated at this stage. 

and 

Referring to Fig. 4.14, we have 

T 
el AlN+l e2 Z. = ___ , __ _ 

m T 
e2 Al,N+l e2 

Z. -Rs 
1n 

p = Z. + R ' 
m S 

where e1 = [1 O]T, e2 = [O l]T. A1,N + 1 was calculated in Step 4. 

(4.46) 

(4.47) 

To evaluate the output voltage for the ith channel, we simplify the 

multiplexer structure as shown in Fig 4.15, where Vs is the voltage excitation and Tff 

is the transmission matrix for a multi-cavity filter including input and output 

transformers. After simple algebraic manipulations, we get 

T[ l O l i 
e2 yi 1 TgAl,i e2 Vs 

yi = ___________ a _____________ _ 

L 

(e~[ :i : W ~ ]~rr [ ;i : ] e1)(e;[ 
0

1 
R
1

8 
]At,N+1e2) 

C J L 

Recalling (4.17), we have 

and V Li becomes 

j[Ya l]T~Al,i e 2 Vs 
yi = 

L , , 

(
(y22 + GL)(l + Ycyll) , )( 

' - Ye Y 21 [ l 
Y21 

(4.48) 

(4.49) 

(4.50) 
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Rs 

Zin -e- S.C. 

Simplified multiplexer structure for the calculation of common port 
reflection coefficient. 
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Fig. 4.15 Simplified multiplexer structure for the calculation of channel output voltage. 
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Note that the superscript i, needed for Y11 ', Y21 ', Y22', Y c, Ya and GL, is omitted for 

simplicity. 

The remaining steps are required to evaluate the sensitivities of the 

responses calculated in Step 5. 

In Step 6 we calculate the derivatives of individual transmission matrices T 

(a complete section) with respect to variables in them; The possible variables are 

filter couplings, cavity resonant frequencies (controlled by diagonal elements of the 

coupling matrix M), input-output transformer ratios and waveguide spacings. 

From ( 4.44), we have 

aT 
(~ T}g' if <p E {Mab ' nl ' n2} (4.51) 

-
a<p Tr(~ Tg)' if<ll = e. 

Recalling Table 4.2, or simply differentiating (4.43), we have 

_i_ T = ~~ sin fll j Z0 
cos fll] 

a e g 13 J cos 13e . . 
-sm{3e 

zo 

(4.52) 

To calculate aT/a<p, we need to have aYin/a<p. Using (4.41) and (4.42) and 

knowing that Ya and Y care independent of q>, we have 

a T f - 1 a yin [ ya 1 l 
-=--- E n n a<p y2 a<p y2 y '<p {Mab' 1' 2}. 

a a 

(4.53) 

Now, aYi0 /a<p is evaluated using (4.39) and recalling (4.40) as 

I I I 2 I 

a Yin = - y~ [ _i_ I -

2 
y 21 ( a y 21) + ( y 21 ') ( a y 22) l 

a<p m a<pY11 y' +G a<p y' +G a<p 
22 L 22 L 

(4.54) 

This means that the sensitivities of matrix y' are needed. From (4.38), we have 
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2 ay 11 0Y21 
n --

1 a4> n1 n2 a4> 

0Y21 2 ay22 
ifcp = M ab 

nl n2 a4> n --
2 a4> 

ay' 
[2nly11 a4> n2:2J, 

n~21 

(4.55) 

0 n1Y21} 
[nl Y21 2n2Y22 

Finally, ay/aMab is obtained using (4.35), (4.36) and (4.37) as 

(4.56) 

where 

[ 
1' 

wl = 0.5, ifa=b 

ifa:;t:b 
(4.57) 

and 

if dispersion is included, (4.58) 

if dispersion is not included. 

(recall (4.13)). 

In this step, we calculate the sensitivities of the common port reflection 

coefficient with respect to all variables in the multiplexer structure. 

Differentiating (4.47), we have 

ap = 2 Rs azin (4.59) 

a 4> CZ. + Rs)2 a 4> 
lll 

From (4.46) we can calculate aZin/dq> as 
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az. 
lll 

F<l,2) A (2,2) _ F<2,2) A (1,2) 
l,N +1 1,N +1 --------------

(
A (2,2) )2 
, 1,N+l 

(4.60) 

where superscripts (1,2) and (2,2) indicate that elements (1,2) and (2,2) of the 2X2 

matrices F and A1,N + 1 are taken, e.g., 

A(l,2) _ TA 
l,N+l - el 1,N+l e2. 

(4.61) 

F denotes the derivative matrix aA1,N + 1/a<)> and is calculated as 

F=~(A )=A (~T)A a <1> 1,N + 1 j + 1,N + 1 a <1> j 1j 
(4.62) 

where <1> is assumed to be in sectionj. 

Finally, we evaluate the sensitivities of channel output voltages with 

respect to all variables. 

where 

Referring to (4.50), we can write 

. j Kl 
vi=-­

L K K ' 
2 3 

(4.63) 

(4.64a) 

(4.64b) 

(4.64c) 
and i = 1, ... , N. 

If we assume that the variable <)> is in section j, we can consider three 

different cases for evaluating sensitivities of (4.63). 

Case 1: Section j is to the right of section i in Fig. 4.15, i.e., j <i. In this case, K2 is 

independent of the variable and we have 
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av~ j[ (~ hK3-(~ )K1 K2] 
-- (4.65) 

a4> (K2K/ 

We can write 

(4.66) 

and 

aaq, 1\J = Ai+ lJ Ca<!> Ti) A1j (4.67) 

Recall that the product (aT/aq>) A1j has already been calculated in evaluation of Fin 

(4.62). Also we have 

(4.68) 

Case 2: The variable is in the same section as the output voltage, i.e., i = j. In this 

case we have 

if4>=e 

(4.69) 

and 

aK a Ti 

a <1>1 = [Y~ 1 l ( a: ) A1J e2 vs , 
(4.70) 

where aTgifae has already been calculated in Step 6. Also, 
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I I t 

-(Y + (y 22 + G L)(l + Y c Y 11 )( a Y 21 ) 
C ' 2 aq> ' 

(y 21) 

(4.71) 

where superscipt i is again omitted. aK3/a4> is calculated as in (4.68). 

Case 3: Sectionj is to the left of section i in Fig. 4.15, i.e.,j>i. In this case, we have 

-------- (4.72) 

acp (K2K/ 

where aK3/a4> is calculated as in (4.68). 

4.4 EXAMPLES 

4.4.1 12-Channel 12 GHz Multiplexer 

A 12-channel, 12 GHz multiplexer without dummy channels was 

considered. The contiguous band multiplexer has a channel frequency separation of 

40 MHz and a usable bandwidth of 39 MHz with the center frequency of the first 

channel at 12180 MHz. 6th-order multi-coupled cavity filters with screw couplings 

M12, M34 and Ms6 and iris couplings M23, M45 and M36 are used for all channels. Filter 

cavities are circular waveguides with a diameter of 1.07 inches. The estimated 

unloaded Q-factor for filters is 12000. The width of the waveguide manifold is 

0.75 inches. 

Suppose we want to design this multiplexer such that a lower specification 

of 20 dB on the common-port return loss is satisfied over the entire frequency band of 

interest. We start the design process with twelve identical 6th order filters with the 

coupling coefficients given in the following matrix (Tong and Smith 1984): 
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0 0.594 0 0 0 0 

0.594 0 0.535 0 0 0 

0 0.535 0 0.425 0 -0.400 

M (4.73) 

0 0 0.425 0 0.834 0 

0 0 0 0.834 0 0.763 

0 0 -0.400 0. 0.763 0 

In selecting the starting values of waveguide spacings, for each section the 

half-guide wavelength evaluated at the center frequency of the corresponding channel 

filter, as suggested by Atia (1974) was used. This means that for the kth channel 

Agk/2 was used, where Agk is calculated by evaluating (4.19) at the center frequency of 

the kth channel filter. The spacing evaluated in this way is measured along the 

manifold from the adjacent (k- l)th channel. For the first channel the spacing is the 

distance from the short-circuit. Waveguide dispersion for both manifold and filters 

were taken into account. Nonideal junctions with Ya calculated from (4.26) and 

Y c = 0 were assumed. 

Figure 4.16 shows the common-port return loss and channel insertion loss 

responses of the multiplexer at the start of the optimization process. The specification 

on the common-port return loss is seriously violated, especially in the lower frequency 

range. 

The optimization was performed in several stages with the judicious 

addition of new variables at each stage to improve the overall response or the response 

over some specific portions of the total frequency band. In particular, the first stage 

was the optimization with respect to only waveguide spacings, i.e., 12 variables and 

the last stage involved 60 variables, namely, 12 section lengths, 14 variables for each 
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of channels 1 and 12 (all six possible intercavity couplings, six cavity resonant 

frequencies, input and output transformer ratios), and four variables for each of 

channels 2, 8, 9, 10 and 11 (input and output transformer ratios, resonant frequency of 

the first cavity, and coupling M12). In selection of the frequency points, uniformly 

distributed points, 10 MHz apart over the whole 500 MHz band, are taken in the early 

stages. However, a simple interpolation technique effectively treating sample points 

1 MHz apart is introduced in the final stages of the optimization. The total CPU time 

on the Cyber 170/815 system was about ten minutes. The results of the final 

optimization are shown in Fig. 4.17. Equi-ripple return loss response satisfying the 

requirements over the entire communication band has been achieved. 

4.4.2 3-Channel Multiplexer Design without Network Sensitivities 

The 12-channel example was solved using the original minimax algorithm 

which requires exact sensitivities. Therefore, complete sensitivity analysis of the 

structure was performed. As discussed in Chapter 2, the use of efficient gradient 

approximation techniques obviates the evaluation of network sensitivities. Therefore, 

a modified minimax algorithm may be used (Bandler, Chen, Daijavad and Madsen 

1986). To examine the efficiency of the new algorithm in large problems, we 

considered the design of a 3-channel multiplexer with 45 nonlinear variables without 

network sensitivities, i.e., by only evaluating the responses themselves. Using the 

same types of filters as in the 12-channel example, a lower specification of 20 dB on 

return loss over the whole band of interest should be satisfied. Also, the following 

upper specifications on insertion loss for all three channels should be met 

wo ± 10 MHz 

wo ± 12MHz 

1.12 dB 

1.24 dB 
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wo ± 14MHz 

wo ± 16MHz 

wo ± 18MHz 

1.41 dB 

1.77 dB 

2.79dB 

Fig. 4.2 corresponds to the specifications of this example. 15 variables for each 

channel, namely six intercavity couplings, six cavity resonant frequencies, input and 

output transformer ratios and waveguide spacings, were considered. In selection of 

frequency points, 15 passband points were used for each channel. Both return loss 

and insertion loss specifications were considered at each point. Moreover, two 

crossover frequencies, namely, 12000 MHz and 12040 MHz for return loss only were 

selected. Consequently, we have a total of 92 error functions and 45 variables. The 

return loss and insertion loss responses for the multiplexer at the starting point and 

at the solution are shown in Figs. 4.18 and 4.19. The CPU time on the Cyber 170/730 

system was about 15 minutes. It is clear from the computational time that the 

modified minimax algorithm is not as fast as the original algorithm since this 

problem can be solved in about 8 minutes using the network sensitivities. However, 

as discussed in Chapter 2, the modified algorithm relieves the user from providing 

network sensitivities, which in many applications are tremendously complicated or 

even impossible to evaluate. 

4.4.3 16-Channel Multiplexer 

As the number of channels for the multiplexer increases, the dimen­

sionality of the problem in terms of the number of parameters and functions to be 

dealt with increases. This requires the use of increasingly powerful computing 

facilities. To overcome the dimensionality problem, the design of a continguous band 

multiplexer structure with an arbitrarily large number of channels and design 
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parameters has been formulated as a sequence of appropriately defined smaller 

optimization problems (Bandler, Chen, Daijavad, Kellermann, Renault and Zhang 

1986). The smaller problems correspond to growing a multiplexer by adding one or 

more channels at a time to the structure. 

Suppose we want to design an N-channel multiplexer. To achieve this goal 

we could perform a sequence ofN -1 optimizations. In each of these optimizations we 

add a new channel to the existing k-channel multiplexer. The resulting (k + 1) 

channel structure is then optimized with optimization variables taken from channels 

k and k + 1 and specifications imposed on responses in channels k - 1, k and k + 1. 

Sample frequencies are selected from the frequency range covering channels k-1, k 

andk+l. 

A 16-channel multiplexer was designed starting with a 12-channel optimal 

design of Fig. 4.17. The procedure described above was used, i.e., 4 optimization 

problems were solved by adding one channel at a time. The responses for the 

16-channel multiplexer obtained after the last optimization are shown in Fig. 4.20. 

4.5 CONCLUDING REMARKS 

In this chapter we applied the sensitivity formulas and the method of 

analysis developed previously to design one of the most important microwave devices 

in communication satellite applications, namely, the manifold type contiguous band 

multiplexer. Models for individual components of the multiplexer with nonideal 

effects such as dissipation, dispersion and junction susceptances were discussed in 

detail. Using a fast and robust gradient-based minimax algorithm, we formulated 

appropriate optimization problems in which engineering specifications on responses 

such as common port return loss and channel insertion losses are to be satisfied. 
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A flexible computer program was developed which utilizes the models 

described in Chapter 4 and the sensitivity analysis of Chapter 3. The calculation of 

responses and sensitivities were described in detail. 

Some of the largest nonlinear optimization problems ever demonstrated in 

microwave circuit design for a reasonable computational time have been presented in 

this chapter to design 3-, 12-, and 16-channel multiplexers. 



5 
MICROWAVE DEVICE MODELLING 

5.1 INTRODUCTION 

The problem of approximating a measured response by a network or system 

response has been formulated as an optimization problem with respect to the equi­

valent circuit parameters of a proposed model. The traditional approach in modelling 

is almost entirely directed at achieving the best possible match between measured 

and calculated responses. When the presence of nonideal effects causes an imperfect 

match between measured and modelled responses or when the equivalent circuit 

parameters are not unique with respect to the responses selected, the traditional 

modelling approach has serious shortcomings. In such cases, a family of solutions for 

circuit model parameters exist which produce reasonable and similar matches 

between measured and calculated responses. 

In this chapter, we briefly review the concepts in modelling including the 

formulation utilized in popular microwave software systems. The advanced technique 

of model evolution through automatic modification of circuit topology presented by 

Cutteridge and Y.S. Zhang (1984) is also reviewed. We then present a new formula­

tion for modelling using the concept of multi-circuit measurements (Bandler, Chen 

and Daijavad 1986b). The objective of this new technique is to achieve self-consistent 

models for passive and active devices using an approach that automatically checks the 

validity of the model parameters obtained from optimization. If successful, the 

method provides confidence in the validity of the model parameters, otherwise it 

proves their incorrectness. The use of the e 1 norm, based on its theoretical properties 

117 
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which were discussed in Chapter 2, is an integral part of the approach. The use of an 

efficient gradient-based e 1 algorithm, e.g., the Hald and Madsen algorithm (1985) in 

conjunction with the gradient approximations described in Chapter 2, makes it 

possible to employ a state-of-the-art optimization algorithm with any simulation 

package capable simply of providing responses. 

The new modelling technique has been tested on two microwave devices 

that, because of their application in satellite communications, are of significant 

interest at the present time. These devices are multi-coupled cavity filters which 

were described in Chapter 4, and GaAs FET's used in wideband amplifiers. 

We conclude this chapter by discussing the application of efficient 

modelling techniques in developing algorithms for postproduction tuning. We provide 

an example to illustrate the use of modelling in establishing the relationship between 

physical parameters of a device and its circuit equivalent model parameters. 

5.2 REVIEW OF CONCEPTS IN MODELLING 

5.2.1 The Approximation Problem 

The traditional approximation problem is stated as follows 

minimire 11 f 11 

X 

(5.1) 

where a typical component off, namely fi evaluated at the frequency point Wi, is given 

by 

f. ~ w.(F~ (x) -F~), 
1 1 1 1 

i=l,2, ... ,k. (5.2) 

Fim is a measured response at Wiand F{ is the response of an appropriate network 

which depends nonlinearly on a vector of model parameters x ~ [x1 x2 . . . xn]T and 

Wi denotes a nonnegative weigh~ing factor. llf11 denotes the general fp norm given by 



119 

k 1/p 

11r11 = ( L 1cr1) 
1=1 

(5.3) 

The least-squares norm or e2 is obtained with p = 2. As p-+oo (5.1) becomes the 

minimax problem. Using the f1 norm, (5.1) becomes' 

k 

minimize II fll ~ L I fi I · 
X i=l 

5.2.2 Typical Software for Modelling 

(5.4) 

Widely used microwave design and modelling programs, e.g., SUPER­

COMPACT (1986) and TOUCHSTONE (1985) as well as most in-house software 

systems utilize the popular S-parameters in device modelling. For an n-port network 

equivalent, moduli or phases (alternatively, real or imaginary parts) of all or some of 

the n2 S-parameters are used as Fi's (calculated F{ and measured Fim) in (5.2) to 

evaluate the error function f/s. Least squares optimization (p = 2 in (5.3)) is used in 

almost all existing software. The popularity of e 2 is largely due to two factors. One is 

the smoothing property of f2 in handling small measurement errors with, say, a 

normal distribution. These errors which usually result from the limits on the 

accuracy of the measurement equipment are difficult to overcome. The second reason 

for applying the least squares optimization is that efficient e 2 optimization techniques 

have long been known. 

The use of the e 1 norm in modelling is becoming popular due to the recent 

developments in e 1 optimization techniques. As discussed in Chapter 2, the use of e 1 

as compared to the other norms fp with p> 1 has the distinctive property that some 

large components off are ignored, i.e., at the solution there may well be a few fi's 

which are much larger than the others. This means that, with the components off as 
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defined by (5.2), a few large measurement errors can be tolerated by the e1 norm 

better than any other norm. However, we do not need to assume that such large 

errors exist. Later in this chapter we use a new formulation for modelling in which 

some components off are designed to have large values at the solution, justifying the 

use of e1 with or without possible measurement errors. 

5.2.3 Advanced Techniques in Modelling 

Along with the new multi-circuit technique which will be introduced and 

discussed in detail in this chapter, another powerful and advanced method in linear 

modelling of microwave devices is the model evolution technique described by 

Cutteridge and Y.S. Zhang (1984) as applied to high-frequency bipolar transistors, 

and by Baden Fuller and Parker (1985) as applied to microstrip spiral inductors. In 

this technique, based on a heuristic algorithm, a computer program modifies the 

circuit topology in an iterative fashion to obtain the best topology as well as the 

parameter values for which the equivalent circuit responses match a set of 

S-parameter measurements. 

The scheme adopted for model evolution comprises three distinct proce­

dures, namely, (i) removal of elements and nodes within the existing topology which 

can lead to greatly simplified circuits without any loss of performance, (ii) addition of 

elements without increasing the number of nodes, and (iii) addition of new 

topographic nodes together with new elements to the existing model. 

As an example, Cutteridge and Y.S. Zhang (1984) used the S-parameter 

measurements at 12 frequencies between 0.1 GHz and 1.0 GHz to model an npn 

transistor in the common-emitter configuration. Starting with the initial model of 
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Fig. 5. la, the circuit was modified in several stages with the model at an intermediate 

stage and the final model shown in Figs. 5.lb and 5.lc, respectively. 

The major difficulty in the construction of programs that achieve topo­

logical modification of a network entirely automatically, is the strategy for element 

and node addition. The number of possibilities for the addition of a single element 

increases enormously with increasing complexity of the network, and the number of 

possibilities for simultaneous addition of two or more elements increases even more 

rapidly. A realistic high-level strategy for topological modification must be employed 

to keep the overall computing time reasonable. At the present time, such strategies 

are heuristic and usually highly limited. 

5.3 A NEW APPROACH IN MODELLING USING MULTIPLE SETS OF 

MEASUREMENTS 

5.3.1 Introductory Remarks 

The use of multiple sets of measurements for a circuit was originally 

thought of by Handler, Chen and Daijavad (1986b) as a way of increasing the 

"identifiability" of the network. The idea is to overcome the problem of non­

uniqueness of parameters that exists when only one set of multi-frequency measure­

ments at a certain number of ports (or nodes) are used for identification. By a new set 

of measurements we mean multi-frequency measurements on one or more responses 

after making a physical adjustment on the device. Such an adjustment results in the 

deliberate perturbation of one or a few circuit parameters, therefore, to have multiple 

sets of measurements, multiple circuits differing from each other in one or a few 

parameters are created. In the above context, the term multi-circuit identification 

may also be used. 



Fig. 5.1 

b 

6 

122 

4 

0 
a 

e 
0 C 

4 

b 
e 

0 

5 

2 
C 

2 
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In this section, we first use a simple example to illustrate the usefulness of 

multi-circuit measurements in identifying the parameters uniquely. We formulate 

an appropriate optimization problem and also discuss its limitations. Finally, we 

develop a model verification method and formulate a second optimization problem 

which exploits multi-circuit measurements and the properties of the e 1 optimization 

in device modelling. 

5.3.2 Unique Identification of Parameters Using Multi-Circuit Measurements 

Consider the simple RC passive circuit of Fig. 5.2. The parameters 

x = [R1 R2 C]T are to be identified. Ifwe have measurements only on V2 given by 

sCR1 R2 
V = 2 1 + s C (R

1 
+ R

2
) 

(5.5) 

it is clear by inspection that x cannot be uniquely determined regardless of the 

number offrequency points and the choice of frequencies used. This is because R1 and 

R2 are observed in exactly the same way by V2. Formally, the non-uniqueness is 

proved using the concepts discussed in the subject of fault diagnosis of analog circuits 

(Handler and Salama 1985a) in the following way. Given a complex-valued vector of 

responses h(x,si), i = 1,2, ... ,nw (from which real-valued vector Fc(x,w) is obtained), 

the measure of identifiability of x is determined by testing the rank of the nw X n 

Jacobian matrix 

(5.6) 

If the rank of matrix J denoted by p is less than n, x is not uniquely identifiable from 

h. For the RC circuit example, we have 
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Fig. 5.2 Simple RC network. 
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s1 C Rll + s1 C R~ s1 C R1 (1 + s1 C R1) sl Rl R2 

[1 + s
1 

C (R1 + R2)] 2 [1 + s1 C (R1 + R2)] 2 [1 + s1 C (R1 +R~J2 

J (5.7) 

s CRil+sn CR~ s CR/1 +sn CR1) Sn Rl R2 n n 
u) u) u) u) u) 

[1 + Sn C (R1 + R2)]2 [1 + Sn C (R1 +R2)]2 [1 + S
0 

C (R1 + R2)J2 
u) u) u) 

De.noting the three columns of J by J1, J2, and J3, we have 

( 
R )2 CCR2-R1) 

J 1 - R: J 2 + R2 J a = O • 
1 

(5.8) 

i.e., J cannot have a rank greater than 2. Therefore, xis not unique with respect to 

Now, suppose that a second circuit is created when R2 is adjusted by an 

unknown amount. Using a superscript to identify the circuit (1 or 2), we have 

and 

yl 
2 

sC
1

R~R! 

sC
1

R~R; 
y2 = ------

2 1 + sC1 (R~+R;)' 

noting that R12 and C2 are not present since only R2 has changed. 

(5.9a) 

(5.9b) 

Taking only two frequencies s1 and s2, the expanded parameter vector 

x = [R11 R21 Cl R22]T is uniquely identifiable because the Jacobian J given by 
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0 

0 

J 
1 2 1 2 s1C Ril +s2C R2) 

0 

1 2 1 1 1 1 s1R1 R2 s1 C R/1 + s1 C R1) 

[1 + s1 C
1CRi + R!)]

2 
[1 + s1 C

1 CRi + R;)l
2 

[1 + s1 C
1CRi + R~J2 

1 2 1 2 s2C Ril + s2C R2) 

[1 + s2C
1
(Ri + R!)J2 

0 

1 2 1 1 1 1 s2R1 R2 s2C R/1 + s2C R
1
) 

[1 + s C1 (R1 + R2)f [1 + C1(R1 + R2)J2 2 1 2 S2 1 ~ 

(5.10) 

is ofrank 4 if s1 :;t: s2. 

To summarize the approach, it can be stated that although the use of 

unknown perturbations adds to the number of unknown parameters, the addition of 

new measurements could increase the rank of J by an amount greater than the 

increase inn, therefore increasing the chance of uniquely identifying the parameters. 

The originality of the technique lies in the fact that neither additional ports (nodes) 

nor additional frequencies are required. The additional measurements on the 

perturbed system can be performed at the ports (nodes) or frequencies which are 
, 

subsets of the ports (nodes) or frequencies employed for the unperturbed system. 

Based on the above ideas and for nc circuits, we formulate an e1 

optimization problem as follows: 

nc kt 

minimize L L If: I ' 
(5.11) 

X t=l i=l 

where 

(5.12) 



and 

X 

x2 
a 

127 

n 
C 

X 
a 

(5.13) 

with superscript and index t identifying the t-th circuit. Xa t represents the vector of 

additional parameters introduced after the (t-l)th adjustment. It has only one or a 

few elements compared to n elements in xt which contains all circuit parameters after 

the change, i.e., including the ones which have not changed. kt is an index whose 

value depends on t, therefore a different number of frequencies may be used for 

different circuits. 

5.3.3 An Implementation of the Multi-Circuit Modelling Technique 

In this section we describe an implementation of the multi-circuit 

modelling technique to perform the optimization problem given in (5.11) with 

variables defined in (5.13). The emphasis is on the way in which the problem is set up 

such that different circuits are processed individually while the optimization works 

on all circuits simultaneously. 

Assume that a gradient-based e1 optimization package is available which 

requires user-defined functions and gradients. Also, assume that a dedicated module 

with a fixed circuit topology is provided by the user which calculates all S-parameters 

(or other relevant responses) of the network, at a given frequency and for one set of 

network parameters. This module also calculates the sensitivities of S-parameters 
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with respect to all parameters of the circuit at the frequency of operation and at the 

given set of parameter values. 

Now suppose that after measuring the S-parameters of a device at K1 

frequencies, we make an adjustment to the device and measure the S-parameters at 

K2 frequencies. In general, the second set of frequencies share some common points 

with the first set. We can keep making adjustments to the device a total of ne- 1 

times, so that a total of ne circuits (including the initial circuit before any adjustment) 

exist. After each adjustment, the S-parameters are measured and recorded. For the 

t-th circuit, there are Kt frequencies at which S-parameters are measured. Note that 

after each adjustment we may or may not recover the initial setting before making 

another adjustment. 

The first step in the implementation is pre-processing of the available 

measurements to select responses and frequencies used for each circuit in the optimi-
• I 

zation. For the t-th circuit, any or all of the Kt frequencies may be chosen. For each 

S-parameter it is possible to select its magnitude or phase (real part or imaginary 

part) or both. After this step, we have Kt' frequencies and kt measurements for the 

t-th circuit, where measurements correspond to different responses and different fre­

quencies. As an example, suppose that S-parameters of a two-port network after one 

adjustment are measured at 5 frequencies. We have K2 = 5. If the real and ima­

ginary parts of 821 and 812 for the first and fifth points and the real and imaginary 

parts of all S-parameters for the third point are selected for the optimization, we have 

K2' = 3 and k2 = 16. It is clear that when the responses of the t-th circuit are 

calculated based on its model (Fie(xt) in (5.12), where i = 1, ... , kt), the user-defined 

module for simulation and sensitivity analysis of the network which calculates all 
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complex S-parameters at one frequency is called only Kt' times. For instance, in the 

above hypothetical example, the module is called 3 times for t = 2. 

Based on the selection of responses at frequency i', i' = 1, ... , Kt' for 

circuit t, we form a true-false code which simply shows whether a particular response 

was selected or not at i'. This true-false code will be used to form exactly kt error 

functions corresponding to circuit tin the optimization. 

As is emphasized in the term F{(xt), we have to ensure that the responses 

for each circuit are evaluated at its corresponding set of parameters. We propose 

setting up an index matrix as part of the implementation. Assume that there are n 

variable parameters in the circuit equivalent for the device (topology is preselected 

and fixed). These are the parameters which can change as a result of a physical 

adjustment. Based on the knowledge of the likely parameters that change after each 

adjustment, we set up an index matrix B with the following rules. 

1) B = [btjl is an ncXn matrix. 

2) We have b1j = j, j = 1, ... , n. 

3) btj is an integer which identifies the position of the jth element of xt (xt has 

n elements) in the overall x vector of(5.13). 

An example will clarify the above set up. Suppose that there are 5 variable 

parameters in the equivalent circuit. After the first adjustment, it is expected that 

the first and the third variable change. A second adjustment is made such that the 

5th variable changes. If we make the second adjustment after recovering the initial 

setting, matrix Bis given by 

B =[: 
2 3 4 

:} 2 7 4 (5.14) 

2 3 4 
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On the other hand, if the second adjustment is performed without recovering the 

initial setting, we have 

B =[: 
2 3 4 

:]-2 7 4 (5.15) 

2 7 4 

In either case, xl has 5 elements, xa2 has two elements, xa3 has one element and the 

overall x vector has eight elements. However, different circuits are achieved using 

(5.14) or (5.15) and therefore the index matrix plays an important role. 

Using the elements of B, the total number of variables and the number of 

elements in x8_t, t = 2, ... , nc, are automatically obtained. We have 

Nt = max {bt}, 
(5.16) 

j 

where Nt denotes the total number of variables after the (t- l)th adjustment. Clearly, 

Nn is equal to the size of vector x in (5.13). The size of xat denoted by at is calculated 
C 

as 

at= Nt - Nt-1 · 
(5.17) 

Having defined matrix B, we can recover the xt vector for each circuit from 

the overall x in a straightforward manner. Thejth element ofxt is given by 

j = 1, ... , n, (5.18a) 

where 

index= btj. 
(5.18b) 

For instance, from (5.14), we get 

x6 xl 

x2 x2 

x2 x7 and x3 x3 
(5.19) 

x4 x4 

x5 x8 



131 

At this point, we can develop a simple algorithm corresponding to one 

iteration of the l1 optimization problem defined in (5.11). Given the x vector (initial 

guess for the first iteration and determined by the optimization routine in the 

subsequent iterations), we want to calculate all functions and gradients. 

Fort = 1, 2, ... , nc, execute Steps 2 to 6. 

Obtain xt from x using (5.18). 

For i' = 1, 2, .... , Kt', execute Steps 4 to 6. 

Call the user-defined module which calculates all S-parameters and n 

derivatives of each S-parameter at one frequency (i'th frequency of the 

t-th circuit), and at the parameter values in xt. 

Check the true-false code for each possible response at the i'th frequency 

and for each true answer, form one error function fit· 

Comment Based on each true answer, one ff in (5.12) is formed and the index i 

which is initially zero is incremented by one. In this way, at i' = Kt', i 

automatically reaches kt, 

For j = 1, 2, ... , n, execute the following 

af~ 
1 

---,E-

ax. d 1n ex 

af~ 
1 

ax~ 
J 

Comment For each fit formed in Step 5, there are n derivatives which are readily 

calculated using the derivatives obtained from the user-defined module 

(derivatives of F{(xt)) and weighting factor wit, These n derivatives 

correspond to n elements of the x matrix which are positioned according 

to the index btj· It is assumed that af/Jax has been initialized to zero, 

therefore, the derivatives off/ with respect to the remaining elements of 

x (i.e., except the ones given by Xindex) are zero. 
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5.3.4 Model Verification Using Multi-Circuit Measurements 

Although the optimization problem formulated in (5.11) with the variables 

given in (5.13) enhances the unique identification of parameters, its limitations 

should be considered carefully. The limitations are related to the way in which model 

parameters x are controlled by physical adjustments on the device. 

Parameters x are generally controlled by some physical parameters 

<I>~ [¢1 ¢2 ... ¢e]T. For instance, in active device modelling intrinsic network 

parameters are controlled by bias voltages or currents, or in waveguide filters the 

penetration of a screw may control a particular element of the network model. The 

actual functional relationship between <I> and x may not be known, however, we often 

know which element or elements of x are affected by an adjustment on an element of 

q>. The success of the optimization problem (5.11) is dependent on this knowledge, i.e., 

after each physical adjustment, the correct candidates should be present in Xa. To 

ensure this, we should overestimate the number of model parameters which are likely 

to change after adjusting an element of q>. On the other hand, we would like to have 

as few elements as possible in each Xa vector, so that the increase in the number of 

variables can be overcompensated for by the increase in rank of matrix J resulting 

from the addition of new measurements. 

In practice, by overestimating the number of elements in Xa or by making 

physical adjustments which indeed affect many model parameters, (a change in bias 

voltage may affect all intrinsic parameters of a transistor model) the optimization 

problem of (5.11) may not be better- conditioned than the traditional single circuit 

optimization. This means that the chance for unique identification of parameters may 

not increase. However, multi-circuit measurements could still be used as an alter-
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native to selecting different or more frequency points as may be done in the single 

circuit approach. 

We now formulate another optimization problem which either verifies the 

model parameters obtained or proves their inconsistency with respect to physical 

adjustments. The information about which elements of x are affected by adjusting an 

element of<}), although used to judge the consistency of results, is not required a 

priori. Therefore, the formulation is applicable to all practical cases. 

Suppose that we make an easy-to-achieve adjustment on an element of<}) 

such that one or a few components ofx are changed in a dominant fashion and the rest 

remain constant or change slightly. Consider the following e1 optimization problem 

2 kt 

minimire L L I r: I + ± I\ I xi
1 

- xf I , 
X t=l i=l j=l 

(5.20) 

where _l3j represents an appropriate weighting factor and x is a vector which contains 

circuit parameters of both the original and perturbed networks, i.e., 

(5.21) 

Notice that, despite its appearance, (5.20) can be rewritten easily in the standard e1 

optimization form, which is minimizing~ l·I, by taking the individual functions from 

either the nonlinear part (t,or the linear part x/-x?. 

The above formulation has the following properties: 

1) Considering only the first part of the objective function, the formulation is 

equivalent to performing two optimizations, i.e., matching the calculated 

response of the original circuit model with its corresponding measurements 

and repeating the procedure for the perturbed circuit. 
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2) By adding the second part to the objective function, we take advantage of 

the knowledge that only one or a few model parameters should change 

dominantly by perturbing a component of 4>. Therefore, we penalize the 

objective function for any difference between xl and x2. However, since the 

£1 norm is used, one or a few large changes from xl to x2 are still allowed. 

Discussions on the use of the e 1 norm in Chapter 2 should be referred to. 

The confidence in the validity of the equivalent circuit parameters 

increases if a) an optimization using the objective function of (5.20) results in a 

reasonable match between calculated and measured responses for both circuits 1 and 

2 (original and perturbed) and b) the examination of the solution vector x reveals 

changes from xl to x2 which are consistent with the adjustment to 4>, i.e., only the 

expected components have changed significantly. We can build upon our confidence 

even more by generalizing the technique to more adjustments to 4>, i.e., formulating 

the optimization problem as 

n kt n 

minhnire i L I ~ I + i ± llJ I xj
1 

- xJ I , 
X t=l i=l t=2 j=l 

(5.22) 

where nc circuits and their corresponding sets of responses, measurements and 

parameters are considered and t};ie first circuit is the reference model before any 

adjustment to 4>. In this case, xis given by 

x= 

xl 

n 
X C 

(5.23) 
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By observing inconsistencies in changes of x with the actual change in <t,, 

the new technique exposes the existence of nonideal effects not taken into account in 

the model. Having confidence in the parameters as well as observing a good match 

between measured and modelled responses means that the parameters and the model 

are valid, even if different responses or different frequency ranges are used. · 

The implementation of optimization problem (5.22) with variables given in 

(5.23) is similar to the implementation of Section 5.3.3. The structure of x is simpler 

in this case and the elements of the index matrix Bare automatically given by 

b tj = (t - 1) X n + j , t=l, ... ,n, j=l, ... ,n. 
C 

(5.24) 

5.4 MODELLING OF MULTI-COUPLED CAVITY FILTERS 

In Chapter 4 we discussed the multi-coupled cavity filters in the context of 

multiplexer design. The impedance matrix description of the filters and dissipation 

and dispersion effects were presented in detail. Modelling of the filters, i.e., deter­

mining the coupling values by processing the measured responses such as input and 

output return loss, insertion loss and group delay, is of significance in both filter and 

multiplexer tuning. We will further comment on the tuning problem in Section 5.6. 

5.4.1 6th Order Filter Example 

A 6th order multi-coupled cavity filter centered at 11785.5 MHz with a 

56.2 MHz bandwidth is considered. Measurements on input and output return loss, 

insertion loss and group delay of an optimally tuned filter and the same filter after a 

deliberate adjustment on the screw which dominantly controls coupling M12, were 

provided by ComDev (1985). Although the passband return loss changes signifi­

cantly, we anticipate that such a physical adjustment affects only model parameters 



M12, Mu and M22 (the last two correspond to cavity resonant frequencies) in a 

dominant fashion, possibly with slight changes in other parameters. 

Using the new technique described in this chapter, we simultaneously pro­

cessed measurements on passband return loss (input reflection coefficient with a 

weighting of 1), and stopband insertion loss (with a weighting of 0.05) of both filters, 

i.e., the original and perturbed models. The e1 algorithm with exact gradients was 

used. The evaluation of sensitivities is discussed in detail by Bandier, Chen and 

Daijavad (1986a). The model parameters identified for the two filters are summarized 

in Table 5.1. Figs. 5.3 and 5.4 illustrate the measured and modelled responses of the 

original filter and the filter after adjustment, respectively. An examination of the 

.results in Table 5.1 and Figs. 5.3-5.4 shows that not only an excellent match between 

measured and modelled responses has been achieved, but also the changes in 

parameters are completely consistent with the actual physical adjustment. Therefore, 

by means of only one optimization, we have built confidence in the validity of the equi­

valent circuit parameters. The problem involved 84 nonlinear functions (42X 2 

responses for original and perturbed filters) and 12 linear functions (change in 

parameters of two circuit equivalents) and 24 variables. The solution was achieved in 

72 seconds of CPU time on the VAX 11/780 system. 

5.4.2 8th Order Filter Example 

In this example, we used the new modelling technique to reject a certain set 

of parameters obtained for an 8th-order multi-cavity filter by proving their 

inconsistent behaviour with respect to physical adjustments. We then improved the 
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TABLE 5.1 

RESULTS FOR THE 6TH ORDER FILTER EXAMPLE 

Coupling Original Filter Perturbed Filter Change in Parameter 

Mu -0.0473 -0.1472 -0.0999* 

M22 -0.0204 -0.0696 -0.0492* 

M33 -0.0305 -0.0230 0.0075 

M44 0.0005 0.0066 0.0061 

M55 -0.0026 0.0014 0.0040 

M66 0.0177 -0.0047 -0.0224 

M12 0.8489 0.7119 -0.1370* 

M23 0.6064 0.5969 -0.0095 

M34 0.5106 0.5101 -0.0005 

M45 0.7709 0.7709 0.0000 

Ms6 0.7898 0.7806 -0.0092 

M36 -0.2783 -0.2850 -0.0067 

* significant change in parameter value. 
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before adjusting the screw. The solid line represents the modelled 
response and the dashed line shows measurement data. 
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response and the dashed line shows measurement data. 
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model by including an ideally zero stray coupling in the model and obtained 

parameters which not only produce a good match between measured and modelled 

responses, but also behave consistently when perturbed by a physical adjustment. 

The 8th-order filter is centered at 11902.5 MHz with a 60 MHz bandwidth . 

. Return loss and insertion loss measurements of an optimally tuned filter and the 

same filter after an adjustment on the iris which dominantly controls coupling M23, 

were provided by ComDev (1985). Based on the physical structure of the filter, screw 

couplings M12, M34, Ms6 and M7s, the iris couplings M23, M14, M45, M67 and Mss, as 

well as all cavity resonant frequencies and input-output couplings (transformer 

ratios) are anticipated as possible non-zero parameters to be identified. 

In the first attempt, the stray coupling M36 was ignored and passband 

measurements on input and output return loss and stopband isolation for both filters 

were used to identify the parameters of the filters. The parameters are summarized in 

Table 5.2. An examination of the results shows no apparent trend for the change in 

parameters, i.e., it would have been impossible to guess the source of perturbation 

(adjustment on the iris controlling M23) from these results. This is the kind of incon­

sistency that would not have been discovered if only the original circuit had been 

considered. 

In a second attempt, we included the stray coupling M36 in the circuit 

model and processed exactly the same measurements as before. Table 5.2 also 

contains the identified parameters of the two filters for this case. A comparison of the 

original and perturbed filter parameters reveals that the significant change in 

couplings M12, M23 and M34 and cavity resonant frequencies M22 and M33 is 

absolutely consistent with the actual adjustment on the iris, i.e., by inspecting the 
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TABLE 5.2 

RESULTS FOR THE 8TH ORDER FILTER EXAMPLE 

M36 ignored M36present 

Coupling Original Perturbed Original Perturbed 

Mu -0.0306 -0.1122 -0.0260 -0.0529 

M22 0.0026 -0.0243 0.0354 0.6503* 

M33 -0.0176 -0.0339 -0.0674 -0.6113* 

M44 -0.0105 -0.0579 -0.0078 -0.0151 

M55 -0.0273 -0.0009 -0.0214 0.0506 

M66 -0.0256 0.0457 -0.0179 -0.0027 

M77 -0.0502 0.0679 -0.0424 -0.0278 

Mss -0.0423 0.0594 -0.0426 -0.0272 

M12 0.7789 0.7462 0.3879 0.2876* 

M23 0.8061 0.8376 0.9990 0.8160* 

M34 0.4460 0.4205 0.0270 -0.1250* 

M45 0.5335 0.5343 0.4791 0.5105 

Ms6 0.5131 0.5373 0.5006 0.5026 

M67 0.7260 0.7469 0.6495 0.6451 

M7s 0.8330 0.8476 0.8447 0.8463 

M14 0.3470 -0.3582 -0.7648 -0.7959 

Mss -0.1995 -0.1892 -0.1000 -0.0953 

M36 0.1314 0.1459 

input and output couplings: n12 = n22 = 1.067 

* significant change in parameter value. 
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change in parameters, it is possible to deduce which iris has been adjusted. The 

measured and modelled input return loss and insertion loss responses of the two 

filters are illustrated in Figs. 5.5 and 5.6. It is interesting to mention that the match 

between measured and modelled responses in the first attempt where M36 was 

ignored and inconsistent parameters were found, is almost as good as the match in 

Figs. 5.5 and 5.6. This justifies the essence of the new modelling technique which 

attempts to identify the most consistent set of parameters among many that produce a 

reasonable match between measured and calculated responses. 

5.5 FET MODELLING 

5.5.1 A Brieflntroduction 

Demand has been increasing for low-noise receivers and driver amplifiers 

for commercial satellite communications, especially at X-band frequencies. The 

frequency range from 10.7 to 12.7 GHz covers the international, domestic, and direct 

broadcast communication bands. The GaAs MMIC (monolithic microwave integrated 

circuits) approach offers the potential for lower-cost amplification modules and a 

significant reduction in component size compared to hybrid MIC modules. MMIC 

fabrication also provides performance uniformity, reduced phase variation, and 

potentially higher reliability. Hung et al. (1985) have described design 

considerations, fabrication process, and performance for the newly developed MMIC 

amplifier modules operating in the X-band. 

Design of these MMIC's begins with the development of an equivalent 

circuit model for the FET device. Fig. 5.7 shows the equivalent circuit of a carrier­

mounted FET. This circuit equivalent (Curtice and Camisa 1984) or slightly different 

circuits used by other researchers are small-signal models. For large-signal analysis 
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of GaAs FET amplifiers, a nonlinear circuit equivalent is used and time-domain 

analysis is performed. Nonlinear models are subjects of interest in high power FET's 

(see for example, Curtice and Ettenberg 1985~ Materka and Kacprzak 1985), however, 

their analysis is out of the scope of this thesis. To appreciate the physical dimensions 

for a rr-FETconfiguration, Fig. 5.8 illustrates the cross section of the FET structure. 

In this section, we apply the new modelling technique described previously 

to determine the parameters of the equivalent circuit 5. 7 from S-parameter 

measurements. Unique identification of parameters for the FET equivalent circuit is 

of prime interest to researchers at the present time, since most of the available 

software runs into diffculties in doing so. 

5;5.2 NEC700 Example 

Device NEC700, for which measurement data is supplied with 

TOUCHSTONE, was considered. Using S-parameter data, single-circuit modelling 

with the e1 objective was performed. The goal of this experiment was to prepare for 

the more complicated multi-circuit case by testing some common formulas and 

assumptions. The equivalent circuit of Fig. 5.7 at normal operating bias (including 

the carrier) with 16 possible variables was used. An e1 optimization with exact 

gradients, which are evaluated using the formulas derived in Chapter 3 was 

performed. Measurement data was taken from 4 to 20 GHz. Table 5.3 summarizes the 

identified parameters and Figs. 5.9a, 5.9b and 5.9c illustrate the measured and 

modelled responses. 
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Fig. 5.8 Cross section of a rr-FET structure (Reproduced from Hung et al. 1985). 
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TABLE 5.3 

RESULTS FOR THE NEC700 FET EXAMPLE 

Parameter Value 

C1 CpF) 0.0448 

C2 CpF) 0.0058 

Cag CpF) 0.0289 

Cgs CpF) 0.2867 

Cas CpF) 0.0822 

Ci CpF) 0.0100 

Rg (Q) 3.5000 

Ra cm 2.0000 

Rs cm 3.6270 

Ri CO) 7.3178 

Ga- 1 (km 0.2064 

Lg CnH) 0.0585 

La CnH) 0.0496 

Ls CnH) 0.0379 

gm CS) 0.0572 

~ Cps) 3.1711 
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Smith Chart display of S21 in modelling of NEC700. The frequency 
range is from 4 to 20 GHz. Points A and B mark the high frequency end 
of modelled and measured responses, respectively. 
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Smith Chart display of 812 in modelling of NEC700. The frequency 
range is from 4 to 20 GHz. Points A and B m.ark the high frequency end 
of modelled and measured responses, respectively. 
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5.5.3 B1824-20C Example 

Using S-parameter data for the device B1824-20C from 4 to 18 GHz, 

Curtice and Camisa (1984) have achieved a very good model for the FET chip. They 

have used the traditional least squares optimization of responses utilizing SUPER­

COMP ACT. Their success is due to the fact that they have reduced the number of 

possible variables in Fig. 5.7 from 16 to 8 by using de and zero-bias measurements. 

We created two sets of artificial S-parameter measurements with TOUCHSTONE: 

one set using the parameters reported by Curtice and Camisa (operating bias 

Vas = 8.0 V, V gs= - 2.0 V and las= 12~.0 mA) and the other by changing the values of 

C1, C2, Lg and La to simulate the effect of taking different reference planes for the 

carriers. Both sets of data are shown in Fig. 5.10, where the S-parameters of the two 

circuits are plotted on a Smith Chart. 

Using the technique described in this chapter, we processed the measure­

ments on the two circuits simultaneously by minimizing the function defined in 

(5.20). The objective of this experiment is to show that even if the equivalent circuit 

parameters were not known, as is the case using real measurements, the consistency 

of the results would be proved only if the intrinsic parameters of the FET remain 

unchanged between the two circuits. This was indeed the case for the experiment 

performed. Although the maximum number of possible variables, namely 32 (16 for 

each circuit), were allowed for in the optimization, the intrinsic parameters were 

found to be the same between the two circuits and, as expected, C1, C2, Lg and La 

changed from circuit 1 to 2. Table 5.4 summarizes the parameter values obtained. 

The problem involved 128 nonlinear functions (real and imaginary parts of 4 S­

parameters, at 8 frequencies, for two circuits), 16 linear functions and 32 variables. 

The CPU time on the VAX 11/780 system was 79 seconds. 
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TABLE 5.4 

RESULTS FOR THE GaAs FET B1824-20C EXAMPLE 

Parameter Original Circuit Perturbed Circuit 

C1 CpF) 0.0440 0.0200* 

C2 CpF) 0.0389 0.0200* 

Cdg CpF) 0.0416 0.0416 

Cgs CpF) 0.6869 0.6869 

Cas CpF) 0.1900 0.1900 

Ci CpF) 0.0100 0.0100 

Rg cm 0.5490 0.5490 

Ra cm 1.3670 1.3670 

Rs cm 1.0480 1.0480 

Ri cm 1.0842 1.0842 

Ga-1 (kQ) 0.3761 0.3763 

Lg CnH) 0.3158 0.1500* 

La CnH) 0.2515 0.1499* 

Ls CnH) 0.0105 0.0105 

gm CS) 0.0423 0.0423 

i; Cps) 7.4035 7.4035 

* significant change in parameter value. 
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5.6 TUNING BASED ON EFFICIENT MODELLING 

5.6.1 Fundamental Concepts 

In this section, we discuss the possibility of using an efficient modelling 

technique in conjunction with algorithms developed for postproduction tuning of 

microwave devices. In particular, we have in mind the tuning of such devices for 

which the physical parameters used in tuning (e.g., physical dimensions, screw pene­

tration, etc.) are different in nature from the model parameters of the equivalent 

circuit. 

Bandier and Salama (1985b) have discussed the use of a functional 

approach to microwave postproduction tuning. In their approach, the physical 

parameters used for tuning are the circuit model parameters themselves (actually, a 

subset with the smallest possible number of parameters) with uncertainties due to 

tolerances associated with them. Without attempting to determine parameters of the 

manufactured circuit, i.e., finding the network element values, the functional tuning 

algorithms carry out a sequence of tunable parameter adjustments until the 

performance specifications for the device are met. 

Based on the notation used earlier in this chapter for model and physical 

parameters, i.e., x and <I>, respectively, in Bandier and Salama's approach <I> is a 

subset of x with unknown values throughout the tuning process. 

Now, consider the tuning of a device for which the physical parameters are 

completely different in nature from the model parameters. For instance, the physical 

parameter is the size of an iris or the amount of a screw penetration in a cavity and 

the model parameter is a coupling value in coupled cavity filters. As a special case, 

the physical parameters could be the controllable nominal values of unknown circuit 

model parameters. An analytical relationship between <I> and x may not exist or may 
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be very difficult to achieve in a global sense. Although it is possible to carry out a 

functional tuning directly using 4>, i.e., adjusting 4> until specifications on responses 

are met without considering any circuit equivalents, the approach could be extremely 

inefficient and time-consuming if we start with a highly detuned device. This is due 

to the highly nonlinear relationship between circuit responses and physical 

parameters. A more efficient tuning algorithm for such devices can be developed if 

efficient and reliable modelling is possible. 

The nonlinear relationship between circuit reponses and 4> can be broken 

down to a nonlinear relationship between responses and x and a mildly nonlinear 

relationship between x and 4>. Since the responses are analytically calculated from x, 

and conversely x can be found from the responses using a reliable modelling 

technique, the tuning is simplified to a less nonlinear problem which is effectively 

from 4> to x instead of from 4> to responses. 

Apart from identifying x from responses at each stage of the tuning process, 

modelling is also used to establish a local relationship between x and 4> at the start of 

the tuning process. This relationship which predicts the change in x as a result of the 

change in 4> is updated in the tuning process. The modelling technique described in 

this chapter was used to establish a relationship between physical and model 

parameters of a multi-coupled cavity filter. The results verified that the relationship 

between x and 4> is indeed mildly nonlinear (in fact, it is almost linear) and therefore, 

a tuning algorithm involving the intermediate model parameters is more efficient 

than a direct functional tuning algorithm for such filters. 



157 

5.6.2 Example in Establishing the Relationship Between Physical and Model 

Parameters 

Consider a 6th order multi-coupled cavity filter centered at 11783 MHz 

with a 56 MHz bandwidth. The estimated unloaded Q-factor for the filter is 7600. 

From the physical structure of the filter, we have screw couplings M12, M34 and Ms6, 

and iris couplings M23, M45 and M36· We want to establish the relationship between 

the position of the screws (their penetrations in the cavities) which are physically 

adjustable, and the coupling values which are the model parameters in this case. To 

achieve this, a filter was manually tuned to achieve a reference optimum response. 

Starting from this reference tuned filter, the screw which is supposed to control 

coupling M12 was adjusted four times; twice in the clockwise direction (screw 

penetrates more in the cavity) with 90 degree and 180 degree turns as compared to the 

reference, and twice in the anticlockwise direction, again with 90 and 180 degree 

turns. After each adjustment, filter responses (input-output return loss, insertion loss 

and group delay) were measured and recorded. Using the modelling technique of this 

chapter, the measurements were processed (passband input return loss and stopband 

insertion loss) to identify filter parameters (coupling values) in each case. 

Figure 5.11 illustrates the variation of coupling values (model parameters) 

as the position of the screw changes (adjustment on the physical parameter). Clearly, 

the coupling value M12 increases almost linearly as the screw penetrates more in the 

cavity while the other couplings remain almost constant (slight changes). The 

behaviour is highly desirable as far as the tuning is concerned. The experiment was 

repeated with the screws controlling M34 and Ms6· The reference filter (angle zero for 

the screw) was the same optimally tuned filter as used in the M12 case. The plots of 

model parameters versus change in physical parameters are shown in Figs. 5.12 and 
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5.13, which correspond to the M34 and Ms6 screws, respectively. Again, we have 

almost linear or almost constant li:r;ies in both plots. 

The measurements used in this experiment were all provided by ComDev 

(1986). 

5.7 CONCLUDING REMARKS 

In this chapter, we discussed the traditional formulation for modelling and 

presented a new formulation exploiting multi-circuit measurements. The way in 

which the multi-circuit measurements may contribute to the unique identification of 

parameters has been described mathematically with the help of a simple example. An 

optimization problem which is directly aimed at overcoming the non-uniqueness of 

parameters was formulated and its implementation was described in detail. A second 

formulation which is aimed at the automatic verification of model parameters by 

checking the consistency of their behaviour with respect to physical adjustments on 

the device, was proposed. 

Promising results in modelling of narrowband multi-coupled cavity filters 

and wideband GaAs FET's were obtained which justify the use of our multi-circuit 

approach and formulation. The author strongly believes that the use of multiple sets 

of measurements and a formulation which ties modelling (performed by the computer) 

to the actual physical adjustments on the device will enhance further developments in 

modelling and tuning of microwave devices. The use of modelling in establishing the 

relationship between physical and model parameters has been illustrated. 



6 
CONCLUSIONS 

This thesis has considered the application of recent minimax and e 1 

optimization techniques in the design and modelling of microwave circuits. The 

difference between design and modelling problems is the way in which performance 

specifications are given. In the design of microwave circuits in the frequency domain, 

there are upper and lower engineering specifications over different frequency bands of 

interest which a manufactured design must meet. In the modelling problem, an 

equivalent circuit must be obtained such that the circuit responses match the 

measurements on a device as closely as possible. The measurements play the role of 

specifications in modelling. 

Both design and modelling problems are formulated as optimization 

problems with the objective being the norm of the error functions resulting from 

specifications on performance functions of interest. The minimax norm for design and 

the f1 norm for modelling have been used in this thesis. Fast and efficient algorithms 

for minimax and e 1 optimization originated by Hald and Madsen, which may be the 

best of their class currently available, are utilized. 

The use of gradient-based optimization algorithms requires efficient sensi­

tivity analysis. The approach presented in Chapter 3 deals with the sensitivities in a 

straightforward manner. It is applicable to a large class oflinear circuit structures in 

the frequency domain. The approaches for sensitivity evaluations in cascaded and 

branched cascaded networks were developed with microwave applications in mind. 
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Optimal design of multiplexing networks has directly emerged from the 

theoretical foundations of Chapters 2 and 3. The size and complexity of this problem, 

with the design examples involving up to 60 nonlinear variables and as many as 100 

nonlinear error functions, necessitates the use of fast and reliable optimization 

techniques, which in turn require the gradients to be supplied. To maintain the 

engineering relevance of the work, nonideal effects in the multiplexer structure were 

considered. Close cooperation with industry has resulted in a realistic imple­

mentation of the theoretical results. This implementation has had an impact in terms 

of achieving major reductions in CPU times required for practical designs. 

The multiplexer design example, apart from being a problem of current 

interest in microwave research and practice, gives enormous credibility to the use of 

optimization techniques in large engineering problems in general, and microwave 

problems in particular. In recent years, many commercially available software 

systems have been developed in the microwave area. It will not be very long before 

the flexibility, user-friendly features and graphical capabilities of these systems, 

combined with powerful optimization techniques which have been employed in this 

thesis, form an indispensable tool used by all microwave engineers. 

Based on the theoretical properties of the e1 norm applied to multi-circuit 

measurements, a new modelling technique was presented in Chapter 5. Two 

optimization problems were formulated with the aim of achieving unique equivalent 

circuit parameters which remain valid and consistent as the experimental environ­

ment changes, e.g., as a result of making physical adjustments to the device. By 

relating the concept of modelling to actual physical adjustments, the relationships 

between model and physical parameters are established and a framework for 

developing new postproduction tuning algorithms is created. Industrial cooperation 
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in testing the new modelling technique has affected the theoretical work extensively. 

The model verification method presented in Chapter 5 was developed only after some 

limitations of the experimental environment became evident as the real data was 

processed. 

For microwave devices such as amplifiers realized using MMIC's 

(monolithic microwave integrated circuits), modelling is used to predict device 

scattering parameters at millimeter wave frequencies where they cannot be measured 

with current commercial equipment. By applying the new modelling technique to 

GaAs FET's, it is felt that this thesis can contribute to the subject which has been of 

tremendous interest to microwave engineers in the past few years. 

One of the most recent methods for efficient gradient approximations, 

applicable to both minimax and e1 optimizations, was reviewed in Chapter 2. It is 

predicted that this technique will realize its full potential in solving those microwave 

problems which involve nonlinear devices or complicated field equations, in the near 

future. 

A number of problems related to the topics in this thesis are worth further 

research and development. 

(a) In Chapter 5, an advanced technique in model evolution, i.e., automatic 

modification of network topology was discussed. The technique is sequen­

tial in the sense that different network topologies are tried one after 

another. Apart from further theoretical work in developing strategies and 

criteria for the automatic modification, it would be very useful to combine 

the modification techniqe with the simultaneous processing of multiple 

circuits which was introduced in this thesis. The idea is to process 

simplified models such as low frequency models of a microwave device 
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simultaneously with its more complicated models at normal operating 

frequencies, with constraints on consistency of the parameters. 

(b) As was discussed in Chapter 5, an efficient modelling technique has appli­

cations in developing new postproduction tuning algorithms. In such 

algorithms, the functional relationship between the model parameters and 

physically adjustable or designable elements of a device are approximated' 

automatically and adaptively. The involvement of model parameters 

which usually have mildly nonlinear dependence on physical parameters, 

and the fact that the nonlinear relationship between responses and model 

parameters is under control by using a reliable modelling technique gives 

us an incentive to develop new tuning algorithms. These algorithms will 

enhance large volume production of complicated microwave components. 

(c) It would be of great practical value to investigate an implementation of the 

modelling technique described which exploits the latest developments in 

hardware-software systems reported by industry. The most recent 

advances include the introduction of systems capable of simultaneoulsy 

processing and displaying measurement data obtained from a network 

analyzer, and the simulation and/or optimization results computed using 

compatible personal computers. 

(d) Modelling of power FET's under large-signal conditions where the equi­

valent circuit is nonlinear is a topic of significant current interest. It would 

be useful to study the feasibility of extending or modifying the current 



166 

modelling formulations to nonlinear systems where time domain analysis 

becomes more appropriate. 

(e) In the multiplexer structure of Chapter 4, some nonideal effects such as 

dissipation, dispersion and junction susceptances were discussed. These 

nonideal effects were modelled using empirical formulas obtained through 

experience or experiments. The problem of modelling some of the nonideal 

effects present in the multiplexer structure using measurements on the 

device is worth further study and will result in multiplexer designs which 

will require less effort in postproduction tuning. 

(f) From a theoretical point of view, it is worth further research to study the 

implications of the sensitivity formulas obtained for lossless reciprocal 

2-port networks of Chapter 3 in sensitivity analysis of lossless reciprocal 

n-ports. 



APPENDIX A 

SECOND-ORDER SENSITIVITY FORMULA 

FOR TERMINATED TWO-PORTS 

Here we present the derivation of the second-order sensitivity formula for 

the port voltages of a terminated two-port, as given by (3.26). 

Using (3.25), the first-order sensitivity with respect tow is given by 

(V ) = H (z I - z T V ) . 
pw w P w P 

Differentiating (A.1) with respect to <p, we get 

(V p\w = H[z<l>w IP +zw (IP)<l> - z<l> Tw VP -z T<l>w VP - z Tw(Vp\l 

+ H Jz I - z T V ) . 'l' u) p u) p 

Using the definition of Hin (3.24), we have 

H,/z I - zT V) = -H(H-\ .. H(z I -zT V) 'l' wp w p 'l' wp w p 

= - H (z <l> T + z T <l>)(V J w . 

The sensitivity of the port current vector is obtained using (3.22) as 

(Ip\= -[T<l> VP+ T(VP)<l>] . 

Finally, substituting (A.3) and (A.4) in (A.2) and collecting terms, we get 

(V ),hr_, = -H{z [TA.. V + T(V )J + zJT V + T(V) ] 
P'l"'-' w 'l' P P'l' 'l' w P pw 

+ z[T,h(V) + T (V ),h + TAv_, V ]-zAv., I } . 'l' pw w P'l' 'l"" p 'l"" p 
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(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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