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ABSTRACT 

This thesis addresses robust Huber-based optimization for circuit design, modeling and diagnosis. Optimization problems using Huber functions are formulated. First- and second-order sensitivities of the Huber objective functions are investigated. The robustness of the Huber approach is explored. One-sided Huber-based optimization is introduced for engineering design problems. Dedicated algorithms for Huber-based optimization are reviewed. The appropriateness and efficiency of the algorithms are demonstrated. Robust statistical modeling is addressed. Statistical parameter extraction and postprocessing are used to obtain the sample of models and estimate parameter statistics. The advantage of the Huber statistical estimator is illustrated. Suitable threshold selection is discussed. For the first time, the analog fault isolation problem is solved by Huber-based optimization. The effectiveness of the Huber approach is demonstrated by both theoretical formulation and a real example. The Huber concept is applied to large-scale design problems. The one-sided Huber preparatory optimization is shown to be more effective than minimax method in terms of providing a good starting point for full-scale design optimization. 
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Chapter 1 

INTRODUCTION 

Optimization-oriented computer-aided circuit design (CAD) has been an active area of computer applications for more than two decades (Bandier and Chen ( 1988) [ l]). The classic paper by Ternes and Calahan in 19 6 7  [ 2] was one of the earliest to formally advocate the use of iterative optimization in circuit design. Since its inception, computer-aided design optimization has been experiencing significant advances made by engineers and scientists. Techniques for efficient large-scale network simulation and optimization have been developed due to the emergence of the VLSI era. Optimization methods have evolved from primitive and low-dimension-oriented algorithms to sophisticated and powerful ones. Plainly speaking, the aim of circuit optimization is to select appropriate circuit (model) parameter values so that the circuit best satisfies the design requirements. Closely related is the modeling problem, where parameters are to be determined in accordance with measurements/experimental data. Nominal design and modeling is the conventional approach adopted by many circuit designers. It concentrates on satisfying design requirements by the responses of a single circuit or circuit model of interest. Unfortunately, practical realization of a nominal design is inevitably subject to fluctuation and/or deviation due to manufacturing uncertainties, parameter tolerances and model inaccuracy, etc. 
I 



2 Chapter I INTRODUCTION 
The focus of circuit design is shifting from improving individual circuit responses to estimation and enhancement of yield of production by taking various uncertainties into consideration. To be distinguished from the traditional nominal design, the new approach is called yield/cost-driven design (Bandier and Abdel-Malek (197 7) [ 3], Abdel-Malek and Bandier ( 1980) [ 4, 5]). The objective is the minimization of cost, the maximization of production yield, or a combination of both. Circuit design problems can be considered as optimization problems at different levels of the hierarchical simulation model (Bandier, El-Kady, Kellermann and Zuberek [ 6] and Tromp [ 7] and [8]). Therefore, unified, integrated approaches have been developed to attempt the problems [ I], either nominal or statistical. The classic least-squares (£2) measure (see, for example, Morrison [9]) has been religiously accepted as the criterion for the matching between the simulated responses (and/or outcomes) and the specifications. The £1 approach has been strongly advocated to overcome large errors [10, 11]. Another widely advertised method is minimax optimization (for example, Madsen, Schjaer-Jacobsen and Voldby (197 5) [1 2]). These optimization objectives are generalized as� objectives (Bandier and Chen [ l]). However, the use of the £2 and minimax optimization methods is considerably limited by the presence of gross errors originating from measurements, faulty elements and/or devices or process uncertainties, etc. The £2 solution is inherently affected by "bad data points" (Bandier, Chen, Biernacki, Madsen, Li Gao and Yu [13]). Minimax optimization emphasizes the biggest errors and, therefore, 



3 
is least suitable for data fitting. The £1 method, though robust against large errors, is not suitable for modeling small variations in the data. Huber (196 4 )  [1 4 ]  proposed a function which he considered is the most robust for statistics. Ekblom and Madsen [1 5] and Gao Li and Madsen [16 ]  provided an algorithm, the Ekblom Madsen algorithm (EMA), and the corresponding computer implementation, respectively, for robust nonlinear optimization using the "Huber function". The work of Bandier, Chen, Biernacki, Madsen, Li Gao and Yu [1 3 ]  first introduced the robust Huber concept to the engineering field. This thesis addresses a novel approach to "robustizing" circuit optimization using Huber functions: both two-sided and one-sided [1 3-18]. Advantages of the Huber functions for optimization in the presence of faults, large and small measurement errors, bad starting points and statistical uncertainties are described. In its context, comparisons are made with optimization using traditional £1, £2 and minimax objective functions. The gradients and Hessians of the Huber objective functions are formulated and compared with those in the least-squares case. We review a dedicated, efficient algorithm for minimizing Huber objective functions and show, by comparison, that generic optimization methods are not adequate for Huber-based optimization. A wide range of significant applications is illustrated, including FET statistical modeling, multiplexer optimization, analog fault location and data fitting. Throughout this thesis, unless otherwise indicated, the terms "Huber optimization" and "Huber solution" refer to the optimization using the dedicated EMA and the solutions obtained by this algorithm, respectively. When the problem 



4 Chapter 1 INTRODUCTION 
is discussed on a more general basis, for example, when a problem is solved by formulating the Huber penalty terms into the objective function of a generic optimizer, it is referred to as "Huber-based optimization" or "Huber-based solution". The robustness of the Huber-based optimization is exhibited in Chapter 2 through theoretical formulations. The gradients and Hessians of the Huber objective functions are derived. Comparison with the gradient and Hessian of the £2 objective is made to further the insight into the properties of the Huber formulation. The performance of Huber optimization is compared with £1 and £2 optimization through a data fitting example with gross errors. A "one-sided" Huber function is also formulated in this chapter for engineering design problems. Chapter 3 gives a detailed review of the dedicated EMA. Two stages of the algorithm, namely a trust-region method and a quasi-Newton method, are described. Comparison is made between the trust-region method and conventional Newton method. Switching criteria between the two stages are addressed. The dedicated EMA is compared with generic methods in a number of numerical examples in Chapters 3 and 4. Chapters 4 to 6 address three application areas of circuit design and modeling. We show, through examples, that the utilization of Huber-based optimization is far more advantageous than traditional optimization methods in these areas. Robust statistical modeling is explored in Chapter 4. The applicability of the Huber-based optimization is exposed through the description of statistical parameter extraction and estimation. The robustness of the Huber statistical 
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estimator is illustrated by a MESFET example. Appropriate selection of the threshold value is also addressed. Analog fault diagnosis by Huber-based optimization is presented in Chapter 5. The Huber concept is integrated into the problem formulation. A resistive mesh network example is provided to illustrate the effectiveness of the Huber method in fault isolation, in comparison with the £1 method. The impact of different starting points for optimization is investigated. Preprocessing of large-scale microwave multiplexer design optimization is addressed in Chapter 6 .  A comparison between "one-sided" Huber optimization and minimax optimization is made in terms of providing a good starting point for subsequent full-scale optimization. A 5-channel microwave multiplexer design problem is presented. The effectiveness and efficiency of the one-sided Huber optimization is demonstrated. The numerical examples demonstrated in this thesis have been prepared using the CAE software systems OSA90/hope™ [19] and HarPE™ [2 0] developed by Optimization Systems Associates, Inc., Dundas, Ontario, Canada. We conclude this thesis in Chapter 7, with some suggestions for further research. In this thesis, the author contributed substantially to the following original developments: 1. A new approach of robustizing circuit design using Huber functions. 2 .  Exposition of the derivative information of the Huber functions in relation to their robustness. 



6 Chapter 1 INTRODUCTION 
3. Expansion of the one-sided Huber function for design optimization with upper and/or lower specifications. 4 .  Statistical device modeling using the Huber function as a robust estimator. 
5. Integration of the Huber concept into the formulation of analog fault diagnosis. 6. Preparatory one-sided Huber optimization for large-scale design optimization. 



Chapter 2 

ROBUST HUBER-BASED 
OPTIMIZATION -THEORETICAL 
FORMULATION AND PROPERTIES 

2.1 INTRODUCTION 

For about three decades, robustness has been an important goal of many mathematicians and statisticians, knowing that real-world data is inevitably degraded by errors. As is well-known, however, the classical least squares method is unduly sensitive to gross errors. In one of the pioneering papers, Huber (196 4 )  [1 4 ]  proposed an alternative to replace the vulnerable least-squares estimator: the Huber function. The high sensitivity of the £2 estimator was attributed by Dutter and Huber (1981) [ 2 1] and Shanno and Rocke (1986 ) [ 2 2 ]  to the fact that each item enters the objective quadratically. A consequence of this is that large error functions have a major influence on the results. The Huber function was devised as a slower growing function. It appears to be a hybrid of the £1 and £2 objective functions. As we will demonstrate later, the Huber-based optimization inherits mixed numerical properties from both 
7 



8 Chapter 2 ROBUST HUBER-BASED OPTIMIZATION 
methods, i.e., the robustness against gross errors as well as the discriminatory power to deal with small, statistical variations. In fact, as pointed out by Shanno and Rocke [ 2 2], the Huber function is one of the two most commonly adopted penalty functions for robust statistics. The other penalty function is the so-called biweight function due to Beaton and Tukey (197 4) [ 2 3]. The recent paper by Bandier, Chen, Biernacki, Madsen, Gao and Yu (1993) [13] first introduced the robust Huber functions to circuit design engineers. Mathematical robustness has, thereby, entered into real and complicated applications. This chapter is devoted to providing a mathematical understanding of the Huber-based optimization. Definitions of the Huber functions and Huber-based optimization are given following the general formulation for circuit optimization. Investigation of the gradients and Hessians of the Huber objective functions is made to expose the distinctive robust property. A data fitting problem is demonstrated, associating the abstract theory with reality. Emphasis is given to comparing the Huber solution with £1 and l2 solutions. One-sided Huber-based optimization is also formulated for design problems with upper and/or lower specifications. 
2.2 THEORETICAL FORMULATION 

2.2.1 General Formulation for Circuit Optimization 

The following formulation is based on Bandier and Chen [ l  ]. More detailed illustrations of specifications and error functions can also be found in Bandier [ 2 4] and Bandier and Rizk [ 2 5]. 



2.2 Theoretical Formulation 9 
The performance of an electrical system is usually expressed by circuit outputs or responses, which are very often functions of independent variables such as time, frequency and temperature. mathematically abstracted as 

R = R(q,, 1/J) 
Circuit output or response can be 

(2- 1 )  where ; = [4>1 <t,
2 

• • •  <Pnf is the parameter vector of the system and 1/J is the independent variable. The superscript T in the above notation stands for vector or matrix transposition. Circuit design is to select appropriate values for the parameters in ; so that the circuit responses satisfy design specifications, each of which can be denoted by S = S(1/J) ( 2 - 2 )  Fig. 2. l (a) depicts a scenario of one circuit response with upper and lower specifications. Fig. 2.2 (a) illustrates a single specification case. Error functions arise from the difference between the specifications and the responses. In the single specification case, an error function is defined as 
e(q,, 1/J) = wlR - SI ( 2- 3 ) where w is a nonnegative weighting factor. In the case of having upper specifications Su or lower specifications Sz, error functions are defined as 

(2-4) or 
e1 (</,, 1/J) = w1 (S1 - R) (2-5) respectively, where wu and w1 are nonnegative weighting factors. Fig. 2.l (b,c) and Fig. 2.2 (b) depict the concept of error functions. It is clearly observed that positive 
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R, Su , S1 

response R 

upper specification S
u 

lower specification S1 

Fig. 2. l (a) Circuit response with upper and lower specifications. 
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violation 

Fig. 2.l (b) Error function with respect to the lower specification. 

violation 

Fig. 2.l (c) Error function with respect to the upper specification. 
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R , S 

single specification S 

I 
response R 

Fig. 2. 2 (a) Circuit response with a single specification. 
e 

satisfaction 

Fig. 2 . 2 (b) Error function with respect to the single specification. 
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error function values indicate violating the corresponding specification while nonpositive values mean satisfaction. For computational purposes, the circuit responses, the specifications and the error functions have to be discretized w.r.t. the independent variable ,P. Therefore, instead of a continuous error function e(tf,, ,p), we have a set of sampled error functions ejCtf,), j = 1, 2 ,  ... , m, where 

ejCtf,) = e(tf,, 1/Jj), j = 1 ,  2, . . .  , m ( 2 -6 )  In general, different weighting factors may be imposed at different sample points of ,P. Figs. 2 . 3  and 2 . 4 show the error functions discretized from the corresponding continuous error functions in Figs. 2 . 1 and 2 . 2 .  Mathematically, a circuit optimization problem can be formulated as 
minimize F(x) (2-7) where F(x) is a scalar objective function, composed of error functions, x are optimization variables, which may include the circuit parameters ;. Ternes and Zai ( 196 9) [2 6 ]  proposed the � norm of the error functions e as a candidate for the objective function F(x) in ( 2-7). It has the form 

(2-8) 

Two most well-known members of the � optimization family are the least squares ( £2) defined by 
minimize F(x) � II e 11 2 

X 

and the £1 which solves 
[ m ] 1/2 

tr i� <x)l2 ( 2 -9) 
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Fig.  2.3(a) Discretized error functions from Fig. 2. l (b). 

Fig. 2.3(b) Discretized error functions from Fig. 2. l (c). 
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Fig. 2 . 4 . Discretized error functions from Fig. 2 . 2 (b ). 
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minimize 

X 

m 

F(x) � II e 11 1 = E 17 (x)I 
j=l (2- 10) 

Equivalently, assuming real errors, the i.2 optimization problems can be considered as solving 
minimize 

X 

m 

F(x) � L 72(x) 
j=l (2-1 1 ) 

It is clear that the i.2 method penalizes the errors quadratically. As speculated by statisticians (see Dutter and Huber [ 2 1], Shanno and Rocke [ 2 2]), this rapidity of growth in the penalty function is the source of failure of the i.2 estimation in the presence of gross errors. On the other hand, if the errors are penalized linearly, as in the i.1 case, the estimator becomes the so-called sample median [14]: the estimator lacks the power to discriminate among small statistical variations and depends only on the order of the data [13]. 
2.2.2 The Huber Function and Huber-based Optimization 

The Huber function, defined as [13 - 18, 2 1, 2 2] 
if lel � k 

if lel > k ( 2-1 2) 
where k is a positive constant, was devised as an intermediary between the least­squares and the i.1 functions. Fig. 2. 5 depicts the Huber function in comparison with the i.1 and i.2 functions. 
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Fig. 2. 5(a). 

F 

The £1 and £2 functions. The £1 function is rescaled and shifted in accordance with the corresponding part in the Huber function. It has the form F = klel - k2 / 2. The £2 function has the form F = e2/ 2. 



1 8  

• 

Fig. 2. 5(b ). 
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F 

• 

• • 

. ........................... .. k'o/2 ........... . 

-k k 

The Huber, £1 and £2 functions. The strikes and dots represent the discrete points on the £1 and £2 curves, respectively, in Fig. 2. 5(a). The continuous curve indicates the Huber function. 
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The corresponding Huber-based optimization problem is then defined as [13, 1 5, 16, 18] 

minimize 
X 

F(x) @ E Pi� (x)) 
j=l ( 2-13) 

As we can see from the figures, the errors are treated quadratically only when they are smaller than the threshold value k ("small errors"); when an error becomes an "outlier", the Huber function increases linearly. This linear growth for the outliers is the key to the robustness of the Huber-based method. This adequate treatment of errors can be interpreted in a different way. The Huber function Pk is a hybrid of the least-squares (£2) (when lel � k) and the £1 (when lel > k) functions. The £1 is robust against gross errors [10, 11]. Since the Huber function penalizes errors above the threshold (i.e., lel > k) in the £1 
sense, it is robust against those errors, i.e., the solution is not sensitive to those errors. For small errors, the £2 measure is invoked to acquire the least-squares' distinctive modeling power. The adjustments in the function definition of Pk (e.g., constants 2, k2 / 2, etc.) ensure a smooth transition between £2 and £1 at lel = k. This means that the first derivative of Pk w.r.t. e is continuous. The constant k in ( 2-1 2) and ( 2-13) defines the threshold between "large" and "small" errors. By varying k, we can alter the proportion of error functions to be treated in the £1 or £2 sense. Huber gave a look-up table [17] from which k can be determined according to the percentage of gross errors in the data. 
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Moreover, as Huber [14] indicated, the traditional £1 and £2 approaches are two limiting cases of ( 2-13): if k is set to a sufficiently large value, the optimization problem becomes least squares. On the other hand, as k approaches zero, Pk /k will approach the £1 function. 

2.3 GRADIENT INVESTIGATION 

In this section, we investigate the derivatives of the Huber function ( 2-1 2) and the gradient and Hessian of the Huber objective function ( 2-13) given by Ekblom and Madsen [ 1 5]. This is because such investigation can provide a better understanding from a mathematical point of view. Also, as we will manifest in the next chapter, modern state-of-the-art optimization algorithms employ gradient­based methods. The first derivative of Pk w.r.t. ej is given by 
{ e{x) if l�(x)I � k "· __ b. 8piejCx)) -- k7 �, if �(x) > k 1 a�(x) 

-k if �(x) < -k 

( 2-14) 
The growth of lvjl is bounded by k, holding constant if the point is an outlier (i.e., when lejl > k). This boundedness was introduced in an attempt to limit the influence of any gross errors [ 2 1]. A consequence of this, as observed by Gao Li and Madsen [1 6], is that the Huber-based solution is unaffected if some of the outliers are moved even further away. The gradient vector of the Huber objective function F w.r.t. the optimization variables x is given by 
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where 
VF = E v· et 

• J J 
J=l 

2 1  
(2-1 5) 

( 2-1 6) 
The structure of ( 2-1 5) is very similar to the gradient of £2 (least squares), which is 

( 2-17) 
By comparing ( 2-1 5) with ( 2-17), we can see that vi serves as a weighting factor in the Huber gradient. For lejl � k, vi is defined in ( 2-14) as ej, which is the same as in the £2 gradient given by ( 2-17). For lejl > k, vi is held constant at the value of ei at the threshold. In other words, the Huber gradient can be thought of as a modified £2 gradient where the gross errors are reduced to the threshold value. The Hessian matrix of the Huber objective function F w.r.t. x can be expressed as 

where 
H = � (d· et etT + V· e�' )  

� J J J J J 
J=l 

8e!T e�' � J 
J - --ax 

if le/x)I � k 

if le/x)I > k 

( 2-18) 

( 2-19) 
( 2- 20) 
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Compared with the l2 Hessian matrix given by 

H L (  ' ,T " ) t = e· e- + e· e · 2 • J J J J 
J=l 

( 2 - 2 1) 
the contribution of the gross errors is reduced. For each j in ( 2-18), if ei is an outlier, the first item is completely eliminated and the effect of the second item is reduced to threshold. 
2.4 A DATA FITTING EXAMPLE 

To demonstrate the theoretical properties of the Huber formulation, we present a data fitting problem in the presence of large and small errors. This experiment was first performed by Bandier, Chen, Biernacki, Madsen, Li Gao and 
Yu [ 1 3 ]. The data is generated based on sampling the function {t. The function is uniformly sampled from t = 0.0 2 to t = 1, with a 0.0 2 interval between adjacent sampling points. Large errors are deliberately introduced at 5 of the sample points. The rest of the data is altered with some small variations. This deviation from the exact mathematical values is a simulated scenario of real-world data. The data can be denoted by Si = S(tj), ti = 0.0 2, 0.0 4, ... , 1. The assumed mathematical model is a rational function defined as 

R(x,t) ( 2- 2 2) 
where the parameters x = [x 1 x2 x3 x4f are to be determined so that function R best fits the data Si. 
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This problem can be formulated as an optimization procedure defined as 

minimize 
X 

F(x) � E f(R(x,;) - s(;)) 
j=l 

where / can be any penalty term, such as Huber, £1 and £2 functions. 
( 2 - 2 3 ) 

Starting from x = [10 10 10 l Of, £1, £2 and Huber optimization methods are invoked for comparison. The solutions are as follows. 

Huber: 
Xt1 

= [ 1 1. 2 8 4 3 . 5 60 2 3 5 . 5 686 18. 3 3 7 5f Xt2 = [4 5 . 2 6 6 7  56 4 . 1 2 2 2 80. 4 2 7  4 2 9.96 5f.  Xnuber = [1 3 . 15 5 5  6 2 .99 2 2 4 5 .0 1 18 2 9.6 6 2 1f A graphical representation of the solutions is given in Fig. 2 . 6 .  A portion of Fig. 2 . 6 is enlarged in Fig. 2 . 7 for a clearer view of the details. As expected, the least-squares solution suffers significantly from the presence of the 5 erroneous points. This is due to the quadratic error entries into the £2 objective; gross errors have an overwhelming influence. On the other hand, the £1 solution, according to the optimality condition, is dictated by a subset of error functions which have zero values at the solution. In a sense, all the nonzero errors are viewed as large errors. This tendency towards a biased £1 solution, as dramatized in our example, is undesirable if we wish to model the small variations in the data. The Huber solution features a flexible combination of the robustness of the £1 and the unbiasedness of the £2 . In fact, the Huber solution is equivalent to an £2 solution with the gross errors reduced to the threshold value k. In our example, 
k is chosen as 0 .0 4 according to the magnitude of the small variations in the data. 
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Fig. 2.6. £1, £2 and Huber solutions for data fitting in the presence of errors. 
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Fig. 2. 7. An enlarged portion of Fig. 2. 6. 
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2.5 ONE-SIDED HUBER-BASED OPTIMIZATION 

One-sided Huber-based optimization is developed for engineering design problems with upper /lower specifications. For example, in designing an amplifier, we may require that the voltage gain should be greater than 20  dB within a certain frequency band. This is a lower specification: we do not desire the voltage gain to be exactly 2 0  dB; the design objective is achieved when the voltage gain is above that value. 

where 

The one-sided Huber-based optimization is defined as 
minimize 

X 

F(x) � L p;(� (x)) 
j=l 

if e � 0 
if O < e � k 
if e > k 

( 2- 2 4) 

( 2- 2 5) 
This one-sided Huber function is truncated when negative because the corresponding design specification is satisfied. Similar to Fig. 2. 5, Fig. 2.8 depicts the one-sided Huber function. The gradient vector of the one-sided Huber objective function F w.r.t. x is given by 
where VF = E 1/ et 

. J J 
J=l 

( 2- 2 6) 
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F 

• 

• 

Fig. 2.8 The one-sided Huber function. The strikes and dots on the right half plane are the traces of the £1 and £2 curves, respectively, as is drawn in Fig. 2 .5(a). The continuous curve indicates the one-sided Huber function. Notice it continues to the left half plane, where it remains zero. 
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+ { 0 V·+ � 8Pk = e, 1 Be· 1 
J 

k 

if 7 � o 

if O < ej � k 

if 7 > k 

( 2- 2 7) 
The Hessian matrix of the one-sided Huber objective function is given by 

where 
H L (d + , ,T + " )  = . e ,  e ,  + V· e · . J J } J J 

J=l 

{ 0 
a2 + 

d-+ � _!:!_ = l J 2 87 0 
if 7 � 0 
if o < 7 � k 

if 7 > k 

( 2- 28) 

( 2- 29) 
Formulas ( 2- 2 6) to ( 2- 29) show similar structure to ( 2-14),  ( 2-1 5), ( 2-18) and ( 2-19). 

2.6 CONCLUDING REMARKS 

We have presented the Huber functions through theoretical formulations: both one- and two-sided. The gradients and Hessians of the Huber objective functions have been derived. The robustness of the Huber-based optimization has been illustrated through both abstract derivation and a numerical example. The Huber function Pk is a function increasing less rapidly than the quadratic functions. The impact of large errors is therefore reduced. Function Pk has a bounded gradient w.r.t. the error e. A consequence of this is that the Huber-based solution is insensitive to changes of the data points that are outside the threshold. 
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In data fitting, the Huber solution is robust against bad data points and still preserves the ability to model small, statistical variations. The one-sided Huber-based optimization is tailored to design problems with upper /lower specifications. 
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Chapter 3 

ALGORITHMS FOR HUBER-BASED 
OPTIMIZATION 

3.1 INTRODUCTION 

This chapter deals with algorithms, solving the mathematical problems formulated in Chapter 2. A large number of algorithms have been developed for optimization over the years. Summaries of the methods can be found in Bandier ( 19 7 3 )  [ 2 4 ], Bunday ( 198 4 ) [ 2 7], and Bandier and Chen ( 1988) [I ]. Optimization methods can be classified as direct search methods and gradient-based methods. Gradient-based methods use gradient information to accelerate convergence towards the optimum. In cases when the exact gradients are not easily obtainable, the use of approximated gradients is proposed (Bandier and Chen [l ]). The majority of gradient-based methods belong to the Gauss-Newton, quasi­Newton, and conjugate gradient families. Conjugate gradient methods require minimum memory storage, much less than that demanded by the Gauss-Newton or quasi-Newton methods. The trade-off is that longer computation time may be needed for proper scaling or preconditioning, exact line search, etc., to ensure convergence. In cases when the storage for all the matrices and vectors is not 
3 1  
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manageable, conjugate gradient methods may be used. Madsen [28] developed a general framework of optimization algorithms, which includes two stages. When the current iterate is far away from the solution, a trust-region type method is invoked. When close to the solution, a switch to a quasi-Newton implementation is made for fast final convergence. Based on this framework, Ekblom and Madsen [1 5] provided a dedicated algorithm to minimize the two-sided Huber objective function, and proved that the first-stage trust-region method provides global convergence. Gao Li and Madsen [1 6] presented an implementation of this Ekblom Madsen algorithm (EMA). Bandier, Chen, Biernacki, Li Gao, Madsen and Yu [18] refined the code of the two-sided algorithm [ 1 6] and contributed a one-sided algorithm. In this chapter, we provide a review of the Ekblom Madsen algorithm for both one- and two-sided problems. We will concentrate on the two-sided algorithm. However, as can be seen in Subsection 3. 4. 3, only a few adjustments are needed to convert it to solve a one-sided problem. The structure of this chapter is as follows. Section 3.2 provides a detailed description of the first-stage method which exploits the exclusive structures of the Huber function and Huber objective function. In Section 3. 3, the second-stage method is briefly described with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) type implementation. The overall hybrid EMA, as well as the switch criteria between the two stages, is addressed in Section 3. 4. Appropriate adjustments needed for solving one-sided problems are also presented in Section 3. 4. It should be noticed that, except for Subsection 3. 4. 3, all the sections and subsections in this chapter address two-sided EMA. 
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A summary of various algorithms for Huber-based optimization can be found in Ekblom and Madsen [15]. 

3.2 THE FIRST-STAGE METHOD [15,16,28] 

The first stage of the Ekblom Madsen algorithm [ 15] is a trust-region type method proposed by Madsen [2 8]. As is shown by More ( 1982 ) [2 9], trust-region methods are an important class of iterative methods for solving nonlinear optimization problems which are considered to be reliable, efficient and amazingly free of ad-hoc decisions. A complete survey of the development of algorithms and software for trust-region methods is given in [2 9]. The first-stage method solves the entire nonlinear Huber-based problem sequentially by converting the problem into a series of locally linearized subproblems. As proved by Ekblom and Madsen [15], it ensures global convergence. 
3.2.1 Local Linearization [15,16,28] 

The first-stage method is an iterative process. At this stage, one calculates a sequence of points {x
p
} intended to converge to a local minimum of F. At each iterate x

p
, a linear function l

j 
is used to approximate the nonlinear error function e

j
, j = 1, 2 ,  ... , m, and thus a linearized model L

P 
of F is constructed. This model is a good approximation to F within a specified neighbourhood N

P 
of the pth iterate x

P
' This neighbourhood N

p
, named the trust region, is intended to reflect the domain in which the l

j 
approximations of the e

j 
are valid. 
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Assume a tentative step h is being searched at the pth iterate xp- If the search is successful, one goes on to the next iteration, i.e., xp+l = xp + h. The problem is formulated as 

where 
m 

minimize Lp(h) � L(h, xp) = � Pi9(h, xp)) 
h ) =1 

subject to the constraint h E Np, where 
and where I I · I I denotes the Euclidean norm. 

(3- 1 ) 

( 3- 2) 
( 3- 3) 

Similar to formulas ( 2-14, 1 6, 19, 20), the following definitions are introduced. 
if l9(x)I � k 

if 9(x) > k 
if �(x) < -k 

/t � [a�(x) a�(x) a�(x) JT = et 1 - ax1 ax2 
... aXn 1 

8/tT 

r � _,_ = o 1 ax 

if l9(x)I � k 

if l�(x)I > k 

The Jacobian of ej, j = 1, 2, ... , m is 
e, � [e , T e , T e , T]T - 1 2 . . .  m 

( 3- 4) 
(3-5) 

( 3- 6) 
(3 -7) 

(3-8) 
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The vector v* and the matrix D* are also defined as 

D* � diagfti/l 

Consequently, the gradient and Hessian of the linearized model LP are 
VL = E v,* /! = e'Tv* p . J J 

J =l 

m m 

H* = E [d·* /! /!T + v·* I�' ] = E d·* e! e!T = e'TD* e' 
• J J J  J J • J } }  
J=l J=l respectively. 

35 

( 3-9) 
( 3-10) 
( 3-11) 
( 3-1 2) 

These formulas will be used in describing the algorithm later in this chapter. 
3.2.2 The Trust-Region Methods in Searching for Optimal Step h [15,16,28] 

The scheme of solving problem ( 3-1, 2, 3) employs the principle of the well­known Newton method and utilizes a Lagrange multiplier (see Bandier [ 2 4]). The constrained minimization problem ( 3-1, 2, 3) can be converted to solving 
minimize w(h) � �(h) + >.(hTh - s/) 

h where ). is the Lagrange multiplier. 
( 3-13) 

When I I hp II < Sp, the problem becomes an unconstrained problem, and >. is set to zero. Otherwise, according to the Kuhn-Tucker conditions for constrained optimum, the solution for the pth iterate hp satisfies 
( 3-14) 
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where Vh'il! denotes the first derivative of 'ill w.r.t. h derived as 
where VhLp is the first derivative of the linear model LP w.r.t. h. The Newton iteration for solving the system of equations ( 3-14) is 

Newton Equation Solver 1 (NESJ): while not STOP do begin 
solve [H*(h) + 2)..J 2h

] [
l:l.h

] = _ [VhLp(h) + 2>..h
] 2hT O 6.).. hTh -S 2 

p 

(h, >..) : = (h, >..) + (6.h, l:l.>..) end; 

( 3-1 5) 

( 3-1 6) 

The STOP criterion could be the condition either the norm of the left hand side of equation ( 3-14) is less than e1 or II (l:l.h, l:l.>..) II < e2 II (h, >..) II , where e1 and e2 are small positive numbers. In NES l ,  apart from h, one tries to obtain >..P iteratively, according to the fixed size of the trust region Sr In fact, >..P and SP are dual through ( 3-14), i.e., one can also assign the value for >..P and fix the value of SP accordingly. Moreover, the first set of equations in ( 3-14) is independent of Sr Therefore, when the value of >..P is known, one can solve h without the last equation of ( 3-14) since there is no need to solve for Sr This leads to a modification to NESl ,  which is easier to implement. 
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Newton Equation Solver 2 ( NES2 ) :  

while not STOP do begin 

h : =  h + 6.h 
end; hp := h 

3 7  

( 3-17) 

Similarly, the STOP criterion could be either I I VhLp (h) + 2>.Ph II < e1 or II 6.h II < 

3.2.3 Updating Trust-Region Size & P or Controlling Factor "-p [15,16,28] 

NESI and NES 2 are two different sub-algorithms of the first-stage method, solving the system of nonlinear equations ( 3-14). Their goal is to find the increment hp to add to the current iterate xP' minimizing w in ( 3-13). The difference lies in that: in NESI, 8P is assigned and >.P is to be found; while in NES 2, >.P is assigned and 8P is unknown. Before starting the next iteration, the size of the trust region needs to be adjusted. This is accomplished directly by changing the trust-region size SP (for NESI ), or indirectly by updating the controlling factor >.P (for NES 2). In compliance with Madsen's framework [ 28], the adjustment scheme is based on the ratio between the reduction in the nonlinear Huber objective function F and the reduction in the local linear approximation LP' i.e., F(xp) - F(xp + hp) 
'P = 

Lp(O) - Lp(hp) 
( 3-18) 
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When rp is close to 1, one can afford a larger trust region; if rp is too small, the size of the trust region must be reduced. The new point xp + hp is accepted as the new iterate if the reduction in F exceeds a small multiple of the reduction in LP. Otherwise, the tentative step hp has to be recalculated with a reduced trust region. Incorporating this adjustment scheme into the two NES's leads to two versions of the first-stage method, named first-stage I (FSI) and first-stage 2 (FS 2) methods, depending on which nonlinear equation solver is used. As is listed below, FS I algorithm utilizes NESI and updates the trust-region 
First-Stage 1 (FSJJ: Let O < s 

1 
<< 0. 2 5  and s2 < I < s

3
. given x0 and o0; p := O; while not OUTERSTOP do begin perform NESI; if rp � s1 then xp+ 1 

:= xp + hp else Xp+ 1 
:= xp; if rp � 0. 2 5  else if rp � 0. 7 5  

p := p + I end 

then Op+l := S2 X op then op+l := s3 x op else op+ 1 
:= op; 

The following FS 2 utilizes NES 2 and updates >.P' 



3. 2 The First-Stage Method 
First-Stage 2 ( FS2): Let O < S1 << 0. 2 5  and S3 < 1 < S2. given x0 and ..X0; p := O; while not OUTERSTOP do begin perform NES 2; then xp+ 1 := xp + hp else xp+ 1 := xp; if rp � 0. 2 5  then .Ap+l := S2 X .AP then .Ap+l := S3 X .AP else ..Xp+l := ..XP; else if rp � 0. 7 5  

p := p + I end 

3 9  

For OUTERSTOP in both versions, Ekblom and Madsen [1 5] suggested to use the criteria II VF(xp) II < £3 or II hp II < £4 11 xp II , where £3 and £4 are small positive numbers. A close look into the two versions yields that reducing the value of the controlling factor ..X corresponds to enlarging the size of the trust region. Ekblom and Madsen [1 5] proved that the first-stage method has global convergence. Also in [ 1 6], it is shown that this method follows the usual convergence theory for trust-region methods. As is indicated in [1 5], FSI is a true trust-region method whereas FS 2 is of the Levenberg-Marquardt type. FS 2 is easier to implement, but might have slow final convergence. This potential slow final convergence can be eliminated by introducing a quasi-Newton method as the second-stage method. Throughout this 
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chapter, unless otherwise indicated, an FS 2 implementation is assumed for the first stage. 
3.2.4 Comparison of the First-Stage Method and Conventional Newton 

Methods [15,16] 

Ekblom and Madsen [ 1 5] and Gao Li and Madsen [ 1 6] compared the first­stage method with solving the Huber-based problems using conventional Newton methods. The following is a brief summary. Suppose the error functions ei are linear. A classical Newton iteration (without the trust region) is formulated as 
{ e'TD(Xp) e'h = -e'T V(Xp) Xi, + l  = Xi, + ha ( 3- 19) 

where e' is defined in ( 3-8), and D and v are similar to those defined in ( 3-9, 1 0), with v/ and �* replaced by vi and dj, j = 1 ,  2, ... , m, defined in ( 2- 1 4) and ( 2- 19), respectively, and a is a step length parameter. Equation ( 3- 19) can be used for solving nonlinear problems by letting e' hold the current value of the Jacobian. The iteration can be stabilized by a damping factor A, which leads to the so-called "Generalized Levenberg-Marquardt Method" (GLMM, see Ekblom and Madsen [ 1 5]), which is described as 
{ [e 'TD(Xp)e'+M]h = -e'T V(Xp) 

Xi, + 1  = Xi, + h 
( 3- 2 0) 

The basic difference between the first-stage method and GLMM is that GLMM approximates the entire Huber objective function by a quadratic function while the 
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first-stage method - linearizes individual error functions. Therefore, the approximated Hessian of the GLMM model has bigger error if there is any outlier (see Bandler, Chen, Biernacki, Li Gao, Madsen and Yu [18]). Moreover, one iteration of ( 3- 2 0) is equivalent to one step of FS 2 with only one iteration of NES 2 ,  starting at h = 0. In other words, FS 2 has finer and more accurate adjustments during the search, and consequently, is more efficient. Furthermore, as Li Gao and Madsen [16 ] indicated, GLMM often fails to give a decrease in the model function when x is far away from the solution. Therefore, this method only provides convergence if the starting value of the nonlinear iteration is close to the solution. 
3.3 THE SECOND-STAGE METHOD [28,30] 

Quasi-Newton methods (see, e.g., Luenberger [3 0]) are conjugate direction types of methods. They inherit the fast convergence associated with the Newton method while avoiding the costly inversion of the Hessian. The true Hessian of the original objective function, or its inverse, is approximated by a positive definite matrix, updated based on the information gathered during the process. Bandier and Chen [I ] gave a brief description of quasi-Newton methods. More detailed discussion can be found in Luenberger [3 0]. In solving nonlinear optimization problems, Madsen [2 8] proposed a quasi­Newton procedure as the second-stage method. The second-stage quasi-Newton procedure in the Ekblom Madsen algorithm ensures fast final convergence for Huber-based problems, quite likely from a position that the utilization of the first-
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stage trust-region method is not as valid and efficient. At the pth iterate xp, a typical quasi-Newton step is described as 

(3- 2 1) 
where hp is the increment to be added to xP' and VF is the gradient of the nonlinear Huber objective function defined in ( 2-1 5). The matrix BP in (3-21) is an estimate of the true Hessian of the nonlinear Huber objective function ( 2-18) at the pth iterate. Usually starting from the identity matrix, it is updated in each iteration based on the information accumulated during the procedure. The famous BFGS updating scheme (see [30]) is defined as follows. 

(3- 2 2) 
otherwise 

where (3- 2 3) The condition hPT Kp > 0 is to preserve the positive definiteness of Bp+l · A dual to this BFGS updating scheme, another class of quasi-Newton methods approximates and updates the inverse of the Hessian n-
1 in a similar manner. The well-known Davidon-Fletcher-Powell (DFP) method is such a method (see, for example, Luenberger [30]). Nevertheless, as Luenberger [30] pointed out, the performance of DFP is highly sensitive to the accuracy of the line search along the conjugate direction, which is very CPU time-consuming. 



3. 4 The Overall Ekblom Madsen Algorithm 
3.4 THE OVERALL EKBLOM MADSEN ALGORITHM 

[15,16,18,28] 

3.4.1 The Two-Sided EMA [15,16,18] 

4 3  

The Ekblom Madsen algorithm [1 5, 1 6, 18] proposed to solve the Huber-based problem ( 2-13) is a combination of the two methods described in Sections 3. 2 and 3. 3, respectively. Without losing generality, the BFGS code is assumed for the second-stage method. At the beginning of the procedure, the initial estimates for the iterate x0, the Lagrange multiplier �o and the Hessian approximation B0 are to be given. As is shown in Section 3. 2, the trust-region FS 2 is first invoked. At the pth iterate, one iteration of FS 2 is carried out for the next iterate xp+l · Equation ( 3- 2 2) is invoked to keep the estimate of the Hessian Bp+l up to date. Before performing the next FS 2 iteration, determination has to be made as to whether one should switch to the second-stage method. When a local minimum x* seems to be approached, the switch is made. The following criterion is used for this judgement, ( 3- 2 4) If ( 3- 2 4) has been satisfied for three consecutive FS 2 iterations, the new point xp+l is temporarily stored in vector xs and a switch to the second-stage method is then made. Otherwise, the next FS 2 iteration is to be performed. The use of Xs will be mentioned later. When switched to the second stage, the new iterate xp+l and the corresponding Hessian approximation Bp+l are calculated by ( 3- 2 1) and ( 3- 2 2), 
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respectively. The Lagrange multiplier >p is not used in this stage; it is re-indexed for algorithmic reasons, i.e., A

p+l = A
P
. Next, one has to determine whether he should continue with the second­stage method or switch back to the first-stage. If the condition 

II VF(x
p+l) II 5 0.99 I I VF(x

p
) II ( 3- 2 5) is satisfied, the next quasi-Newton iteration is carried out. Otherwise, a switch to FS 2 is made. When a decision is made to switch back to the first stage, there are two optional points from which the trust-region procedure can be restarted. The two choices are 1) the point stored in the temporary vector xs and 2 )  the point reached by the last quasi-Newton iteration x
p+l · They are compared in terms of the nonlinear objective function F. x

p+l is replaced by xs, i.e., x
p+1 = xs, if ( 3- 2 6 )  In this case, the first-stage method continues as if the quasi-Newton iteration has not taken place. The only difference is that the B matrix is updated. If ( 3- 2 6 )  is not satisfied, x

p+l will be kept as is. 
3.4.2 Comparison of the Two-Sided EMA and Other Generic Methods 

Since the Huber objective function is continuous and has a continuous gradient, it may be tempting to conclude that it is a straightforward matter to formulate the objective function and then minimize it by a generic algorithm, such as an ordinary quasi-Newton method or a direct search method. 
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We conducted a comparison between the dedicated EMA and three generic algorithms available in the OSA90/hope system: quasi-Newton, conjugate gradient and simplex search. We attempted to apply the generic algorithms to the data fitting problem of Section 2. 4, which involves four variables. None of them is able to find the correct solution unless starting very close to the solution. It attests the need for the dedicated EMA for solving multidimensional problems. In Chapter 4, we will demonstrate a comparison of dedicated and generic algorithms for MESFET statistical modeling, which shows that the dedicated EMA is more efficient than the generic ones. As derived by ( 2- 18), the Hessian of the Huber objective function is discontinuous whenever one of the error functions crosses the threshold value. This obviously poses a serious problem for generic algorithms that explicitly rely on the continuity of the Hessian matrix [ 18). 
3.4.3 The One-Sided EMA [18] 

Necessary adjustments to the EMA have been made by Bandier, Chen, Biernacki, Li Gao, Madsen and Yu [ 18) to develop a one-sided method for engineering design problems. We refer to it as one-sided EMA. This subsection is intended to addresses the differences between the one- and two-sided algorithms. A brief description of the one-sided EMA can be found in [ 3 1). The basic difference is traced back to the problem formulation early in this chapter. When a one-sided problem is to be solved, the one-sided Huber functionp; 
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(2-2 5) is to be used instead in the problem formulation (3-1 ). Therefore, instead of (3-1 ), the locally linearized problem is defined as 

minimize Lp(h) � L(h, xp) = L p;(�(h, xp)) 
h j=l 

subject to (3-3), where ljCh, xp) is defined in (3-2). Correspondingly, (3- 4) and (3- 6) are replaced by 
if � �  0 if O < � � k if � >  k 

if � �  0 if O < � � k  if � >  k 

(3-2 7) 

(3-28) 

(3-29) 
In the algorithm, some relevant changes are needed. Firstly, in calculating the gradient VhLp and the Hessian H* in (3-17), v/* and d/* are used to replace lj * and � *, respectively. Secondly, the gradient of the nonlinear function VF used in (3-21) and (3-23) should be calculated by (2-2 6) instead of (2-1 5). 

3.5 CONCLUDING REMARKS 

We have reviewed the dedicated Ekblom Madsen algorithms for Huber-based optimization, both one- and two-sided. The two stages of the algorithms are identified. The trust-region stage has been overviewed in great detail, while the implementation of the quasi-Newton method has been described at a more general level. Switching procedures and criteria between the two stages have been addressed 
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for the overall method. Comparison has also been made between the first-stage trust-region method and classical Newton methods, as well as between the dedicated EMA and other generic optimizers. The first-stage trust-region method is the center of this chapter. It utilizes the special structures of the Huber objective functions, and is shown to have more accurate and efficient control over the incremental step of the current iterate, compared to generic Newton methods. When the solution seems to be approached, a switch is made to the second-stage quasi-Newton method for fast final convergence. If the current iterate is tested as not approaching the solution, a switch is made back to the first stage. 

It is demonstrated by numerical examples in this chapter, and later in Chapter 4 ,  that this dedicated Ekblom Madsen algorithm is more effective and efficient than generic optimizers which formulate the Huber objective as their own objective. 
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Chapter 4 

ROBUST STATISTICAL MODELING 

4.1 INTRODUCTION 

Statistical device modeling is a prerequisite for accurate yield-driven or cost­driven circuit analysis and optimization [1, 3 2, 3 3]. It is to represent the model parameter statistics, and by doing so, it can provide tools for generating random device outcomes which will reproduce the "close-to-reality" statistical distribution of the device responses. Statistical modeling has been an active subject for more than one decade. Cai (199 2) [ 3 4] gave a survey with emphasis on physics-based device modeling (PBM). In the following paragraphs, some highlights of the history are pinpointed. Dutton, Divekar, Gonzalez, Hansen and Antoniadis ( 197 7) [ 3 5] studied the correlation of IC fabrication process and electrical device parameter variations. In the same year, Divekar, Dutton and McCalla ( 197 7) [ 3 6] experimented on parameter correlations for bipolar junction transistors. Computer tools were employed to perform factor analysis resulting in a simplified statistical circuit analysis model. Rankin (198 2) [ 3 7] gave a summary on two approaches of statistical modeling for integrated circuits (ICs), namely the equivalent circuit model (ECM) and the physical model approaches. The easier ECM approach was proven to be expensive or even practically impossible to practice, and therefore sufficient only for circuit 
49 
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designs based on worst-case parameter variations. The physical model approach was advocated, which needs modeling equations to relate the equivalent circuit to the device physical structure. Herr and Barnes ( 1986 ) [ 3 8] gave a detailed description of an approach to statistical modeling in MOS VLSI circuit design. The methodology of parameter extraction was explicitly described and a statistical analysis routine was given in detail. Spanos and Director ( 1986 ) [ 3 9] investigated the problem of estimating the statistics of disturbances of integrated circuit (IC) production process, given the statistics of the process outputs. A simplified statistical model was obtained by assuming that variations at each hierarchy of the model were of normal distribution. Bandier, Biernacki, Chen, Loman, Renault and Zhang ( 1989) [ 40] proposed a heuristic technique to handle arbitrary statistical distributions substantially different from normal. It could preserve the estimated statistics from the measured data while retaining the simplicity of the normal distribution. The confidence of the statistical modeling and a suggested sample size for efficient statistical data processing were also addressed. A case study by Bandier, Biernacki, Chen, Song, Ye and Zhang ( 199 1) [ 4 1] showed that the physics-based Ladbrooke model [ 4 2 ]  for GaAs MESFETs provides a better estimate of device statistics, while the Materka and Kacprzak model [ 4 3 ]  based on equivalent circuit parameters provides a better match for individual devices. Bandier, Biernacki, Cai, Chen, Ye and Zhang ( 199 2 ) [ 3 2 ]  furthered the statistical modeling experiment by including a physics-based Khatibzadeh and Trew MESFET model [ 4 4  ]. 
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This chapter addresses robust statistical modeling, one of the most promising application areas of Huber-based optimization. Three stages of the statistical modeling process, namely, parameter extraction, statistical parameter estimation and statistical model verification, are identified. Mathematical formulations for parameter extraction and statistical estimation are provided. Utilization of the Huber function in parameter extraction is proposed. An example with the Materka and Kacprzak model for MESFETs is used to demonstrate the robustness of Huber statistical estimation. Comparison is made with the classical i.2 estimator. The same example is also used to compare the dedicated Huber optimization algorithm with generic methods. Threshold selection for statistical estimation is addressed, with illustrations. 

4.2 STATISTICAL PARAMETER EXTRACTION AND 
ESTIMATION 

Generally, statistical modeling starts with measured responses of a number of devices supposedly identical. One typical approach is to extract circuit/model parameters for each device, and then postprocess the extracted model parameters to estimate their statistics. A complete statistical modeling process can be divided into three steps [ 3 4]: 1) statistical parameter extraction 2) statistical parameter estimation 3) statistical model verification. The following subsections address them separately. 



5 2  Chapter 4 ROBUST ST A TISTICAL MODELING 
4.2.1 Statistical Parameter Extraction [34] 

To unveil the statistics of a model parameter, a sample of that parameter is needed. This requires measurements taken from a collection of devices, which may include DC, small-signal and large-signal data. For each device with certain measurements, model parameters are extracted by optimization. The samples of model parameters are collected when all the devices under consideration are processed. Needless to say, consistent and reliable parameter extraction is essential to correctly estimating the model statistics. Suppose we have K devices for parameter extraction. The ith device has n model parameters denoted by 
(4- 1 ) and m model responses denoted by 
(4-2) where the superscript i = I, 2, ... , K, denotes the ith device. There are also m measured responses corresponding to the model responses for each device, namely, 
(4-3) The parameters ,/i for the ith device are extracted by optimization formulated as (Bandier, Chen and Daijavad [10]) 

minimize 
m F(4i) � E f(R{,/i) - s!) 
. 1 J 
J=l ( 4- 4) 

where f dictates the optimization method to be used. For example, / could be l1 or l2 functions [ 1 ]. 
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A closer look at ( 4- 4) yields that parameter extraction is essentially a data fitting problem. The data to be fitted corresponds to the measured responses �­The approximating function is dictated by R(/). Parameters / are to be adjusted for the best fit. Because the Huber function is robust in data fitting problems, as is shown in Section 2 . 4, it could be a promising candidate for the fitting criterion 

f. 

4.2.2 Statistical Parameter Estimation 

Model statistics are represented by parameter distributions and correlations. Two commonly assumed parameter distributions are the uniform and the normal distributions. As given in many statistics books (see, e.g., [ 4 5]), the one-dimensional uniform distribution can be described by the probability density function (pdf) 
p(I?) = { C � b 

otherwise and the one-dimensional normal distribution by 
p(</>) = 1 exp [- (</> - ""f )2 J a,� 2� 

(4-5) 

( 4- 6) 
for the one-dimensional random variable </>. In the normal distribution ( 4- 6), </> , a <P and � denote the mean, the standard deviation and the variance, respectively. Physical and process-related parameters, denoted as low-level parameters in the simulation model (see Bandier and Chen [ 1 ]), are usually assumed to fit a normal distribution and as statistically independent. The model parameters at higher levels might be of any statistical distribution, possibly complicated and correlated, as a 
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result of linear/nonlinear transformations [ 3 6]. If a multidimensional normal distribution is assumed for the model parameters, statistical parameter estimation is simply finding the mean values, the standard deviations and correlation coefficients. These statistics can be calculated consecutively, from the parameters extracted, using computer routines (see, for example, [ 46]). This is called postprocessing, or statistical estimation. The mean value of the jth parameter </>j, </> i ,  is defined and estimated by 

K El . J ¢· - l=l 

J - -r 
( 4- 7) 

The standard deviation can be calculated, using the mean value obtained from ( 4- 7), by 
i - 2 L, (</>· - </> ·) . J J 

l=l 

I

K 
(J = 

</>i K - l 
(4-8) 

The correlation coefficient between parameters <!>1·1 and </>1·2 , denoted by c,  · is hh ' available by evaluating 
(4-9) 

Alternatively, the mean value of parameter </>j can be estimated by optimization if we define the error functions as eix) = x - <t>J , i = 1, 2, ... , K ( 4- 10) where x is an optimizable variable. The following mathematical developments show 
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that when an i.2 optimization is finished, the value of x at the solution will be the value of the mean </> j . Incorporating the errors ( 4-10) into the objective function, the classical least-squares (i.2) method solves 
minimize 

X 

K K . 
F(x) @ E e;2(x) = E (x - </>j)2 i=1 i=1 

At the least-squares solution, the following condition must hold 
( 4-1 I) 

( 4-1 2) 
where x * denotes the i.2 solution. · It can be further derived from ( 4-1 2) that 

K K . E x * - E l = O . . } 
l=l l=l Keeping in mind that x * is a constant, i.e., 

Therefore, 
E x * = Kx * i=1 

K 

El i=1 J x * - --

(4- 1 3) 

( 4-14) 

( 4-15) 
Not surprisingly, the mean value given in ( 4- 7) is actually the solution of the i.2 optimization ( 4-11 ). More generally, to estimate the mean, we solve 

minimize 
X 

F(x) @ E f(elx)) i=1 ( 4-1 6) 
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Again, / dictates the optimization method to be applied (e.g., £1 or �). At the solution, the value of the optimization variable x is the expected value of the parameter <l>j, in the sense associated with /. For example, if / is the £1 function, the solution will be the median. Similarly, to estimate the variance, we define i = 1, 2, ... , K ( 4-17) 
to be an error function, where x is to be optimized. A reliable value of the mean is a prerequisite to estimate the variance for this approach. The standard deviation a'Pj can easily be evaluated from the variance obtained. From the same mathematical reasoning ( 4-11 to 4-1 5), it follows that the value obtained by ( 4-8) is an estimation of the standard deviation in the £2 sense. In this chapter, we use the optimization approach to apply the Huber concept to statistical estimation. For cases where the sample distribution is sufficiently different from normal, a combined discrete/normal approach (Bandier, Biernacki, Chen, Loman, Renault and Zhang ( 1989) [ 40]) was proposed. 
4.2.3 Statistical Model Verification [34] 

One way to check the validity of the model statistics obtained is through Monte Carlo simulation. Generally speaking, Monte Carlo simulation is a multiple-response generation process. First, a computer-generated sample of devices is created by a random number generator in compliance with a given statistical distribution for the device 
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model parameters. Second, simulating each device individually yields a sample of responses. Therefore, the sample of simulated responses is statistically consistent with the parameter distribution given to the random number generator. We perform Monte Carlo simulation to verify the validity of the model statistics by providing the model statistics obtained by the methods described in Section 4.2.2 to the random number generator. If the sample of the simulated responses agrees statistically with the measured responses, the model statistics are said to be valid; otherwise statistical modeling needs to be reperformed. The whole process of model verification is illustrated in Fig. 4.1. 
4.3 ROBUST STATISTICAL MODELING USING HUBER 

FUNCTION 

In statistical modeling, a large number of measurements is required to establish the sample of devices. Errors, either large or small, may occur in the process. In this section, robust statistical modeling is demonstrated by an example on the Materka FET model [4 3 ]  with some gross errors. A normal parameter distribution is assumed in the experiment. The experiment was originally carried out by Bandier, Biernacki, Chen, Song, Ye and Zhang ( 199 1) [4 1], and later by Cai ( 199 2 ) [3 4 ]. It was explored from the point of robust statistical modeling by Bandier, Chen, Biernacki, Madsen, Li Gao and Yu ( 199 3 ) [1 3 ]. The Materka and Kacprzak model [4 3 ]  is a nonlinear ECM FET model. It utilizes circuit elements (e.g., resistors, capacitors and inductors) connected in a 
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Fig. 4. 1 Statistical model verification using Monte Carlo simulation [3 4]. 
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certain topology to represent the MESFET. The model includes twenty-one intrinsic parameters and nine extrinsic parameters. Only a selected number of model parameters are used for demonstration. The measurements used for statistical modeling include 80 individual devices ( data sets) selected from two wafers and were provided by Plessey Research Caswell [ 4 7]. Each device represents a 4-finger 0.5 µm GaAs MESFET with equal finger width of 7 5  µm. Each data set contains small-signal S parameters measured under three different bias conditions and at frequencies from 1 GHz to 2 1  GHz with an interval of 0. 4 GHz between two adjacent frequencies. DC drain bias current is also included in the measurements. HarPE™ [ 20] was used to extract the device model parameters. The measurements used for parameter extraction include DC bias currents at three bias points and S parameters for those bias points at frequencies from 1 GHz to 2 1  GHz with a 2 GHz interval. The linear parameter Cx is fixed at 2 pF for the model. Model parameters for each individual device were extracted by matching simultaneously the DC and small-signal S parameter responses to the corresponding measurements. The optimizer we used for parameter extraction is the £2 optimizer available in the HarPE™ program. As we experimented, for this particular example, there is essentially no difference whether we use the £2 or the Huber methods. However, readers are encouraged to try the Huber methods. 
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4.3.1 Huber Estimator for Statistical Modeling of Devices [13] 

Measurements containing gross measurement errors and/or involving faulty devices result in large deviations in the extracted parameters. For example, consider the run chart shown in Fig. 4.2 of an extracted model parameter, namely the FET time-delay r. Most of the extracted values of r are between 2 ps - 2.5 ps, but there are a few abnormal values due to faulty devices and/or gross measurement errors. 
In fact, the other model parameters extracted from those faulty devices also have abnormal values. If this is the case, the least-squares estimates for the model statistics will be severely affected, whether obtained by l2 optimization or by direct evaluation from ( 4 - 7,8,9). In the earlier work [3 2 , 4 1] using the l2 estimator, the abnormal data sets were manually excluded from the statistical modeling process. The Huber-based optimization can be used to automate and robustize statistical estimation. The Huber function is invoked to penalize the error functions defined in ( 4 - 10) and ( 4 - 1 7). Parameter statistics are found after optimization. More specifically, to estimate the mean value of r, for example, we solve the following Huber-based optimization problem 

minimize 
X 

80 

!:,. 
• 

F(x) = L PiX - i) 
i=l 

( 4- 18) 
where �,  i = l ,  2 ,  ... , 80, comprises the sample of r's from parameter extraction, and 
x is the mean at the optimum. Similarly, we estimate the variance by solving 
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80 

l::,. • 2 F(x) = L Pk(X - (r - r) ) 
i=l ( 4- 19) 

The term (,,i - r)2 in ( 4- 19) can be thought of as the "sample of variances". The threshold value k should be chosen to reflect the normal spread of the parameter values. For parameter r, we choose k = 0. 2 5  ps to estimate the mean, and 
k = 0.0 6 2 5  ps2 to estimate the variance. Table 4. 1 lists the means and standard deviations of a selected number of model parameters we obtained using the £2 and the Huber estimators. Reliable results can be obtained by manually excluding the abnormal data sets and invoking the £2 estimators afterwards. Table 4. 1 uses the symbol .t; to distinguish this approach from the normal £2 • As expected, the impact of the abnormal data points on the £2 estimates of the standard deviations is especially severe. These estimates will, by no means, correctly reproduce the distribution of device responses. The .t; approach, though it is intuitively reliable, requires manual manipulation of the data and is not appropriate when there are data points which cannot be clearly classified as normal or abnormal. The Huber estimators, on the other hand, provide results close to .t; method and yet does not require manual manipulation. It should also be noted that although £1 is effective for individual device parameter extraction [ 10], it is not, in general, suitable for statistical postprocessing. The £1 estimate (median) depends on the order rather than the actual values of the sample. 
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TABLE 4. 1 ESTIMATED ST A TISTICS OF SELECTED FET PARAMETERS 
Parameter 
La(nH) Gvs( l/Kn) lvss(mA) r(ps) C10(pF) 
K1 

</> (l2) 
0.0 4 38 7  1.8 40 4 7. 3 6 2 .018 0. 3 618 1. 2 3 28 

</> (Huber) 
0.0 3 4 6 4  1.8 20  4 7. 5 3 2 . 1 5 4 0. 3 6 58 1. 2 3 1 

� ( t; ) <J,t, (l2) a,t, (Huber) 
0.0 3 4 29 9 4. 6% 2 1.8% 1.8 39 28. 6% 6. 3% 4 7.8 5 14.0% 1 2. 7% 2. 18 7  2 6. 3% 5.8% 0. 3 69 6  8. 2% 4. 6% 1. 2 3 3  1 5. 5% 10.8% 

6 3  

<J"' (t;) 
17. 4% 4.9% 11. 3% 3. 4% 3. 5% 8. 7% 

La represents the FET gate lead inductance, Gvs the drain-source conductance, I vss the drain saturation current, r the time-delay, C 10 and K1 are parameters in the definition of the gate nonlinear capacitor. </> and a</> denote the mean and the standard deviation of the parameter </>, respectively. t; denotes l2 estimates after 11 abnormal data sets are manually excluded [ 3 2, 41 ]. 
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4.3.2 The Selection of Threshold Values for Huber Statistical Estimation 

It may have been noticed that, before the Huber function is invoked to penalize the error functions for statistical estimation, a value for the threshold k has to be selected. By engineering intuition, the choice of the threshold should be such that it defines all the statistical variations as "small errors", yet keeps gross errors as "large errors". We performed the following experiments to test this subject. Nine different sets of threshold values are attempted to estimate the statistics of the parameter r (e.g., k = 0. 2 5  ps for the mean and k = 0. 2 52 ps2 for the corresponding variance), and the results are listed in Table 4. 2. It can be seen that the estimated means are very insensitive to various threshold values; even an infinite 
k does not alter it more than 10%. The estimated standard deviation is also fairly stable within a relatively large range of k. For instance, 10 percent deviation from 2. 5, the selected threshold value, produces a deviation in the estimate of less than 10 percent. Consistent with the theory, when k reaches infinity, the Huber estimates become identical to the £2 estimates. This justifies the flexibility of the Huber­based method to be a general-purpose optimizer: whenever the traditional least­squares solution is assumed more appropriate, the Huber method is capable of providing it by setting the threshold to a sufficiently large value. In general, a fixed value of the threshold k defines a band of width 2k, in which the data points are treated as small errors. The number of small errors varies as the optimizer moves the band. 
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TABLE 4. 2 ESTIMATED STATISTICS FOR DIFFERENT VALUES OF k 

k 

0. 15  0. 2 0. 2 2 5  
0.25 0. 2 7 5  0. 3 0. 5 1 
00 

2. 1 68 2. 1 6 1  2. 1 5 7 2 . 1 5 4 2. 1 50 2. 14 7 2. 1 2 2 2.0 79 2.018 

a,,. 

4. 4% 5. 1% 5. 4% 5.8% 6. 2% 6. 6% 9. 6% 1 5. 7% 2 6. 3% 

65 
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At the Huber solution, let 

n = { I 
S• 
J 0 

Ns = E ns. j=l J 

if 1�1 � k otherwise (4-20) 

(4-2 1 ) 

Ns represents the size of the group of small errors. Clearly, Ns is a function of k. If k approaches zero (the l1 case), Ns approaches the number of points residing exactly on the solution; on the other hand, if k is sufficiently large, Ns will be K, the total number of devices. Intuitively, if we select two k's, k1 � k2
, and perform the Huber optimization for each k, we will have two Ns's, with Ns1 � Ns2 • This is because a bigger threshold defines a larger band, accommodating more data points. Figs. 4. 3, 4. 4 and 4. 5 depict Ns versus k for parameters r, L0 and C 10, respectively, where Ns is expressed as a percentage of the total number of devices 

K. As k increases, Ns grows monotonically. This justifies the foregoing intuition. As seen from the figures, Ns grows very sharply from k = 0, and becomes saturated at a certain point. This is due to the fact that most of the extracted parameters have only small statistical variations, concentrating close to the nominal value, while a fairly small number of catastrophic errors are far outside. The "knee" of the Ns curve, which separates the fast growing range from the saturation range, corresponds to a solution which includes the majority of functions as "small errors". The value of k at the "knee" is consistent with our choice. 
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Fig. 4. 3 Percentage of "small errors" for the FET time-delay r versus the threshold 
k. 
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Fig. 4. 5. Percentage of "small errors" for the FET model parameter C10 versus the threshold k. 
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4.3.3 Comparison of Dedicated Huber Algorithm and Generic Methods 

As a continuation of Subsection 3. 4. 2, we compared the dedicated Huber algorithm described in Chapter 3 with three other generic methods available in the OSA90/hope™ system, namely, quasi-Newton, conjugate gradient and simplex search, in the context of FET statistical modeling. The mean value of the FET parameter r is to be estimated, and the Huber objective function ( 4-18) has been explicitly incorporated into the generic methods. In this case, only one variable is involved and all the algorithms under test converged to the correct solution. Table 4. 3 lists the number of function evaluations required by each algorithm from four different starting points. It shows that the dedicated EMA is more efficient than the generic ones. 
4.4 CONCLUDING REMARKS 

In this chapter, we presented statistical modeling using Huber functions. Parameter extraction for individual devices by matching the device responses to the corresponding measurements was addressed. The postprocessing of the extracted model parameters using the Huber estimator for statistical estimation was demonstrated. The selection and verification of the threshold values for Huber­based optimization were discussed. Comparison between the dedicated Huber optimization algorithm and generic methods was also made with the statistical modeling example. 



4.4 Concluding Remarks 

TABLE 4.3 
NUMBER OF FUNCTION EVALUATIONS REQUIRED BY 

DIFFERENT ALGORITHMS FROM OSA90/hope™ 

Algorithm 

Dedicated Huber 
Quasi-Newton 
Conjugate-Gradient 
Simplex 

1. 5 
4 8 13 2 6  

Starting Point 2 
4 
5 13 1 6  

2 . 2 5  
4 
5 11 1 6  

3 
4 7 14 2 4  

71  

The optimization problem is to estimate the mean of  FET parameter r using the 
Huber objective function. 

All four algorithms converge to the correct solution. 
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Experiments were carried out on Huber statistical estimation using the Materka and Kacprzak MESFET model. The Huber estimates are robust against gross errors and do not require manual manipulation of the data. When there is no gross error in the data, the Huber estimator will still be able to provide valid £2 estimates by setting the threshold value to infinity. The choice of the threshold for Huber-based optimization is not arbitrary and should reflect the statistical spread of the data. Our choices were verified with illustrations. A comparison with other generic optimization methods shows, in the context of the Huber-based FET statistical estimation, that the dedicated EMA is more efficient. Furthermore, mathematical formulation for parameter extraction shows that the Huber function is a promising criterion for extracting parameters of individual devices. 



Chapter 5 

EFFECTIVE ANALOG FAULT 
DIAGNOSIS 

5.1 INTRODUCTION 

The problem of analog circuit fault diagnosis arose in the 1960s [48, 4 9]. Due to progress in the area of electronic design, it has become a flourishing research activity. As Lin and Elcherif ( 1988) [50] indicated, analog fault diagnosis has become the third aspect on which the study of circuit theory centers. The ever-increasing complexity of large circuits and systems stimulates intensive research activities, trying to develop effective fault diagnosis techniques. A complete review, as well as comparison with respect to various aspects of the performance, of these methods were given by Bandier and Salama ( 1985) [5 1]. A brief summary is given here as follows. In this context, a fault means any change in the value of an element with respect to its nominal value which can cause the failure of the whole circuit. If this is the case the circuit is considered as faulty. There are three levels of fault diagnosis, namely, fault detection, fault location and identification, and fault prediction. The main concern of the fault prediction problem is to replace the elements, which are about to fail, before an actual failure occurs and with minimum loss in the lifetime of the replaced 
7 3  
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elements. Fault detection is the minimum requirement for fault location and identification. It identifies whether a network is faulty. In this chapter, we assume that the circuit under test (CUT) has been identified as faulty, and concentrate only on fault location and identification methods. Four approaches stand out of various fault location and identification methods. In the fault dictionary approach [ 50], a fault dictionary is constructed by simulating all possible combination of faults and is stored in the computer. Then the measurements are compared with those prestored circuit outputs, in an effort to identify the faults. It needs extensive off-line computation and mass storage for the fault dictionary. The parameter identification approach completely solves for the actual parameter values of all the elements. In principle, it can be considered as the inverse process of circuit simulation. In circuit simulation, given the circuit parameters, circuit output is to be found; while in parameter identification, circuit output (the measurements) is given and the parameter values are to be determined, possibly through solving systems of linear/nonlinear equations. Surely, this approach is the best in terms of achieving the goal of fault location and identification. However, sufficient measurements are often unavailable. The approach of fault verification gained a lot of interest recently. The method is to locate the faulty components without solving the parameter values by simulating the circuit under different conditions and then using some decision algorithm. Compared with the parameter identification techniques, this approach requires fewer measurements. 
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We consider the problem of analog fault location and identification from an optimization point of view, an approach Bandier and Salama [ 5 1] called the approximation techniques. This approach was considered computationally intensive [ 5 1 ]. However, the rapid advances in computer technology made it practical. In fact, fault diagnosis using optimization is extremely effective and powerful in dealing with insufficient measurements. When the parameter values cannot be identified due to an insufficient number of measurements, they can be determined by minimizing a certain measure, and the most likely faulty elements that exhibit large deviation from their nominal values are isolated. In particular, i.2 approximation, quadratic optimization and i.1 approximation have been proposed (see Bandier and Salama [ 5 1] and Bandier and Zhang ( 1988) [ 5 2 ]). The i.2 approximation technique was proposed under the assumption that all the catastrophic faults have been eliminated or are nonexistent and the circuit failure is due to component drifting out of tolerance (as from aging, temperature changes, etc.) [ 5 1, 5 2 ]. Nevertheless, the method is not robust with respect to deviations of the nonfaulty elements inside their tolerance region. The scheme of solving a series of quadratic programming problems was proposed by Merrill ( 19 7 3 )  [ 5 3 ], based on the hypothesis that the circuit failure is due to one or a few faulty components which have much greater deviations than the rest of the components in the circuit. This hypothesis is consistent with most practical observations. The i.1 optimization has been successfully applied to analog fault location problems (Bandier, Kellermann and Madsen ( 1985) [ 1 1], and also [5 1, 5 2 1). It takes 
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advantage of both the nature of the £1 norm and the linearity of the constraints [5 2 ]. Some special methods have been developed to support the foregoing analog fault diagnosis techniques. The utilization of different excitations, for example, can increase the number of measurements without increasing the number of accessible nodes (Bandier, Chen and Daijavad ( 1986 ) [10]). We propose attacking the analog fault diagnosis problems using the Huber function. It should fall into the optimization approach category. In this chapter, the effectiveness of Huber-based optimization for fault diagnosis problems is demonstrated and compared with £1 optimization. Mathematical expressions are formulated for the optimization approach, and are then tailored for Huber-based optimization. A resistive mesh network example is used for illustration and comparison. 
5.2 FORMULATION OF FAULT LOCATION PROBLEMS 

USING OPTIMIZATION [52] 

Different approaches for fault diagnosis problems have very different formulations due to the nature of the methods. The mathematical expressions and/or algorithmic descriptions for the approaches summarized in Section 5. 1 can be found in [5 1]. In this section, we formulate fault diagnosis problems as optimization problems, following the notation of [5 2 ]. For both conceptual and notational simplicity, the formulation uses only single frequency measurements. Suppose the set of measurements obtained from the circuit under test (CUT) is denoted by 
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(5- 1 ) The circuit has n parameters (5-2 ) The circuit response corresponding to S is represented by 

R = R(tf,, w) (5-3 ) where w denotes frequency. In the case of a single frequency, w is implied and R can be simplified as 
R = R(tf,) (5-4) Ordinarily, a faulty circuit contains only a few faults and possibly many small tolerances for the rest of the elements. For a circuit with its nominal design characterized by tf,0 and R0, the measurements taken from the actual (faulty) configuration can be expressed as 
S = R(tf,0 + !l.tf,) (5- 5) However, as experienced by many engineers, the measurements S are usually insufficient to identify all the actual parameter values tf, = tf,0 + !l.tf,, let along their deviations from the nominal values !l.tf,. In other words, equation (5- 5) is underdetermined. Therefore, optimization procedures are needed to find the most likely parameter values among an infinite number of solutions to (5- 5). Such an optimization procedure can be formulated as 

subject to 
minimize U(!l.tf,) 

!l.tf, 

R( tf,0 + !l.tf,) - S = 0 
(5-6) 

(5-7) where U is an increasing scalar function of l!l.4' 1 and R(tf,0 + !l.tf,) are the calculated 
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responses from the current value of q,. Equation (5- 7) is called the constraint equation. To simplify the problem (5- 6, 7), two effective formulations, namely, the current/voltage source substitution model and the component connection model, have been proposed to transform the constraint equation into a system of linear equations. Representing the parameter changes by equivalent current/voltage sources, the current/voltage source substitution model [5 2 ] transforms the problem (5- 6, 7) into solving optimization with linear constraints. The scheme is to solve for those additional current/voltage sources, and then find the parameter value changes according! y. A complete description of the treatment of the component connection model can be found in [5 4-5 6]. The foregoing general formulation (5- 6, 7) has been implemented in the £1 sense based on an exact penalty function as follows [ 11 ]: 

n+m 

minimize E I� ( q,)I 
"' i=l 

where the error functions are defined as 

where 
and Pi, i = 1, 2, ... , m, are appropriate multipliers for the penalty terms. 

(5-8) 

(5-9) 

(5-10) 
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Due to the nature of the £1 norm, this approach is very effective in isolating the faulty elements [ 1 1  ]. 
5.3 EFFECTIVE FAULT DIAGNOSIS USING THE HUBER 

FORMULATION 

The approach of fault diagnosis using Huber functions was first proposed by Bandier, Chen, Biernacki, Madsen, Li Gao and Yu [1 3 ]. The effectiveness of the £1 approach in fault diagnosis comes from the fact that the £1 solution is robust against a few large error functions. The similar robustness of Huber-based optimization (see Chapter 2 for details) leads to the idea of invoking Huber-based optimization for locating the possible faults, based on the same assumption that the faults in the CUT exhibit much bigger (relative) deviations from the nominal values than the nonfaulty elements. 
5.3.1 A Huber Formulation for Fault Isolation Problems 

The formulation of using the Huber function for analog circuit fault location and identification is very similar to that using the £1 norm (5-8,9, 10). It is as follows: 
n+m 

minimize L P iej C<f,)) 
"' 

j=l (5- 1 1 ) 

where ei, i = l ,  2 ,  ... , n+m, and <f, are given in (5-9) and (5- 10), respectively, and 
Pk is the Huber function defined by ( 2 - 1 2 ). 
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Clearly, compared with (5-8), the modulus of the error functions are replaced by the Huber function Pk· 

5.3.2 The Resistive Mesh Network Example 

We use a resistive mesh network to examine the applicability of the Huber­based optimization to solving analog fault location problems. The same fault location example was used by Bandier and Salama [ 5 1] for demonstrating the network decomposition approach. It was experimented on by Bandier, Chen, Biernacki, Madsen, Gao and Yu [ 1 3 ]  for the Huber-based approach. The resistive network under test is shown in Fig. 5. 1 [ l l , 1 3 , 5 7]. The nominal element values are Gi = 1.0 with tolerances Ei = ±0.0 5, i = I ,  2 ,  ... , 2 0. Node 1 2  is taken as the reference node, and nodes 4 ,  5, 8 and 9 are assumed to be internal and inaccessible for measurement. The voltage measurements at the other nodes are used for fault location. The actual parameter values of a faulty network are listed in Table 5. 1. Two faults are assumed in the circuit, namely G2 
and G18, with relative error to be -50%. This situation is consistent with the assumption that faults are relatively much larger. A DC current source of I A is applied to node I as the excitation to the network. Instead of performing the real experiment, the voltage measurement data S is obtained by circuit simulation using the actual parameter values. The nominal parameter values are used as the starting point for optimization. 
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Fig. 5.1 The resistive mesh circuit [l l , 1 3 , 5 7]. 

8 1  



82 Chapter 5 EFFECTIVE ANALOG FAULT DIAGNOSIS 

TABLE 5. 1 FAULT LOCATION OF THE RESISTIVE MESH CIRCUIT 
Percentage Deviation 

Element Nominal Actual Value Value Actual l1 Huber 
G1 1.0 0.98 - 2 .0 0.00 -0. 1 1  
G2 1.0 0. 50 -50.0* -48.89 - 4 7. 2 8  
Ga 

1.0 1.0 4 4 .0 0.00 -2 . 4 6  
G

4 
1.0 0.9 7 -3 .0 0.00 -l . 18 

Gs 
1.0 0.9 5 -5.0 - 2 . 70 - 3 . 16 

G6 1.0 0.99 - 1.0 0.00 -0.06 
G

7 
1.0 1.0 2 2 .0 0.00 -0. 19 

Gs 
1.0 1.0 5 5.0 0.00 -0. 4 1  

Gg 1.0 1.0 2 2 .0 2 . 4 1  3 . 7 5 
G10 1.0 0.98 - 2 .0 0.00 0. 3 9  
Gu 1.0 1.0 4 4 .0 0.00 -0. 3 7  
G12 1.0 1.0 1 1.0 2 . 7 3 1. 3 2  
G13 

1.0 0.99 -1.0 0.00 -0. 2 6  
G14 

1.0 0.98 -2 .0 0.00 -0. 50 
G15 

1.0 1.0 2 2 .0 0.00 -0.0 5 
G16 1.0 0.96 - 4 .0 - 3 . 3 6  - 2 . 6 7 
G17 

1.0 1.0 2 2 .0 0.00 -0. 6 1 
G1s 1.0 0. 50 -50.0* -50.09 - 4 7. 3 3 
G19 

1.0 0.98 - 2 .0 -l. 4 1 - 3 .81 
G20 1.0 0.96 - 4 .0 -4 . 40 - 4 . 7 2  

* Faults 
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The threshold k for the Huber function is chosen as 0.0 5, commensurate with the tolerances of the elements. The penalty multipliers Pi in ( 5-9) are set to 1000, sufficiently large to ensure that the nonlinear constraints (circuit equations) are satisfied. The results from the l1 optimization and Huber optimization are compared in Table 5. 1. As can be seen in Table 5. 1, from both l1 and Huber optimizations, the faulty parameters yield very large relative deviations, while the nonfaulty ones have very small deviations. Therefore, the faults can be found by comparing the percentage variations with a preset threshold value. In this case, for example, the threshold value could be set to ± I 0%. Misleadingly, the l1 solution has a fairly big group of elements which exhibit zero deviations. This is because, as pointed out in Chapter 2, the solution is dictated by these points. In the Huber solution, it is rarely the case since the Huber function treats the small error functions in the least-squares sense. We tested this example for 4 other different starting points. The Huber approach correctly located the faults in all the cases. The l1 method was successful in 3 of the cases, but failed in one of the cases. 

5.4 CONCLUDING REMARKS 

We have investigated the applicability of the Huber-based optimization to analog circuit fault diagnosis problems. General formulations of the problems have been introduced, and transformed for the use of Huber-based optimization. A resistive mesh network example has been used for demonstrating the effectiveness 
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of the Huber approach. Comparison has been made with the conventional £1 method. The approach of fault location using optimization has a big advantage in dealing with insufficient measurements. Due to the robustness of Huber-based optimization, it is effective in solving fault diagnosis problems. As demonstrated by the resistive mesh example, the Huber method appears to be as effective as the conventional £1 approach. Moreover, the Huber approach seems to be less influenced by different starting points. 



Chapter 6 

EFFICIENT PREPROCESSING FOR 
LARGE-SCALE MULTIPLEXER 
DESIGN 

6.1 INTRODUCTION 

As technology advances, system designers are no longer dealing with simple circuit topologies and small numbers of elements and parameters. From an easy-to­use home electrical appliance to a more sophisticated communication satellite, today's real electrical systems may contain enormous numbers of components, with thousands of parameters to be determined and adjusted during design and manufacturing. This obviously poses a serious challenge to CAD systems in handling large­scale design problems. As Bandier and Zhang (198 7) [ 58] pointed out, the reasons of failure are mainly the prohibitive computer storage and CPU time required, and the inclination towards an ill-conditioned problem. Special techniques, specifically decomposition methods (see, e.g., Himmelblau (197 3) [ 59], Sangiovanni-Vincentelli, Chen and Chua ( 197 7) [ 60], and Bandier and Zhang (198 7) [ 58]), have been proposed to adapt the existing CAD techniques to solving large-scale problems. 
8 5  
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The active research activities in the area of microwave filter and multiplexer design (Atia (197 4) [ 61]) were motivated by the fast-growing satellite communications technology (Kudsia (198 2) [ 6 2]). In order to communicate efficiently, the signals transmitted are usually preprocessed at the transmission end and postprocessed at the receiving end. In preprocessing, the source signals are modulated with different carrier frequencies so that different information will be carried in different frequency bands called channels. After the modulation, those separate channels are summed up to be contained in a broader band to avoid energy leakage among the input channels. At the receiving end of the transmission, the signals are retrieved by, firstly, separating the channels from the broader band, and secondly, demodulating for each channel. Microwave multiplexers are used in combining channels to the broader band, and inversely, separating the channels from the broader band (Cristal and Matthaei (19 6 4) [ 6 3]). The scale of the multiplexer design problem is usually very large. To give a rough idea, a typical 1 6-channel 1 2-GHz multiplexer design [ 58] involves 2 40 variables and 399 nonlinear functions. Such dimensionality is prohibitive to both computer-oriented optimization and manual post-production tuning. Automatic decomposition techniques have, therefore, been developed (e.g., see, Bandier and Zhang [ 58]) to divide the entire problem into a series of smaller-scale suboptimization problems. Exact simulation and sensitivity analysis of multiplexing networks was also proposed by Bandier, Daijavad and Zhang (198 6) [ 6 4], facilitating the use of gradient-based optimization methods. 
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This chapter deals with design of multiplexers using one-sided Huber function for preliminary optimization. The multiplexer under consideration is a contiguous band multiplexer consisting of multi-coupled cavity filters. In Section 6 . 2 ,  we provide a review of simulation and sensitivity analysis of multiplexing networks required by design optimization. A multiplexer design example is demonstrated in Section 6 . 3 .  One-sided Huber-based optimization is invoked as a preparatory optimization. Comparison is made with minimax optimization in terms of providing a good starting point for full-scale design optimization. 
6.2 EXACT SIMULATION AND SENSITIVITY ANALYSIS OF 

MULTIPLEXING NETWORKS [64,65] 

Modern gradient-based optimization techniques require robust and efficient methods for circuit simulation and sensitivity analysis. For multiplexing network simulation, Bandier, Daijavad and Zhang [6 4 , 6 5] proposed a novel approach, utilizing the concept of cascade analysis. We provide a brief review of the method. 
6.2.1 The Overall Configuration ofa Multiplexer [64] 

A typical equivalent circuit for a multiplexer is shown in Fig. 6 . 1. As is seen, there are N branches (channels) distributed along a waveguide manifold. Each branch consists of a multi-coupled cavity filter, input-output transformers, and an impedance inverter. A waveguide section separates two adjacent channels, and a nonideal series junction connects the branch with the manifold. Without losing generality, the main cascade (the manifold) is terminated by a short circuit and the 
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short-circuit 
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Fig. 6. 1 Equivalent circuit of a contiguous band multiplexer. Each channel has a multi-coupled cavity filter with input and output transformers as well as impedance inverter. The main cascade is a waveguide manifold with a short-circuit termination. Branches are connected to the main cascade through nonideal series junctions [ 6 4]. 
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individual channel output load is 50 n. 
6.2.2 Cascade Analysis [ 64,65] 

89 

The method proposed in [ 6 4, 6 5] utilizes cascade analysis which involves transmission matrices. For a two-port network shown in Fig. 6. 2 ,  the transmission matrix is a 2x 2 matrix Q12 so that the following must hold 
(6- 1 )  

In a cascade of two-port networks, the equivalent transmission matrix between the reference planes i and j, denoted as Qij, can be obtained from forward and reverse analysis. In a forward (reverse) analysis, Qij is computed by initializing row vectors 
e/ and e,.T ( column vectors e1 and e2) at reference plane i(j) and successively premultiplying (postmultiplying) each transmission matrix by the resulting row ( column) vector until reference plane j(i) is reached. e1 and e2 are unit vectors given by [ I of and [O If, respectively. For example, the first element Aij of the equivalent transmission matrix 

[A .. B··J Q .. = l) l} 
l] 

Cij Dij 
( 6- 2) 

can be calculated by [ 6 5) 
(6-3) where Qz, l = j, j+l ,  ... , i- 1, represents the two-port networks between the ith and jth reference planes. 
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I 1 12 

+ + - -- - -

two-port network 

Q 12 

-

Fig. 6. 2 Block representation of a two-port network characterized by its transmission matrix Q12
. 
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where 
Equation ( 6- 3) can be rewritten as 

( i,l+l)T _ T Q Q Q "1 - e1 i- 1  i-2 · · ·  1+1 is a partial forward analysis and 
is a partial reverse analysis. 

91 
(6-4) 

(6-5) 

( 6- 6) 
Consequently, the sensitivity formulation of the transmission matrix w.r.t. parameter </> is readily available. For example, 

where 
l aA . . lJ 8</> 

(6-7) 

is the result of a forward or reverse analysis between reference planes i and j with the /th matrix replaced by its derivative w.r.t. </>, and /</> is an index set whose elements identify the transmission matrices containing </>. Second-order sensitivities can be obtained in a similar manner. Therefore, if the reference planes i and j are set to the appropriate ports under consideration, we will be able to find the response of interest as well as its sensitivities. For instance, to find the output voltage vN of the Nth branch (see Fig. 
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6 . 1), we set i and j to the input port and the Nth output port, respectively. For the 3-port nonideal junctions along the main cascade (see Fig. 6 . 1), Bandier, Daijavad and Zhang [6 4 , 6 5] proposed a scheme for reduction from the 3-port structure to a 2-port representation. The transmission matrices for various components of the multiplexer structure were listed by Bandier, Daijavad and Zhang [6 4 ], were utilized in their algorithm [6 4 ]  to calculate the multiplexer responses and their sensitivities. 
6.3 DESIGN OF A 5-CHANNEL 12 GHz MULTIPLEXER 

We present a design of a 5-channel 1 2  GHz contiguous band multiplexer as follows. There are five 6 th-order multicavity filters mounted on the waveguide manifold, one for each channel. Variables for each channel include six coupling parameters, six cavity resonances, two input and output transformer ratios, and the distance measure from the channel filter to the short-circuit main cascade termination. The overall problem involves 7 5  variable and 1 2 4 nonlinear functions. The common port return loss and individual channel insertion loss are the circuit responses under consideration. Design optimization involves as an indispensable part of the procedure. This design example has been used to demonstrate an automatic decomposition technique (Bandier and Zhang [58]) and an efficient quadratic approximation for statistical design (Biernacki, Bandier, Song and Zhang ( 1989) [6 6 ]). 
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6.3.1 Formulation of the Problem [ 67] 

9 3  

The overall design optimization is a minimax problem, and the objective function to be minimized is given by [6 7] 
F( tp) = max <!j( ;) j E J (6-8) 

where ef, is a vector of design parameters and J is an index set. The error function ej(tp), j E J, can be of the form wb,iwi)(Rf(tJ,,wi) - Sfik(wi)) (6-9) 

(6- 1 0) 

(6-1  I )  

(6-1 2 ) 
where Rf ( ;,wi) is the insertion loss for the k th channel at the ith frequency, R 2( ;,wi) is the return loss at the common port at the ith frequency, S fik( wi) ,  S lk( wi) ,  Sifwi) ,  sf.(w) are the respective specifications, and WfJk, wlb wi, wl, are the arbitrary user-chosen nonnegative weighting factors. For such a large-scale problem, one usually wishes to optimize a small number of dominant variables in order to obtain a good starting point for the full­scale minimax optimization. We demonstrate that the one-sided Huber-based optimization provides better results in the preparatory optimization than minimax optimization. 
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6.3.2 The Experimental Procedure 

We first try to optimize a small number of dominant variables. We know that the multiplexer responses are highly sensitive to the spacing lengths which are initially set to half the wavelength corresponding to the channel center frequencies. We select the spacings and the channel input transformer ratios ( IO variables) and consider a lower specification of 20  dB on the common port return loss. The common port return loss and individual channel insertion loss responses at the starting point are shown in Fig. 6. 3. The minimax solution for preliminary optimization is shown in Fig. 6. 4 and the one-sided Huber solution is shown in Fig. 6. 5. The worst-case errors in these two figures are similar. Since the worst-case errors cannot be further reduced by changing the selected variables, the minimax optimizer gains nothing from directing effort elsewhere. Using one-sided Huber optimization, on the other hand, we were able to obtain a good starting point for subsequent optimization. As can be seen from the figures, one-sided Huber optimization further reduced the common port return loss in the frequency range of the first two channels, compared to the minimax solution. The one-sided Huber optimization took 28 min on a SUN SPARCstation 1+. From the solution shown in Fig. 6. 5, we increase the number of variables from 10 to 4 5, include an upper specification of 2 dB on the channel insertion loss, and restart the one-sided Huber optimization for better results shown in Fig. 6. 6. Then a minimax optimization with the full set of 7 5 variables is performed, resulting in the multiplexer responses shown in Fig. 6. 7. 
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Fig. 6.3 
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Multiplexer responses at the starting point, showing the common port return loss (---) and the individual channel insertion losses (------). 
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Multiplexer responses after the minimax optimization with 10 variables: spacings and channel input transformer ratios; the common port return loss (---) and the individual channel insertion losses (------). This result hardly improved upon the starting point shown in Fig. 6. 3. 
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Fig. 6 . 5  
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frequency (GHz) Multiplexer responses after the one-sided Huber optimization with 10 variables: spacings and channel input transformer ratios; the common port return loss (---) and the individual channel insertion losses (------). This result is significantly better than the minimax solution shown in Fig. 6 . 4 . 



98 

Fig. 6. 6 

0 

10 

20 

30 

4
� 1 .98 12.04 

Chapter 6 EFFICIENT PREPROCESSING 

12. 1 
frequency (GHz) 

12. 16 12.22 

Multiplexer responses after the one-sided Huber optimization with 4 5  variables, showing the common port return loss (---) and the individual channel insertion losses (------). 
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6.4 CONCLUDING REMARKS 

We have demonstrated the advantage of using the one-sided Huber function in preparatory optimization for large-scale multiplexer design problems. A brief review has been given to the simulation and sensitivity analysis of multiplexing network. A microwave multiplexer design example has shown that the one-sided Huber approach provides a better starting point for the final full-scale optimization, compared to the minimax method. The one-sided Huber optimization seems to be more powerful in reducing nonmaximum errors, which are, by definition, not taken into consideration in the minimax method. 



Chapter 7 

CONCLUSIONS 

In this thesis we have presented a novel robust approach to circuit design, modeling and diagnosis, using Huber functions. In Chapter 2, we have formulated the Huber-based optimization problems. We have explored the robustness of the Huber approach by investigating the gradients and Hessians of the Huber objective functions. Through a data fitting example, we have shown that the Huber solution is robust against gross errors, and yet has the discriminatory power to model small statistical variations in the data. We have created a one-sided Huber-based formulation as an extension for engineering design problems. Dedicated Ekblom Madsen algorithms for Huber-based optimization have been reviewed in Chapter 3. The first-stage trust-region method has been described in great detail. It has been shown that the EMA's utilize the special structures of the Huber objective functions and have finer and more accurate adjustment than conventional Newton methods. The second-stage quasi-Newton method has been presented with a BFGS implementation. The overall dedicated optimization algorithm has been described, for both one- and two-sided problems. Comparison with other generic methods has shown that the dedicated EMA is more efficient and appropriate for Huber-based optimization. 
101 



10 2 Chapter 7 CONCLUSIONS 
We have applied the Huber concept to three areas of circuit design optimization and modeling. The Huber measure has been proposed for both statistical parameter extraction and estimation in Chapter 4. We have demonstrated through a MESFET statistical modeling example that the Huber statistical estimator is robust against gross measurement errors and/or faulty devices, and yet does not require manual manipulation of data. We have discussed that the threshold value for Huber-based optimization should reflect the statistical spread of the data, and, by experiment, we have justified our choice of the threshold. In Chapter 5, the Huber function has been formulated for use in analog circuit fault diagnosis problems through an exact penalty function approach. By a resistive mesh circuit example, it has been shown that the Huber-based optimization is as effective as the £1 method in locating possible faults. We have presented a large-scale microwave multiplexer design problem in Chapter 6. The one-sided Huber-based optimization has been employed to prepare a starting point for full-scale minimax optimization. In comparison with the preliminary minimax optimization, the starting point obtained by the one-sided Huber approach has further reduced the nonmaximum errors. In this thesis, we have introduced the unique Huber concept and presented novel results for analog circuit CAD. We have demonstrated that the Huber concept is consistent with practical engineering intuition. It should have a profound impact on modeling, design, fa ult diagnosis and statistical processing of circuits and devices. 
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It could be a very interesting topic for future projects to investigate the performance of the one-sided Huber-based optimization in statistical/yield-driven design. To fully automate the Huber process, an automatic threshold selection routine is needed. Gao Li and Madsen [16 ]  proposed a nonlinear algorithm which can estimate the threshold k at the same time as it converges toward the solution to the Huber problem. However, the ratio between the numbers of "small" and "large" errors has to be entered as a prerequisite. Some knowledge on thresholding in the signal processing area might be useful in this respect. 
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Appendix 

CIRCUIT AND DATA FILES, 
PROGRAMS 

In preparing the examples used in the thesis, we have used the OSA90/hope™ 

and HarPE™ programs. The circuit files are in the OSA90/hope format. 
A CIRCUIT FILE FOR THE DATA FITTING EXAMPLE 

Example huber1_4 . ckt 
illustrate the robustness  of Huber optimization 
data fitting in the presence of both large and small errors 
compare 11 ,  12 and Huber solutions for presentation 

Control 
Two_sided_perturbation ; 

end 

Expression 
data sampled from sqrt ( t )  without perturbation 

Data [ 50 ]  = [ 

0 . 1414 0 . 2000 0 . 2449 0 . 2828 0 . 3162 0 . 3464 
0 . 4690 0 . 4899 0 . 5099 0 . 5292 0 . 5477 0 . 5657 
0 . 6481 0 . 6633 0 , 6782 0 . 6928 0 . 7071  0 .  7211 
0 . 7874 0 . 8000 0 . 8124 0 . 8246 0 . 8367 0 . 8485 
0 . 9055 0 . 9165 0 . 9274 0 . 9381 0 . 9487 0 . 9592 

] ;  

0 . 3742 
0 , 5831 
0 . 7348 
0 . 8602 
0 . 9695 

specify the data points to which errors to be added 

perturb [ 50 ] [ 

0 - 1  0 -1  0 - 1  0 - 1  0 1 
0 -1  0 -1  0 -1  0 -1  0 1 
0 -1  0 -1  0 -1  0 -1  0 1 
0 - 1  0 -1  0 -1  0 -1  0 1 
0 - 1  0 -1  0 - 1  0 -1  0 1 

] ;  

K:  l ·  , index 

0 . 4000 0 . 4243 0 . 4472 
0 . 6000 0 . 6164 0 . 6325 
0 . 7483 0 . 7616 0 . 7746 
0 . 8718 0 . 8832 0 . 8944 
0 . 9798 0 . 9899 1. 0000 

goal = if (perturb [K] > 0)  ( 0 )  
else (data [K] - perturb [K] * 0 . 04 ) ;  

! large errors introduced to these points 
! small variations are added 

t = K * 0 . 02 ;  scale down the interval t o  ( 0 . 02 , 1 )  

x [ 3 , 4 ]  = [ ? 11 . 28?  ?43 . 5602? ?35 . 5686? ? 18 . 3375? 
?45 . 2667? ?564 . 122? ?280 . 427? ? 429 . 965? 

10 5 
11 solution 
12 solution 
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? 13 . 1155? ?62 . 9922? ?45 . 0118? ?29 . 6621? ] ;  

I :  1 ;  ! I=l is  Ll ; !=2 i s  12 ; !=3 i s  Huber 

xl x [ I , l ] ; 
x2 x [ I , 2 ] ; 
x3 x [ I , 3 ] ; 
x4 x [ I , 4 ] ; 

Function : (xl * t + x2 * t * t )  / ( 1  + x3 * t + x4 * t * t ) ; 

Error = Function - Goal ; 
end 

sweep 
! produce the whole picture 
I :  1 2 3 
K: from 1 to 50 step=l t Goal Function 
{ Parametric X=t !=all Y=Goal . white . x  & Function .white 
Ymin=-0 . 2  Ymax=l . 2  NYticks=7 Y_title="Function" 
Xmin=O Xmax=l NXticks=5} ; 

produce an enlarged view 
I :  1 2 3 
K: from 20 to 30 step=l t Goal Function 

end 

{Parametric X=t !=all Y=Goal .white . x  & Function .white 
Ymin=0 . 6  Ymax=0 . 8  NYticks=2 Y title="Function" 
Xmin=0 . 4  Xmax=0 . 6  NXticks=2 } ;  

Specification 
K: from 1 to 50 step=l Function Goal ; 

end 

Huber solution 

the approximating ft.m.ction 
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B CIRCUIT FILE FOR THE HUBER STATISTICAL 

ESTIMATION PROBLEM 

Example huber2_1 . ckt 
using Huber norm for statistical estimation 
the FET model parameters are extracted from statistical measurements 
the starting points and threshold values are recorded below 

Control 
no_default_bounds ; 
optimizer=huber ; 

end 

Expression 
! extracted parameters for the FETs 

10 7 

LG [ 80 ]  = [ 0 . 0249343 0 . 0382752 0 . 0244437 0 . 0305276 0 . 0320525 0 . 0351226 0 . 0384052 0 . 0404104 
0 . 0203612 0 . 0295276 0 . 0338138 0 . 0378106 0 . 040 1943 0 . 0439019 0 . 0400248 0 . 19135 
0 . 0253422 0 . 0309073 0 . 0351278 0 . 0362827 0 . 0361359 0 . 040135 0 . 0377837 0 , 00740458 
0 . 0277345 0 . 0336417 0 . 0338764 0 . 0354762 0 . 0342489 0 . 0377881 0 . 0304654 0 . 032160 1 
0 . 0340442 0 . 0361249 0 . 198991 0 . 0291953 0 . 0262987 0 . 026106 0 . 024076 0 . 0352524 
0 . 0397872 0 , 0311892 0 . 0342306 0 . 0215204 0 . 0439407 0 . 0443833 0 . 0302681 0 . 0349599 
0 . 0 146805 0 . 0396286 0 . 0420346 0 . 0426165 0 . 0406111 0 . 04 11889 0 . 0255615 0 . 0235038 
0 . 0326257 0 . 037303 0 . 0387938 0 . 0378664 0 . 0419138 0 . 23049 0 . 02803 0 . 0333612 
0 . 035629 0 . 03844 0 , 0375648 0 . 0342395 0 . 0396309 0 . 0257349 0 . 0290948 0 . 03 18604 
0 . 0368525 0 . 0378124 0 . 0357473 0 . 192996 0 . 189776 0 . 0312339 0 . 0367897 0 . 0195684 ] ; 

GDS [ 80 ]  [ 1 . 75002 1 . 85644 1 . 7744 1 . 75832 1 . 65872 1 . 66355 1 . 7331  1 . 81709 
1 . 65813 1 . 65851 1 . 69109 1 . 77409 1 . 79057 1 . 72831 1 . 7 1837 1 . 30787 
1 . 73567 1 . 73028 1 . 71128 1 . 66934 1 . 75592 1 . 76912 1 . 83407 6 . 07143 
1 . 72364 1 . 83527 1 . 79107 1 . 76081 1 . 8524 1 1 . 87098 1 . 82652 1 . 81948 
1 . 81915 1 . 89489 1 . 43998 1 . 57586 1 . 77922 1 . 7889 1 . 89212 1 . 96435 
2 . 00173 1 . 93487 1 . 85441  1 . 91102 1 . 90767 1 . 91848 1 . 88535 1 . 94333 
1 . 83223 1 . 87512 1 . 92374 1 . 88014 1 . 95414 1 . 85075 1 . 96955 1 . 94416 

- -----1 . 86048 1 . 87525 1 . 92236 2 . 0376 1 . 93543 1 . 45029 1 . 93602 1 . 92614 
1 . 82955 1 . 88543 1 . 92705 1 . 85356 1 . 8931 1 . 73942 1 . 9085 1 . 85441  
1 . 85696 1 . 81298 1 . 98998 1 . 37121 0 . 303805 1 . 80162 1 . 94484 1 . 45825 ] ; 

IDSS [ 8 0 ]  

TAU [ 80 ]  

ClO [ 8 0 ]  

[ 44 . 046 44 . 8625 4 8 . 2952 3 9 . 5738 37 . 2699 36 . 206  43 . 9213 43 . 5043 
32 . 3414 37 . 5004 3 9 . 5005 42 . 4566 42 . 8292 45 . 2523 42 . 9082 43 . 4862 
42 . 6225 4 5 . 0563 40 . 6203 40 . 0449 44 . 5258 46 . 4652 47 . 7613 4 1 .  3232 
40 . 1933 4 1 .  7346 42 . 2244 43 . 2122 47 . 3998 48 . 6415 49 . 4291 48 . 6238 
46 . 3291 54 . 4703 3 8 . 7388 46 . 9418 41.  2691 44 . 3932 49 . 20 17 54 . 9949 
58 . 3515 4 9 . 2055 47 . 4 198 4 9 . 3502 51 . 2795 50 . 9717 48 . 6745 50 . 1952 
47 . 0994 50 . 0122 51 . 7302 49 . 0134 52 . 9089 55 . 0526 53 . 3896 53 . 2196 
52 . 7415 51 . 4503 50 . 0552 54 . 7584 5 1 . 5082 53 . 3831 58 . 6271 56 . 4666 
51 . 8816 54 . 6814 43 . 5047 47 . 4531 4 8 . 7861 54 . 7284 51 . 9124 50 . 5944 
51 . 5291 56 . 008  58 . 0683 42 . 1383 19 . 293 1 46 . 7418 56 . 2348 58 . 5505] ; 

[ 2 . 12742 2 . 18777 2 . 17859 2 . 12656 2 . 17465 2 . 1775 2 . 19197 2 . 21798 
2 . 3 3714 2 . 15528 2 . 18736 2 . 2225 2 . 22436 2 . 21208 2 . 22253 1 . 45189 
2 . 17705 2 . 18329 2 . 20 177 2 . 22969 2 . 3 1806 2 . 29611 2 . 27 188 1 . 75367 
2 . 20324 2 . 22871 2 . 26579 2 . 29229 2 . 19074 2 . 29612 2 . 20923 2 . 21387 
2 . 28671 2 . 35304 1 . 17145 0 . 0636748 2 . 20641 2 . 29232 2 . 34982 2 . 08324 
2 . 07417 2 . 11242 2 . 19065 2 . 13068 2 . 0772 2 . 08495 2 . 08396 2 . 1062 
2 . 25574 2 . 09906 2 . 11657 2 . 07227 2 . 12352 1 . 96091 2 . 19077 2 . 18401  
2 . 18293 2 . 1715 2 . 22586 2 . 00958 2 . 18663 0 . 132958 2 . 15652 2 . 18759 
2 . 20099 2 . 21515 2 . 17997 2 . 19088 2 . 19255 0 . 29736 2 . 15612 2 . 13826 
2 . 19294 2 . 24055 2 . 26081 1 . 75062 0 . 0063146 2 . 21265 0 . 00329595 1 . 52677 ] ; 

[ 0 . 362563 0 . 382896 0 . 365961 0 . 364807 0 . 365247 0 . 364622 0 . 378009 0 . 374774 
0 . 337379 0 , 362562 0 . 364358 0 . 36599 0 . 374062 0 , 380752 0 . 383404 0 . 326109 
0 . 371675 0 . 374101 0 . 369312 0 . 371127 0 . 377512 0 . 381166 0 . 397379 0 . 230942 
0 , 368924 0 . 364903 0 . 368021 0 . 375926 0 , 367993 0 . 397168 0 . 381855 0 . 383397 
0 . 394855 0 . 411779 0 . 324919 0 . 367993 0 . 381204 0 . 391402 0 . 401683 0 . 359261 
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0 . 365136 0 . 344007 0 . 366882 0 . 354401 0 . 360487 0 . 353281 0 . 353136 0 . 356968 
0 . 363364 0 . 361773 0 . 355389 0 . 364088 0 . 362828 0 . 337045 0 . 358678 0 . 360806 
0 . 360243 0 . 369753 0 . 362128 0 . 373589 0 . 366805 0 . 293263 0 . 373038 0 . 363664 
0 . 361583 0 . 365701  0 . 355855 0 . 367136 0 . 367538 0 . 332379 0 . 364487 0 . 363581 
0 . 365443 0 . 377038 0 . 380442 0 . 315894 0 . 263792 0 . 365288 0 . 242706 0 . 406539 ] ; 

K1 [ 80 ]  [ 1 . 28545 1 . 33028 1 . 20188 1 . 38141 1 . 41652 1 . 41198 1 . 2994 1 1 . 33642 
1 . 44405 1 . 37958 1 . 30465 1 . 22191 1 . 31711  1 . 31551 1 . 36507 0 . 924604 
1 . 3 1541 1 . 29288 1 . 35519 1 . 34767 1 . 26382 1 . 24079 1 . 36574 1 . 51348 
1 . 34 128 1 . 26382 1 . 25654 1 . 24532 1 . 22441 1 . 32982 1 . 27337 1 . 27061 
1 . 37133 1 . 37705 0 . 991581 2 . 10468 1 . 39566 1 . 38151 1 . 3701  1 . 06317 
1 . 06969 1 . 08956 1 . 22502 1 . 10365 1 . 15051 1 . 05698 1 . 17259 1 . 20432 
1 . 06294 1 . 13359 1 . 08532 1 . 16405 1 . 08851 1 . 0 1455 1 . 07219 1 . 06215 
1 . 10886 1 . 20701  1 . 14688 1 . 1827 1 . 13237 0 . 645973 1 . 16308 1 . 10293 
1 . 15461 1 . 09642 1 . 30415 1 . 22499 1 . 2621 1 . 52151 1 . 22725 1 . 24006 
1 . 21956 1 . 19866 1 . 1638 0 . 958443 0 . 713 158 1 . 28814 0 . 99874 1 . 7 1735] ; 

starting points and threshold values 
parameter LG GDS IDSS TAU ClO Kl 
x_mean 0 . 03 1 . 8  50 2 . 25 0 . 35 1 . 1  
thres 0 . 0 15 0 . 2  15 0 . 25 0 . 03 0 . 2  
x_variance 2 . 25e-4 0 . 04 225 0 . 0625 9e-4 0 . 04 
the starting point for x_variance is  delta * delta 
the threshold value for optimizing x_variance is also delta 

#define X Kl specify the parameter to be used 

* delta . 

x_mean 1 . 23055 ; set to be optimizable if estimate the mean 
K :  1 ;  

x_dev = X [k ]  - x mean · - I 

x_dev2 = x_dev * x_dev; 

x_variance = ? 0 . 0 175463 ? ;  set to optimizable i f  estimate the variance 
should get mean beforehand ; idle when estimate mean 

x_std_dev = 100 * sqrt (x_variance )  / x_mean; 
end 

sweep 
produce the run chart of these parameters 

! express standard deviation in pctg 

K: from 1 to 80 step=l LG [k]  GDS [k]  IDSS [k]  TAU [k]  ClO [k ] Kl [k]  
{Xsweep Title="Run Chart of Statistical Model Parameter" 
X_title="Index" Xmin=O Xmax=80 NXticks=4 
Ymin=O Ymax=2 . 5  NYticks=5 
Y=TAU [K] . dot Y_title="TAU (ps ) " } ;  

end 

spec 
! these  two specifications are for estimating the mean and standard deviation , respectively 

one should be commented out if the other is in use 

for estimating the mean 

K: from 1 to 80 step=l x_mean = X [K] ; 

for estimating the standard deviation 

K :  from 1 to 80 step=l x_variance = x_dev2 ; 
end 

report 
Kl 

end 
? ? ? ? ? ?  $x_mean$ ? ? ? ? ?  $x_std_dev$% 
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C CIRCUIT FILE FOR RESISTIVE MESH NETWORK 

meshresl . ckt 
the resistive mesh example for fault locations 
for all the optimization processes the accuracy is set to le-06 
experiment carried out on apollo 

Control 
no default bounds ; 
tw�_sided_perturbation ; 

end 

Model 
conductances to be found 

g [ l : 20 ] =  [ ? 1?  ? l? ? 1? ? 1? ? 1? ? 1? ? 1 ?  ? 1? ? 1 ?  ? 1? 
? 1? ? l? ? 1? ? 1? ? 1 ?  ? 1? ? 1 ?  ? 1? ? 1 ?  ? 1? ] ; 

*************** CASE V **************** 
starting point : 
g [ l : 20 ] =  [ ? 1 . 5? ? 1 . 5? ? 0 . 5? ?0 . 5? ? 1 . 5? 

? 1 . 5? ? 0 . 5? ? 1 . 5? ?0 . 5? ? 0 . 5? 
? 1 . 5? ? 0 . 5? ? 0 . 5? ? 1 . 5? ?0 . 5? 
? 1 . 5? ? 0 . 5? ? 1 ?  ? 0 . 5? ? 0 . 5? ] ; 

11 solution with CPU time 18 seconds 
g [ l : 20 ] =  [ ? l?  ? 0 . 512245? ? 1? ? l? ?0 . 977388? 

? 1? ? l? ? 1? ? 1 . 02849? ? 1 ?  
? 1? ? 1 . 03451?  ? 1? ? 1? ? 1? 
? 0 . 975798? ? 1? ? 0 . 478366? ? 1? ? 0 . 963325? ] ;  

Huber solution with CPU time 1 minute 50 seconds 
the following solution is achieved by commenting out 
the no_default_bounds in the control block . 
If the line is not commented out , the Huber optimization 
will terminate ,  showing an error msg : 1SM :  negative or zero parameter 
values encountered . 
g [ l : 20 ] =  [ ? 0 . 998943?  ? 0 . 527 167? ? 0 . 97534 1? ? 0 . 988195? ? 0 . 968394? 

? 0 . 999467 ? ? 0 . 99808? ? 0 . 995907? ? 1 . 03748? ? 1 . 0039? 
? 0 . 996223?  ? 1 . 0 1312? ? 0 . 997402? ?0 . 995045? ? 0 . 9995? 
? 0 . 973123?  ? 0 . 99384? ? 0 . 527273? ? 0 . 961542? ? 0 . 952621? ] ;  

*************** CASE IV **************** 
starting point 
g [ l : 20 ] =  [ ? 1 . 5? ? 1 . 1? ? 0 . 5? ? 0 . 9? ? 0 . 75? 

? 1 . 3? ? 1 . 26?  ?0 . 7 ? ? 0 . 6? ? 1 . 5? 
? 1 ?  ? 1 . 2? ? 0 . 6? ? 1 . 1? ? 1 . 3? 
? 1? ? 1 . 1? ? 1 ?  ? 0 . 8? ?0 . 8? ] ; 

11 "tentative" solution with CPU time 1 minute 32 seconds 
g [ l : 20 ] =  [ ? 1 . 08702? ? 0 . 656285? ? 0 . 672593 ? ? 1 ?  ? 1? 

? 1 . 0009?  ? 1 ?  ? 1? ? 1 . 03499? ? 1 . 1609? 
? 1? ? 0 . 950037? ? 0 . 899102? ? l? ? 1? 
? 0 . 908244?  ? 1? ? 0 . 790898? ? 0 . 802527? ? 0 . 878271? ] ;  

After restarting , several times , the 11 optimization from 
the above solution ,  the following solution was obtained . And the 
optimization can not go even further . It seems that the previous solution 
is a local 11 minimum, but easy to get out of it , while the following 
one is a "deep" one which is not easy to get out of . 
g [ l : 20 ] =  [ ? 1 . 05979? ? 0 . 603228? ? 0 . 782906? ? 1? ? 1 ?  

? 1? ? 1? ? l? ? 1 . 0428? ? 1 . 05059? 
? 1? ? 0 . 988123? ? 1? ?1? ? 1 ?  
? 0 . 921347?  ? 1 ?  ? 0 . 680585? ? 0 . 874652? ? 0 . 898886? ] ;  

109 
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Huber solution with CPU time 1 minute 22 seconds 
g [ l : 20 ] =  [ ? 0 , 998922? ? 0 . 527168? ? 0 . 97539? ? 0 . 988231? 0 , 968432? 

? 0 . 999456? ? 0 . 998075? ? 0 . 995891? ? l . 03754 ? 1 . 00396? 
? 0 . 996294? ? 1 . 0 1323? ? 0 . 997395? ? 0 . 995083? 0 . 999489? 
? 0 . 973309?  ? 0 . 993925? ? 0 . 526757? ? 0 . 961853? ? 0 , 952817? ] ;  

*************** CASE III *************** 
starting from nominal values 
g [ l : 20 ] =  [ ? 1 ?  ? l? ? 1? ? 1 ?  ? l? 

? 1? ? 1? ? 1 ?  ? 1? ? l? 
? 1? ? l ?  ? 1? ? 1? ? 1? 
? l? ? 1? ? 1? ? 1? ? 1? ] ; 

Ll solution with CPU time 32 seconds for optimization 
g [ l : 20 ] =  [ ? 1? ? 0 . 511079? ? 1? ? 1? ? 0 . 972984 ? 

? 1? ? 1? ? 1? ? 1 . 02408? ? 1? 
? 1? ? l . 02726? ? 1 ?  ? 1 ?  ? 1 ?  
? 0 . 966401?  ? l? ? 0 . 499147?  ? 0 . 985868? ? 0 . 956008? ] ;  

Huber solution with CPU time 55 seconds 
g [ l : 20 ] =  [ ? 0 . 998928? ? 0 . 52717? ? 0 . 975381? ? 0 . 98824 1?  ? 0 . 968438?  

? 0 . 999438?  ? 0 . 998062? ? 0 . 995893 ? ? 1 . 03754? ? 1 . 00397? 
? 0 . 996285? ? 1 . 01324 ? ? 0 . 997392? ? 0 . 995049?  ? 0 . 999483?  
? 0 . 973316?  ? 0 . 993942? ? 0 . 52674?  ? 0 . 961859? ? 0 . 95283 ? ] ;  

************** CASE II **************** 
starting point : 
g [ l : 20 ] =  [ ? 1 . 1? ? 0 . 91?  ? 1 . 3 ? ? 1 . 02?  ?0 . 8? 

? o . 92? ?L 4 ?  ? o . 6? ? 1 .  2? ? 1?  
? 0 . 8? ? 1? ? 0 . 75?  ? 1? ?l?  
?1?  ? 0 . 85 ?  ? l ?  ? 0 . 91?  ? 1? ] ; 

Ll solution with CPU time 49 seconds for optimization 
g [ l : 20 ] =  [ ? 1 ?  ? 0 . 512247?  ? 1? ? 1? ? 0 . 977387? 

? 1? ? 1? ?1? ? 1 . 0285? ? 1? 
? 1? ? l . 03451? ? 1? ? 1? ? 1 ?  
? 0 . 975801?  ? 1? ? 0 . 478361? ? 1? ? 0 . 963327? ] ;  

Huber solution with CPU time 1 minute 8 second 
g [ l : 20 ] =  [ ? 0 . 998925? ? 0 . 527154? ? 0 . 975395? ? 0 . 988207? ? 0 . 968415? 

? 0 . 999459? ? 0 . 99807?  ? 0 . 995913?  ? 1 . 0375? ? 1 . 00395? 
? 0 . 996267?  ? 1 . 0 1319? ? 0 . 997376? ? 0 . 995054? ? 0 . 99949? 
? 0 . 973237?  ? 0 . 993884 ? ? 0 . 526955? ? 0 . 961733?  ? 0 . 952743? ] ;  

************** CASE I ****************** 
starting point 
g [ l : 20 ] =  [ ? 1 ?  ? 1? ? 1 ?  ? 1 . 2? ? 1? 

? 1? ? 1? ? l? ? 1? ? 1? 
? l? ? 1? ? 1? ? 0 . 95? 
? 1? ? 1? ? l? ?1? ?1? ? 1? ] ; 

Ll solution with CPU time 39 seconds for optimization 
g [ l : 20 ] =  [ ? 1 . 0238? ? 0 . 524592? ? 0 . 940039? ? 1? ? 0 . 976645? 

? 1? ?1? ? 1? ? 1 . 00306? ? 1? 
? l? ? 1 ?  ? 1? ? 1? ? 1 ?  
? 0 . 904762? ? 1? ?0 . 63465? ?0 . 907852? ? 0 . 903645? ] ; 

Huber solution with CPU time 48 seconds 
g [ l : 20 ] =  [ ? 0 . 998925? ? 0 . 527 171? ? 0 . 975376? ?0 . 988233? ? 0 . 968421?  

? 0 . 9 99459? ? 0 . 998095? ? 0 . 995911?  ? 1 . 03753? ? 1 . 00395? 
? 0 . 996291?  ? l . 0 1321? ? 0 . 997389? ? 0 . 995045? ? 0 . 999493?  
? 0 . 973285? ? 0 . 993912? ? 0 . 526833 ?  ? 0 . 961805? ? 0 . 95279? ] ;  

define the circuit 

res 1 2 r = ( 1/g [ l ] ) ;  
res 1 3 r = ( 1/g [ 2 ] ) ;  
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res 1 4 r = ( 1/g [ 3 ] ) ;  
res 2 5 r = ( 1/ g [ 4 ] ) ;  
res 2 6 r = ( 1/g [ 5 ] ) ;  
res 3 4 r = ( 1/ g [ 6 ] ) ;  
res 4 5 r = ( 1/g [ 7 ] ) ;  
res 5 6 r ( 1/g [ 8 ] ) ;  
res 3 7 r ( 1/g [ 9 ] ) ;  
res 4 8 r = ( 1/g [ lO ] ) ;  
res 5 9 r ( 1/g [ ll ] ) ;  
res 6 10 r = ( 1/g [ 12 ] ) ;  
res 7 8 r = ( 1/g [ 13 ] ) ;  
res 8 9 r = ( 1/g [ 14 ] ) ;  
res 9 10 r = ( 1/g [ 15 ] ) ;  
res 7 11 r = ( 1/g [ 16 ] ) ;  
res 8 11 r = ( 1/g [ 17 ] ) ;  
res 9 0 r = ( 1/g [ 18 ] ) ;  
res 10 0 r = ( 1/g [ 19 l) ; 
res 11 0 r = ( 1/g [ 20 ] ) ;  

current source is  applied to the circuit 

!sourc e  1 0 IDC = lA ; 

voltages of accessible nodes 
VLABEL 1 0 NAME=Vl ; 
VLABEL 2 0 NAME=V2 ; 
VLABEL 3 0 NAME=V3 ; 
VLABEL 6 0 NAME=V6 ; 
VLABEL 7 0 NAME=V7 ; 
VLABEL 10 0 NAME=VlO ; 
VLABEL 11 0 NAME=Vll ;  

CIRCUIT ;  

V [ 7 ]  = [Vl V2 V3 V6 V7 VlO Vll] ; 

measured data obtain by simulating the circuit with actual parameter values 

V0 [ 7 ]  = [ 1 . 25297 0 . 874709 0 . 832924 0 . 652006 0 . 610618 0 . 381562 0 . 401964 ] ; 
Vdi f [ 7 ]  = V - VO ; 

dg [ 2 0 ]  = ( g  - 1 )  * 100 ; 
end 

Spec 
DC : g=l Vdif=O w=lOO O ;  

end 

calculate the percentage deviation parameters 

w is the penalty multiplier 

Report 
$dg$ 

end 
generate the list of percentage deviation 

1 1 1  
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D CIRCUIT FILE FOR THE MULTIPLEXER PROBLEM 

D.1 Starting Point 

Example mux05_1 . ckt 
5-channel multiplexer optimization using Datapipes 

#define YES 
//define NO 

1 
0 

#define !TYPE 3 
#define N_CHANNELS 5 

uniform channel data, couplings included in input 
number of channels 

#define FILTER_ORDER 6 
#define N_COUPLINGS 12 

order of channel filters 
number of couplings in each multi-cavity filter 

#define CENTER_FREQl 12 . 18GHz center frequency of the first channel 
spacing between channel center frequencies 
channel usable band width 

#define CHANNEL_SPACING 40MHZ 
#define BAND_WIDTH 39MHZ 
#define Q_FACTOR 
#define DIAMETER 
//define WIDTH 
#define G_TERMINATION 

12000  
1 .  07  
0 . 75 
1 

unloaded Q factor of the channel filters 
diameters of channel filters in inches 
waveguide width in inches 
terminating conductance of each channel 

#define NONIDEAL_JUNCTION YES 
#define LOSSY_FILTER YES 
#define DISPERSIVE_FILTER YES 

1/define DIAGONAL 
1/define SCREW 
/!define IRIS 

0 
1 

- 1  

! coupling types 

#define N CHANNEL_DATA ( 3  + N_COUPLINGS ) 

Model 
define coupling positions and types 

Coupling_Position [ l : ( 3  * N_COUPLINGS ) ]  
[ 1 ,  1 ,  DIAGONAL , 2 ,  2 ,  DIAGONAL , 

4 ,  4 ,  DIAGONAL , 5 ,  5 ,  DIAGONAL , 
1 ,  2 ,  SCREW, 2 ,  3 ,  IRIS , 
3 ,  6 ,  IRIS , 4 ,  5 ,  IRIS , 

3 ,  
6 ,  
3 ,  
5 ,  

spacing & transformer ratios 

3 ,  DIAGONAL , 
6 ,  DIAGONAL , 
4 ,  SCREW, 
6 ,  SCREW ] ; 

channel data includes manifold spacing & transformer ratios 
Channell [ l : N_CHANNEL_DATA] 

[ ? 0 . 7? ? 1? 1 
0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Channel2 [ 1 : N_CHANNEL_DATA] 
[ ? 1 . 2? ? 1 ?  1 

0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Channel3 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 65?  ?1?  1 

0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  
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Channel4 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 63 ?  ? 1? 1 
0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Channel5 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 8? ? 1? 1 

0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Datapipe : SIM FILE="simux" the path for "simux" must be correct 
N INPUT= ( 15 + 3 * N_COUPLINGS + N_CHANNELS * N_CHANNEL_DATA) 
INPUT = ( !TYPE , N_CHANNELS , FILTER_ORDER, FREQ, CENTER_FREQl ,  

CHANNEL_SPACING, Q_FACTOR, DIAMETER, BAND_WIDTH, G_TERMINATION , 
WIDTH , NONIDEAL_JUNCTION, LOSSY_FILTER, DISPERSIVE_FILTER, 
N_COUPLINGS , Coupling_Position ,  
Channell , Channel2 , Channel3 , Channel4 , Channel5 ) 

N_OUTPUT= (N_CHANNELS + 1 )  
OUTPUT = (RET_LOSS ,  INS_LOSS [ l : N_CHANNELS ] ) ;  

make the responses ( losses ) upside-down 

RETURN_LOSS : -RET_LOSS ;  
INSERTION_LOSS [ l : N_CHANNELSJ : -INS_LOSS ;  

end 

Sweep 
FREQ : from (CENTER_FREQl - N_CHANNELS * CHANNEL_SPACING) 

to (CENTER_FREQl + CHANNEL_SPACING) step=lMHZ 
RETURN_LOSS INSERTION_LOSS 
{Xsweep Title="Multiplexer Responses " 
Y_Title="Common Port Return Loss and Channel Insertion Loss"  
Y=return_loss . white & insertion_loss [ l ] . red & insertion_loss [2 ] . red & 

insertion_loss [ 3 ] . red & insertion_loss [ 4 ] . red & insertion_loss [ 5 ] . red 
Ymin=-40 NYTicks=4 Comments="Starting Point" } ;  

end 

Spec 
FREQ : from (CENTER_FREQl - (N_CHANNELS - 1/2 ) * CHANNEL_SPACING + 3MHz ) 

to (CENTER_FREQl + CHANNEL_SPACING / 2 - 3MHz ) step=2MHZ 
RETURN_LOSS < -20 ; 

end 

D.2 Partial Minimax Solution 

Example mux05_2 . ckt 
5-channel multiplexer optimization using Datapipes 
partial minimax solution 

#define YES 1 
#define NO 0 

#define !TYPE 3 
#define N_CHANNELS 5 

uniform channel data,  couplings included in input 
number of channels 

#define FILTER_ORDER 6 
#define N_COUPLINGS 12 

order of channel filters 
number of couplings in each multi-cavity filter 

#define CENTER_FREQl 12 . 18GHz 
#define CHANNEL_SPACING 40MHZ 
#define BAND_WIDTH 39MHZ 
#define Q_FACTOR 12000 

center frequency of the first channel 
spacing between channel center frequencies 
channel usable band width 
unloaded Q factor of the channel filters 

1 1 3 
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#define DIAMETER 
#define WIDTH 

1 . 07 
0 , 75 
1 

diameters of channel filters in inches 
waveguide width in inches 

#define G_TERMINATION terminating conductance of each channel 

#define NONIDEAL_JUNCTION YES 
#define LOSSY_FILTER YES 
#define DISPERSIVE_FILTER YES 

#define DIAGONAL 0 ! coupling types 
#define SCREW 1 
#define IRIS - 1  

#define N_CHANNEL_DATA ( 3  + N_COUPLINGS ) 
Control 

no_default_bounds ; 
two_sided_perturbation ; 
Optimizer=Minimax ; 

end 

Model 
! define coupling positions and types 
Coupling_Position [ l : ( 3  * N _COUPLINGS ) ] 

1 ,  1 ,  DIAGONAL , 2 ,  2 ,  DIAGONAL , 
4 ,  4 ,  DIAGONAL , 5 ,  5 ,  DIAGONAL , 
1 ,  2 ,  SCREW, 2 ,  3 ,  IRIS , 
3 ,  6 ,  IRIS , 4 ,  5 ,  IRIS , 

3 ,  
6 ,  
3 ,  
5 ,  

spacing & transformer ratios 

3 ,  DIAGONAL , 
6 ,  DIAGONAL , 
4 ,  SCREW, 
6 ,  SCREW ] ; 

channel data includes manifold spacing & transformer ratios 
Channell [ l : N_CHANNEL_DATA] = 

[ ? 0 . 625982? ? 1 . 00851? 1 
0 0 0 
0 0 0 
0 . 7  0 . 5  0 , 4  
-0 . 4  0 . 8  0 , 8  ] ;  

Channel2 [ 1 : N_CHANNEL_DATA] 
[ ? l . 2038? ? 0 . 970376? 1 

0 0 0 
0 0 0 
0 . 7  
-0 . 4  

0 , 5  
0 . 8  

0 . 4  
0 . 8  ] ; 

Channel3 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 567 152? ? 0 . 943777? 1 

0 0 0 
0 0 0 
0 . 7  0 , 5  0 . 4  
-0 . 4  0 . 8  0 , 8  ] ;  

Channel4 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 508982? ? 0 . 855796? 1 

0 0 0 
0 
0 . 7  
-0 . 4  

0 0 
0 . 5  

0 . 8  
0 . 4  

0 . 8  l ;  

Channel5 [ 1 : N_CHANNEL_DATA] 
[ ? 1 . 04428? ? 0 . 746218? 1 

0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Datapipe : SIM FILE="simux" 
N_INPUT= ( 15 + 3 * N_COUPLINGS + N_CHANNELS * N_CHANNEL_DATA) 
INPUT = ( ITYPE , N_CHANNELS , FILTER_ORDER, FREQ, CENTER_FREQl ,  

CHANNEL_SPACING, Q_FACTOR, DIAMETER, BAND_WIDTH , G_TERMINATION , 
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WIDTH , NONIDEAL_JUNCTION , LOSSY_FILTER, DISPERSIVE_FILTER, 
N_COUPLINGS , Coupling_Position ,  
Channell , Channel2 , Channel3 , Channel4 , Channel5 ) 

N_OUTPUT= (N_CHANNELS + 1 )  OUTPUT = (RET_LOSS ,  INS_LOSS [ l : N_CHANNELS ] ) ;  

make the responses ( losses ) upside-down 
RETURN_LOSS :  -RET_LOSS ; 
INSERTION_LOSS [ l : N_CHANNELS ] :  -INS_LOSS ;  

end 

Sweep 
FREQ : from (CENTER_FREQl - N_CHANNELS * CHANNEL_SPACING) 

to (CENTER_FREQl + CHANNEL_SPACING) step=lMHZ 
RETURN_LOSS INSERTION_LOSS 
{Xsweep Title="Multiplexer Responses" 
Y_Titl.-e="Common Port Return Loss and Channel I-nse-rtion Loss"  
Y=return_loss . white & insertion_loss [ l ] . red & insertion_loss [ 2 ] . red & 

insertion_loss [ 3 ] . red & insertion_loss [ 4 ] . red & insertion_loss [ 5 ] . red 
Ymin=-40 NYTicks=4 Comments="Minimax Optimization" & "of spacings and input" & 
" transformer ratios" } ;  

end 

Spec 
FREQ : from (CENTER_FREQl - (N_CHANNELS - 1/2 )  * CHANNEL_SPACING + 3MHz )  

t o  (CENTER_FREQl + CHANNEL_SPACING / 2 - 3MHz ) step=2MHZ 
RETURN_LOSS < -20 ; 

end 

D.3 Partial One-Sided Huber Solution 

Example mux05_3 . ckt 
5-channel multiplexer optimization using Datapipes 
Huber threshold=! 28 mins . 

1/define YES 
1/define NO 

1 

0 

#define !TYPE 3 
#define N_CHANNELS 5 

uniform channel data,  couplings included in input 
number of channels 

#define FILTER_ORDER 6 
#define N_COUPLINGS 12 

order of channel filters 
number of couplings in each multi-cavity filter 

1/define CENTER_FREQl 12 . 18GHZ 
1/define CHANNEL_SPACING 40MHZ 
#define BAND_WIDTH 39MHZ 
1/define Q_FACTOR 12000 
#define DIAMETER 1 . 07 
#define WIDTH 0 . 75 
#define G_TERMINATION 1 

#define NONIDEAL_JUNCTION YES 
#define LOSSY_FILTER YES 
#define DISPERSIVE_FILTER YES 

center frequency of the first channel 
spacing between channel center frequencies 
channel usable band width 
unloaded Q factor of the channel filters 
diameters of channel filters in inches 
waveguide width in inches 
terminating conductance of each channel 

1/define DIAGONAL 
#define SCREW 
#define IRIS 

0 

1 

- 1  

! coupling types 

#define N_CHANNEL_DATA ( 3  + N_COUPLINGS ) 
Control 

no_default_bounds ; 
two_sided_perturbation ;  
optimizer=Huber ; 

end 

spacing & transformer ratios 
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Model 

! define coupling positions and types 
Coupling_Position [ l : ( 3  * N _COUPLINGS ) ] 

[ 1 ,  1 ,  DIAGONAL , 2 ,  2 ,  DIAGONAL , 3 ,  3 ,  DIAGONAL , 
4 ,  4 ,  DIAGONAL , 5 ,  5 ,  DIAGONAL , 6 ,  6 ,  DIAGONAL , 
1 ,  2 ,  SCREW, 2 ,  3 ,  IRIS ,  3 ,  4 ' SCREW, 
3 ,  6 ,  IRIS , 4 ,  5 ,  IRIS , 5 ,  6 ,  SCREW ] ; 

channel data includes manifold spacing & transformer ratios 
Channell [ l : N_CHANNEL_DATA] = 

[ ? 0 . 674786? ? 1 . 08476? 1 
0 0 0 
0 0 0 
0 . 7  0 . 5  
-0 . 4  0 . 8  

0 . 4  
0 . 8  ] ;  

Channel2 [ 1 : N_CHANNEL_DATA] 
[ ? 1 . 21093? ? 0 . 98799? 1 

0 0 0 
0 
0 . 7  
-0 . 4  

0 0 

0 . 5  
0 . 8  

0 . 4  
0 . 8  ] ; 

Channel3 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 602474?  ? 0 . 914973? 1 

0 0 0 
0 0 

0 . 7  
-0 . 4  

0 
0 . 5  

0 . 8  
0 . 4  

0 .  8 l ;  

Channel4 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 615386? ? 0 . 920306? 1 

0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Channel5 [ 1 : N_CHANNEL_DATA] 
[ ? 0 . 594315? ? 0 . 846835? 1 

0 0 0 
0 0 0 
0 . 7  0 . 5  0 . 4  
-0 . 4  0 . 8  0 . 8  ] ;  

Datapipe : SIM FILE="simux" 
N_INPUT=( 15 + 3 * N_COUPLINGS + N_CHANNELS * N_CHANNEL_DATA) 
INPUT = ( !TYPE , N_CHANNELS , FILTER_ORDER, FREQ , CENTER_FREQl , 

CHANNEL_SPACING, Q_FACTOR, DIAMETER, BAND_WIDTH , G_TERMINATION , 
WIDTH , NONIDEAL_JUNCTION , LOSSY_FILTER, DISPERSIVE_FILTER, 
N_COUPLINGS , Coupling_Position ,  
Channell , Channel2 , Channel3 , Channel4 , Channel5 ) 

N_OUTPUT= (N_CHANNELS + 1 )  
OUTPUT = (RET_LOSS ,  INS_LOSS [ l : N_CHANNELS ] ) ;  

make the responses ( losses ) upside-down 
RETURN_LOSS : -RET_LOSS ;  
INSERTION_LOSS [ l : N_CHANNELS] :  -INS_LOSS ; 

end 

Sweep 
FREQ : from (CENTER_FREQl - N_CHANNELS * CHANNEL_SPACING) 

to (CENTER_FREQl + CHANNEL_SPACING) step=lMHZ 
RETURN_LOSS INSERTION_LOSS 
{Xsweep Title="Multiplexer Responses" 
Y_Title="Common Port Return Loss and Channel Insertion Loss"  
Y=return_loss . white & insertion_loss [ l ] . red & insertion_loss [2 ] . red & 

insertion_loss [ 3 ] . red & insertion_loss [ 4 ] . red & insertion_loss [ 5 ] . red 
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Ymin=-40 NYTicks=4 Comments="Huber+ Optimization" & "of spacings and input" & 
"transformer ratios" } ;  

end 

Spec 
FREQ : from (CENTER_FREQl - (N_CHANNELS - 1/2 )  * CHANNEL_SPACING + 3MHz ) 

to (CENTER_FREQl + CHANNEL_SPACING / 2 - 3MHz ) step=2MHZ 
RETURN_LOSS < -20 ; 

end 

D.4 Partial One-Sided Huber Solution with 45 Variables 

Example mux05_4 . ckt 
5-channel multiplexer optimization using Datapipes 
Huber threshold=l optimization following mux05_3 . ckt with more variables 

#define YES 
1/define NO 

1 

0 

#define !TYPE 3 
#define N_CHANNELS 5 

uniform channel data,  couplings included in input 
number of channels 

#define FILTER_ORDER 6 
#define N_COUPLINGS 12 

order of channel filters 
number of couplings in each multi-cavity filter 

#define CENTER_FREQl 12 . 18GHz 
#define CHANNEL_SPACING 40MHZ 
#define BAND_WIDTH 39MHZ 

center frequency of the first channel 
spacing between channel center frequencies 
channel usable band width 

#define Q_FACTOR 12000 
#define DIAMETER 1 . 07 
#define WIDTH 0 . 75 

unloaded Q factor of the channel filters 
diameters of channel filters in inches 
waveguide width in inches 

#define G_TERMINATION 1 terminating conductance of each channel 

#define NONIDEAL_JUNCTION YES 
#define LOSSY_FILTER YES 
1/define DISPERSIVE_FILTER YES 

1/define DIAGONAL 
1/define SCREW 
1/define IRIS 

0 

1 

- 1  

! coupling types 

#define N CHANNEL_DATA ( 3  + N_COUPLINGS ) 
Control 

spacing & transformer ratios 

no_default_bounds ; 
two_sided_perturbation ;  
optimizer=Huber ; 

end 

Model 
! define coupling positions and types 
Coupling_Position [ l : ( 3  * N_COUPLINGS ) ]  

[ 1 ,  1 ,  DIAGONAL , 2 ,  2 ,  DIAGONAL , 
4 ,  4 ,  DIAGONAL , 5 ,  5 ,  DIAGONAL , 
1 ,  2 ,  SCREW, 2 ,  3 ,  IRIS , 
3 ,  6 ,  IRIS , 4 ,  5 ,  IRIS , 

3 ,  3 ,  DIAGONAL , 
6 ,  6 ,  DIAGONAL , 
3 ,  4 ,  SCREW, 
5 ,  6 ,  SCREW ] ; 

channel data includes manifold spacing & transformer ratios 
Channell [ l : N_CHANNEL_DATA] = 

[ ? 0 . 626466? ? 1 . 293 11? ? l . 09512? 
0 0 0 
0 0 0 
? 0 . 8668? ? 0 . 575554? ? 0 . 444766? 
?-0 . 406919? ?0 . 864905? ? 0 . 84915? ] ;  

Channel2 [ 1 : N_CHANNEL_DATA] 
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? 1 . 14717? 
0 0 0 
0 0 0 

? 0 . 765969? 
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? 1 . 120 1? 

? 0 . 560553? ? 0 . 516304?  ?0 . 407215? 
? - 0 . 420774?  ? 0 . 824661? ? 0 . 791898? ] ;  

Channel3 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 675946? ? 0 . 820185? 
0 0 0 
0 0 0 

? 1 . 08424? 

? 0 . 609648? ? 0 . 544548? ? 0 . 436598? 
?-0 . 400579? ? 0 . 839031?  ? 0 . 804051? ] ;  

Channel4 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 654115? ? 0 . 803595? 
0 0 0 
0 0 0 

? 1 . 12017? 

? 0 . 597031? ? 0 . 520451? ? 0 . 40886? 
? - 0 . 427871?  ? 0 . 847752? ? 0 . 829882? ] ;  

Channe15 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 635451? ? 0 . 787674?  
0 0 0 

0 0 0 

? 1 . 14712? 

? 0 . 640097? ? 0 . 557019? ? 0 . 4 19756? 
? - 0 . 458404?  ? 0 . 927792? ? 0 . 917915? ] ;  

Datapipe : SIM FILE="simux" 
N_INPUT= ( 15 + 3 * N_COUPLINGS + N_CHANNELS * N_CHANNEL_DATA) 
INPUT = ( !TYPE , N_CHANNELS , FILTER_ORDER, FREQ , CENTER_FREQl , 

CHANNEL_SPACING, Q_FACTOR, DIAMETER, BAND_WIDTH , G_TERMINATION , 
WIDTH, NONIDEAL_JUNCTION, LOSSY_FILTER, DISPERSIVE_FILTER, 
N_COUPLINGS , Coupling_Position , 
Channell � Channel2 , Channel3 , Channel4 , Channels ) 

N_OUTPUT= (N_CHANNELS + 1 )  
OUTPUT = (RET_LOSS , INS_LOSS [ l : N_CHANNELS ] ) ;  

make the responses ( losses ) upside-down 
RETURN_LOSS : -RET_LOSS ; 
INSERTION_LOSS [ l : N_CHANNELS] : -INS_LOSS ; 

K :  1 ;  

Center_freq = center_freql - ( K  - 1 )  * CHANNEL_SPACING; 
lower_freq = center_freq - 18MHZ; 
upper_freq = center_freq + 18MHZ ; 

end 

Sweep 
FREQ : from (CENTER_FREQl - N_CHANNELS * CHANNEL_SPACING) 

to (CENTER_FREQl + CHANNEL_SPACING) step=lMHZ 
RETURN_LOSS INSERTION_LOSS 
{Xsweep Title="Multiplexer Responses" 

end 

Spec 

Y_Title="Common Port Return Loss and Channel Insertion Loss" 
Y=return_loss . white & insertion_loss [ l ] . red & insertion_loss [2 ] . red & 

insertion_loss [ 3 ] . red & insertion_loss [ 4 ] . red & insertion_loss [ S ] . red 
Ymin=-40 NYTicks=4 Comments="Huber+ Optimization" & 
"with more variables" } ;  

FREQ : from (CENTER_FREQl - (N_CHANNELS - 1/2 ) * CHANNEL_SPACING + 3MHz )  
t o  (CENTER_FREQl + CHANNEL_SPACING / 2 - 3MHz ) step=2MHZ 

RETURN_LOSS < -20 ; 

K :  from 1 to N_CHANNELS step=l 
FREQ=lower_freq INSERTION_LOSS [K] > -2 ; 
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K :  from 1 to N_CHANNELS step=l 
FREQ=upper_freq INSERTION_LOSS [K] > -2 ; 

end 

D.5 Minimax Solution with Full Set of Variables 

Example mux05_5 . ckt 
5-channel multiplexer optimization using Datapipes 
Minimax optimization from the Huber solution with all variables 

1fadefine YES 
#define NO 

1 

0 

#define !TYPE 3 
#define N_CHANNELS 5 

uniform channel data , couplings included in input 
number of channels 

#define FILTER_ORDER 6 
#define N_COUPLINGS 12 

order of channel filters 
number of couplings in each multi-cavity filter 

#define CENTER_FREQl 
#define CHANNEL_SPACING 
#define BAND_WIDTH 
#define Q_FACTOR 
#define DIAMETER 
1fadefine WIDTH 

12 . 18GHz 
40MHZ 
39MHZ 
12000  
1 . 07 
0 . 75 

center frequency of the first channel 
spacing between channel center frequencies 
channel usable band width 
unloaded Q factor of the channel filters 
diameters of channel filters in inches 
waveguide width in inches 

#define G_TERMINATION 1 terminating conductance of each channel 

#define NONIDEAL_JUNCTION YES 
#define LOSSY_FILTER YES 
#define DISPERSIVE_FILTER YES 

1fadefine DIAGONAL 
1fadefine SCREW 
1fadefine IRIS 

0 

1 

-1  

! coupling types 

#define N_CHANNEL_DATA ( 3  + N_COUPLINGS ) 
Control 

spacing & transformer ratios 

no_default_bounds ; 
two_sided_perturbation ; 
optimizer=minimax ; 

end 

Model 
! define coupling positions and types 
Coupling_Position [ l : ( 3  * N_COUPLINGS ) ]  

[ 1 ,  1 ,  DIAGONAL , 2 ,  2 ,  DIAGONAL , 3 ,  3 ,  DIAGONAL , 
4 ,  4 ,  DIAGONAL , 5 ,  5 ,  DIAGONAL , 6 ,  6 ,  DIAGONAL , 
1 ,  2 ,  SCREW , 2 ,  3 ,  IRIS , 3 ,  4 ,  SCREW, 
3 ,  6 ,  IRIS , 4 ,  5 ,  IRIS , 5 ,  6 ,  SCREW ] ; 

channel data includes manifold spacing & transformer ratios 
Channell [ l : N_CHANNEL_DATA] = 

[ ? 0 . 683728? ? 1 . 42336? ? l . 15506? 
?-1 -0 . 0199673 l? ?-1 -0 . 140397 l?  
? - 1  0 . 0 156095 l? ?-1 0 . 05834 18 l? 

?-1 -0 . 0166459 l? 
?-1  0 . 00684918 l?  

? 0 . 897985? 
?-0 . 452261?  

? 0 . 576187? 
? 0 . 851923? 

Channel2 [ 1 : N_CHANNEL_DATA] = 

? 0 . 416189? 
? 0 . 851719? ] ;  

[ ? 1 . 17059? ? 0 . 860318? ? 1 . 14977?  
?-1  0 . 0277699 l? ?-1 -0 . 00124854 l?  
? - 1  -0 . 0077476 l?  ?-1  0 . 0249734 1?  
? 0 . 60363 1? ? 0 . 549561? ? 0 . 349295? 
?-0 . 582818? ? 0 . 964327?  ? 0 . 82081? ] ;  

? -1  0 . 00166732 l?  
?-1  0 . 0169127 l?  
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Channel3 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 644967? ? 0 . 896397? ? 1 . 15165? 
?-1 0 . 0694339 1?  ? - 1  -0 . 000463352 1?  ? - 1  0 . 00136821 1?  
?-1 0 . 00773093 1? ?-1 -0 . 0037287 1?  ? - 1  -0 . 0078298 1?  
? 0 . 611359? ? 0 . 549923? ? 0 . 344509? 
?-0 . 590034 ? ? 0 . 964327? ? 0 . 814993? ] ;  

Channel4 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 627786? ? 0 . 894384? ? 1 . 16053? 
?-1 0 . 0881768 1?  ?-1  0 . 0028601 1?  ? - 1  0 . 000219793 1?  
? - 1  0 . 00485265 1?  ?-1  -0 . 000234877 1?  ?-1  -0 . 000796921 1?  
? 0 . 617605? ? 0 . 548846? ? 0 . 367279? 
?-0 . 55435? ? 0 . 946189? ? 0 . 851538? ] ;  

Channel5 [ 1 : N_CHANNEL_DATA] = 

[ ? 0 . 61122Z? ?Q . 901974? ? 1 . 22487 ? 
? - 1  0 . 228978 1? ?-1  0 . 0614491 1? ? - 1  - 0 . 00136067 1? 
?-1 -0 . 0255624 l?  ?-1 -0 . 0431502 1? ?-1 -0 . 000375926 1?  
? 0 . 683225? ? 0 . 557 142? ? 0 . 381107? 
? -0 . 528463 ? ? 0 . 89546? ? 0 . 896695? ] ;  

Datapipe : SIM FILE="simux" 
N_INPUT= ( 15 + 3 * N_COUPLINGS + N_CHANNELS * N_CHANNEL_DATA) 
INPUT = ( !TYPE , N_CHANNELS , FILTER_ORDER, FREQ , CENTER_FREQl , 

CHANNEL_SPACING, Q_FACTOR, DIAMETER, BAND_WIDTH, G_TERMINATION , 
WIDTH , NONIDEAL_JUNCTION, LOSSY_FILTER, DISPERSIVE_FILTER, 
N_COUPLINGS , Coupling_Position ,  
Channell , Channel2 , Channel3 , Channel4 , Channel5 ) 

N_OUTPUT= (N_CHANNELS + 1 )  
OUTPUT = (RET_LOSS ,  INS_LOSS [ l : N_CHANNELS ] ) ;  

make the responses ( losses ) upside-down 
RETURN_LOSS :  -RET_LOSS ;  
INSERTION_LOSS [ l : N_CHANNELS] :  -INS_LOSS ;  

K :  1 ;  

end 

Center_freq = center_freql - CK - 1 )  * CHANNEL_SPACING; 
lower_freq = center_freq - 18MHZ ; 
upper_freq = center_freq + 18MHZ; 

Sweep 
FREQ : from (CENTER_FREQl - N_CHANNELS * CHANNEL_SPACING) 

to (CENTER_FREQl + CHANNEL_SPACING) step=lMHZ 
RETURN LOSS INSERTION LOSS 
{Xsweep Title="Multiplexer Responses " 

end 

Spec 

Y_Title="Common Port Return Loss and Channel Insertion Loss"  
Y=return_loss . white & insertion_loss [ l ] . red & insertion_loss [2 ] . red & 

insertion_loss [ 3 ] . red & insertion_loss [ 4 ] . red & insertion_loss [ 5 ] . red 
Ymin=-40 NYTicks=4 Comments="Minimax Optimization" & 

"from Huber solution" & 
"with all variables " } ;  

FREQ : from (CENTER_FREQl - (N_CHANNELS - 1/2)  * CHANNEL_SPACING + 3MHz ) 
to (CENTER_FREQl + CHANNEL_SPACING / 2 - 3MHz ) step=2MHZ 

RETURN_LOSS < -30 ;  

K :  from 1 to N_CHANNELS step=l 
FREQ=lower_freq INSERTION_LOSS [K] > -2 w=lO ; 

K :  from 1 to N_CHANNELS step=l 
FREQ=upper_freq INSERTION_LOSS [K] > -2 w=lO ; 

end 
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E CIRCUIT FILE FOR COMPARING DIFFERENT 

OPTIMIZERS 

Example add3_1 . ckt 
compare dedicated algorithm and generic optimizers 
using Huber norm to estimate the mean of tau 

Control 
two_sided_perturbation ; 
no_default_bounds ;  

end 

Expression 
! the measurement data 

TAU [ 80 ]  = [ 2 . 12742 2 . 18777 2 . 17859 2 . 12656 2 . 17465 2 . 1775 2 . 19197 2 . 21798 
2 . 33714 2 . 15528 2 . 18736 2 . 2225 2 . 22436 2 . 21208 2 . 22253 1 . 45189 
2 . 17705 2 . 18329 2 . 20177 2 . 22969 2 . 31806 2 . 29611 2 . 27 188 1 . 75367 
2 . 20324 2 . 2287 1 2 . 26579 2 . 29229 2 . 19074 2 . 29612 2 . 20923 2 . 21387 
2 . 2867 1 2 . 35304 1 . 17145 0 . 0636748 2 . 20641 2 . 29232 2 , 34982 2 . 08324 
2 . 07417 2 . 11242 2 . 19065 2 . 13068 2 . 0772 2 . 08495 2 . 08396 2 . 1062 
2 . 25574 2 . 09906 2 . 11657 2 . 07227 2 . 12352 1 . 96091 2 . 19077 2 . 18401  
2 . 18293 2 . 1715 2 . 22586 2 . 00958 2 . 18663 0 . 132958 2 . 15652 2 . 18759 
2 . 20099 2 . 21515 2 . 17997 2 . 19088 2 . 19255 0 . 29736 2 . 15612 2 . 13826 
2 , 19294 2 . 24055 2 . 26081 1 . 75062 0 . 0063146 2 . 21265 0 . 00329595 1 . 52677 ] ; 

threshold values :  0 . 25 

#define X TAU 

starting point 2 . 25 
method solution # of function evaluations 
Huber 2 . 15369 4 
Q-N 2 . 15368 5 
C-G 2 , 15368 11 
Simplex 2 . 1543 8  16 

starting point 2 . 0  
method solution # o f  function evaluations 
Huber 2 . 15367 4 
Q-N 2 . 15368 5 
C-G 2 . 15368 13 
Simplex 2 . 1525 16 

starting point 3 . 0  
method solution # of function evaluations 
Huber 2 . 15372 4 
Q-N 2 . 15368 7 
C-G 2 . 15368 14 
Simplex 2 . 15344 24 

starting point 1 . 5  
method solution # o f  function evaluations 
Huber 2 . 1536 1  4 
Q-N 2 , 15368 8 
C-G 2 . 15368 13 
Simplex 2 . 15344 26 

x_mean = ? 2 . 15344? ; 
K: 1 ;  

x_dev = X [k ]  - x mean · - ' 

construct explicitly the Huber obj ective function for generic optimizers 

1 2 1  
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error = x_mean - X [K] ; 
error_abs = abs ( error ) ;  

Appendix Circuit and Data Files, Programs 
Hobj = if ( error abs < 0 . 25 )  ( error_abs * error_abs / 2 )  

else ( if ( error > 0 . 25 )  ( 0 . 25 * ( error - 0 . 125 ) )  
else ( -0 . 25 * ( error + 0 . 125 ) ) ) ;  

end 

sweep 
K: from 1 to 80 step=l TAU [k] 

end 

{Xsweep Title="Run Chart of Statistical Model Parameter" 
X_title="Index" Xmin=O Xmax=80 NXticks=4 
Ymin=O Ymax=2 . 5  NYticks=5 
Y=TAU [K] . dot Y_title="TAU (ps ) " } ;  

spec 
specification for the dedicated Huber algorithm 

K :  from 1 to 80 step=l x_mean = X [K] ; 

specification for generic optimizer 

K: from 1 to 80 step=l Hobj ; 

end 
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F CIRCUIT FILE FORDISPLAYINGTHE PERCENTAGE OF 

"SMALL ERRORS" 

F.1 Parameter C 10 

F.1 . 1  The Circuit File 

file ClO . ckt 

expression 

i = 1 ;  index 
k = i / 500 ; rescale for correct display interval 

number of small errors for different threshold 
numbers obtained from the file "number_c . dat" which is 
an output file of the C program "number_c . c" 

clO_number [ l : 10 0 )  = [ 
17 30 37 43 46 51 55 59 62 62 
62 63 64 64 67 69 70  70  71 72 
74  74  74 75 76  76  76  76 76  76  
76  76  76  76  76  77  77 77  77 77 
77  77  77 77  77 77  77 77 77 78 
78  78  78  78  78  78  78  78  78 79 
79 79 79 79 79 80 80 80 80 80 
80 80 80 80 80 80 80 80 80 80 
80 80 80 80 80 80 80 80 80 80 
80 80 80 80 80 80 80 80 80 80 
] ;  

calculate the percentage 
c lO_percent [ lO O ]  = 100 * c lO_number / 80 ; 

end 

sweep 
i :  from 1 to 100 step 1 k clO_percent [ i ]  
{parametric Title = "percentage o f  assumed small errors for ClO" 

X = k Y = ClO_percent [ i ]  

end 

Ymin = 0 Ymax = 100 NYticks = 4 
Xmin = 0 Xmax = 0 . 2  NXticks = 4 
X_title = "k" Y_title = "percentage" } ;  

F.1 .2 C Program to Calculate the Number of Small Errors 

/* File : number_c . c  * / 

1/include " stdio .h" 
1/inc lude " string . h" 
1/include "math . h" 

main ( )  

int i ,  number ; 
float j ,  mean , up_boundary , lw_boundary , c10 [ 80 ] ; 
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char k_value [ 20 ] ; 
FILE *file_data = NULL ; 
FILE *file_mean = NULL ; 
FILE *file_out = NULL ; 

file data 
file_mean 

fopen ( " clO_data . dat" , "r" ) ;  
fopen( " clO_detail . dat" , "r" ) ;  

/* contains the extracted parameters */ 
/* contains the estimated means and */ 

file_out = fopen ( "number_clO . dat" , "w" ) ;  
/* standard deviations from 0SA90 /hope */ 
/* contains the number of small errors */ 

for ( i  = 1 ;  i < 8 1 ;  i++) 
fscanf( file_data ,  "%f" , &clO [ i- 1 ) ) ;  /* reads in the extracted parameters */ 

/* a reminder */ fprintf ( file_out , "ClO \n" ) ;  

for (j = 0 . 002 ; j < 0 . 2 ;  j = j + 0 , 002 ) { 

} 

number O ;  

for ( i  1 ;  i < 3 ;  i++ ) 
fscanf( file_mean ,  " %s " , k_value) ; 

fprintf( file_out , "%s  " ,  k_value ) ;  

for ( i  = 1 ;  i < 3 ;  i++ ) 
fscanf( file_mean , " %s " , k_value ) ;  

fscanf( file_mean , "%f" , &mean) ; 

fprintf( file_out , "mean_value %f 

for (i = 1; i < 3; i++) 
fscanf( file_mean , " %s " , k_value ) ;  

mean) ; 

/* calculate the boundary of the band */ 

up_boundary = mean + j ;  
lw_boundary = mean - j ;  

/* calculate the number of the small errors */ 

for ( i  = 1 ;  i < 8 1 ;  i++ ) 

/* to read correct text , skip 2 col ' s */ 

/* output the current threshold value */ 

/* to read correct text , skip 2 col ' s */ 

/* read the corresponding mean */ 

/* adjust the pointer to the beginning 
of the file " c lO_detail . dat" */ 

if(  ( clO [ i - 1 )  >= lw_boundary) && ( c lO [ i-1 )  <= up_boundary ) ) 
number++ ; 

fprintf( file_out , "number %d\n" , number ) ; 

F.1 .3 Eighty Extracted C10 Values (file name:clO_data.dat) 

0 , 362563 0 . 382896 0 . 365961 0 . 364807 0 . 365247 0 . 364622 0 . 378009 0 . 374774 
0 , 337379 0 . 362562 0 . 364358 0 . 36599 0 . 374062 0 . 380752 0 . 383404 0 . 326109 
0 . 37 1675 0 . 374101 0 . 369312 0 . 37 1127 0 . 377512 0 . 381166 0 , 397379 0 . 230942 
0 . 368924 0 . 364903 0 . 368021 0 . 375926 0 , 367993 0 . 397168 0 , 381855 0 . 383397 
0 . 394855 0 . 4 11779 0 . 324919 0 . 367993 0 , 381204 0 . 391402 0 . 401683 0 . 359261 
0 . 3 65136 0 . 344007 0 . 366882 0 . 354401 0 . 360487 0 . 353281 0 , 353136 0 . 356968 
0 . 363364 0 . 361773 0 . 355389 0 . 364088 0 . 362828 0 . 337045 0 . 358678 0 , 360806 
0 , 360243 0 . 369753 0 . 362128 0 . 373589 0 . 366805 0 . 293263 0 . 373038 0 . 363664 
0 . 361583 0 . 365701 0 . 355855 0 . 367136 0 , 367538 0 . 332379 0 , 364487 0 . 363581 
0 . 365443 0 . 377038 0 . 380442 0 . 3 15894 0 . 263792 0 . 365288 0 . 242706 0 . 406539 
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F.1 .4 Data File Containing C10 Statistics for Different Threshold Values 
(file name:clO_detail.dat) 

ClO k=0 , 002 (k*k=x . xxxe-4 )  ? ? ?  0 . 36567 ? ? ?  8 . 204 12% 
ClO k=0 , 004  (k*k=x . xxxe-4 ) ? ? ?  0 . 365836 ? ? ?  8 . 2004% 
ClO k=0 . 00 6  (k*k=x . xxxe-4 ) ? ? ?  0 . 366069 ? ? ?  8 . 19517% 
ClO k=0 . 008  (k*k=x . xxxe-4 )  ? ? ?  0 . 366314 ? ? ?  8 . 1897% 
ClO k=0 . 01 (k*k=x . xxxe-4 )  ? ? ?  0 . 366413 ? ? ?  8 . 18748% 
ClO k=0 . 012 (k*k=x . xxxe-4 )  ? ? ?  0 . 366487 ? ? ?  8 . 18584% 
ClO k=0 . 014 (k*k=x . xxxe-4 )  ? ? ?  0 . 366586 ? ? ?  8 . 18362% 
ClO k=0 . 0 16 (k*k=x . xxxe-4 )  ? ? ?  0 . 366594 ? ? ?  8 . 18343% 
ClO k=0 . 018 (k*k=x . xxxe-4 )  ? ? ?  0 . 366498 ? ? ?  8 . 18557% 
ClO k=0 . 020 (k*k=x . xxxe-4 ) ? ? ?  0 . 366367 ? ? ?  8 . 1885% 
ClO k=0 . 022 (k*k=x . xxxe-4 )  ? ? ?  0 . 36624 ? ? ?  8 . 19134% 
ClO k=0 . 024 (k*k=x . xxxe-4 ) ? ? ?  0 . 366141 ? ? ?  8 . 19355% 
ClO k=0 . 026 (k*k=x . xxxe-4 )  ? ? ?  0 . 366034 ? ? ?  8 . 19595% 
ClO k=0 . 028 (k*k=x . xxxe-4 )  ? ? ?  0 . 365911 ? ? ?  8 . 19871% 
ClO k=0 . 030  (k*k=x . xxxe-4 ) ? ? ?  0 . 365815 ? ? ?  8 . 20087% 
ClO k=O . 032 (k*k=x . xxxe-4 )  ? ? ?  0 . 365712 ? ? ?  8 . 20317% 
ClO k=0 . 034 (k*k=x . xxxe-4 ) ? ? ?  0 . 365579 ? ? ?  8 . 20616% 
ClO k=0 . 036  (k*k=x . xxxe-4 )  ? ? ?  0 . 365464 ? ? ?  8 . 20875% 
ClO k=0 . 038  (k*k=x . xxxe-4 )  ? ? ?  0 . 365325 ? ? ?  8 . 21186% 
ClO k=0 . 040 (k*k=x . xxxe-4 )  ? ? ?  0 . 365197 ? ? ?  8 . 21474% 
ClO k=0 . 042 (k*k=x . xxxe-4 )  ? ? ?  0 . 365104 ? ? ?  8 . 21684% 
ClO k=0 . 044 (k*k=x . xxxe-4 )  ? ? ?  0 . 364997 ? ? ?  8 . 21925% 
ClO k=0 . 046  (k*k=x . xxxe-4 )  ? ? ?  0 . 364887 ? ? ?  8 . 2217 1% 
ClO k=0 . 048  (k*k=x . xxxe-4 )  ? ? ?  0 . 364766 ? ? ?  8 . 22445% 
ClO k=0 . 050 (k*k=x . xxxe-4 )  ? ? ?  0 . 364649 ? ? ?  8 . 22708% 
ClO k=0 . 052 (k*k=x . xxxe-4 )  ? ? ?  0 . 364544 ? ? ?  8 . 22946% 
ClO k=O . 054 (k*k=x . xxxe-4 )  ? ? ?  0 . 364439 ? ? ?  8 . 23183% 
ClO k=0 . 056 (k*k=x . xxxe-4 ) ? ? ?  0 . 364334 ? ? ?  8 . 23421% 
ClO k=O . 058 (k*k=x . xxxe-4 ) ? ? ?  0 . 364228 ? ? ?  8 . 23659% 
ClO k=0 . 060 (k*k=x . xxxe-4 ) ? ? ?  0 . 364123 ? ? ?  8 . 23897% 
ClO k=O . 062 (k*k=x . xxxe-4 )  ? ? ?  0 . 364018 ? ? ?  8 . 24136% 
ClO k=0 . 064 (k*k=x . xxxe-4 )  ? ? ?  0 . 363913 ? ? ?  8 . 24374% 
ClO k=0 . 066 (k*k=x . xxxe-4 ) ? ? ?  0 . 363807 ? ? ?  8 . 24612% 
ClO k=0 . 068 (k*k=x . xxxe-4 ) ? ? ?  0 . 363702 ? ? ?  8 . 24851% 
ClO k=0 . 070  (k*k=x . xxxe-4 )  ? ? ?  0 . 363597 ? ? ?  8 . 2509% 
ClO k=0 . 072 (k*k=x . xxxe-4 ) ? ? ?  0 . 363515 ? ? ?  8 . 25276% 
ClO k=0 . 074 (k*k=x . xxxe-4 ) ? ? ?  0 . 363437 ? ? ?  8 . 25453% 
ClO k=0 . 076  (k*k=x . xxxe-4 ) ? ? ?  0 . 363359 ? ? ?  8 . 2563% 
ClO k=0 . 07 8  (k*k=x . xxxe-4 ) ? ? ?  0 . 363281 ? ? ?  8 . 25807% 
ClO k=0 . 08 (k*k=x . xxxe-4 )  ? ? ?  0 . 363203 ? ? ?  8 . 25985% 
ClO k=0 . 082 (k*k=x . xxxe-4 ) ? ? ?  0 . 363125 ? ? ?  8 . 26162% 
ClO k=0 . 084 (k*k=x . xxxe-4 )  ? ? ?  0 . 363047 ? ? ?  8 . 26339% 
ClO k=0 . 086 (k*k=x . xxxe-4 )  ? ? ?  0 . 362969 ? ? ?  8 . 26517% 
ClO k=0 . 088 (k*k=x . xxxe-4 ) ? ? ?  0 . 362891 ? ? ?  8 . 26694% 
ClO k=0 . 090 (k*k=x . xxxe-4 ) ? ? ?  0 . 362813 ? ? ?  8 . 26872% 
ClO k=0 . 092 (k*k=x . xxxe-4 )  ? ? ?  0 . 362735 ? ? ?  8 . 27049% 
ClO k=0 . 094 (k*k=x . xxxe-4 ) ? ? ?  0 . 362657 ? ? ?  8 . 27227% 
ClO k=0 . 096  (k*k=x . xxxe-4 )  ? ? ?  0 . 36258 ? ? ?  8 . 27405% 
ClO k=0 . 098 (k*k=x . xxxe-4 )  ? ? ?  0 . 362502 ? ? ?  8 . 27583% 
ClO k=0 . 100  (k*k=x . xxxe-4 )  ? ? ?  0 . 362441 ? ? ?  8 . 2772% 
ClO k=0 . 102 (k*k=x . xxxe-4 )  ? ? ?  0 . 36239 ? ? ?  8 . 27837% 
ClO k=0 . 104  (k*k=x . xxxe-4 )  ? ? ?  0 . 362339 ? ? ?  8 . 27955% 
ClO k=0 . 106  (k*k=x . xxxe-4 )  ? ? ?  0 . 362287 ? ? ?  8 . 28072% 
ClO k=0 . 108  (k*k=x . xxxe-4 )  ? ? ?  0 . 362236 ? ? ?  8 . 28189% 
ClO k=0 . 110 (k*k=x . xxxe-4 )  ? ? ?  0 . 362185 ? ? ?  8 . 28306% 
ClO k=0 . 112 (k*k=x . xxxe-4 ) ? ? ?  0 . 362134 ? ? ?  8 . 28424% 
ClO k=0 . 114 (k*k=x . xxxe-4 ) ? ? ?  0 . 362082 ? ? ?  8 . 2854 1% 
ClO k=0 . 116 (k*k=x . xxxe-4 )  ? ? ?  0 . 362031 ? ? ?  8 . 28658% 
ClO k=0 . 118 (k*k=x . xxxe-4 )  ? ? ?  0 . 36198 ? ? ?  8 . 28776% 
ClO k=0 . 120 (k*k=x . xxxe-4 )  ? ? ?  0 . 361938 ? ? ?  8 . 2887% 
ClO k=0 . 122 (k*k=x . xxxe-4 ) ? ? ?  0 . 361913 ? ? ?  8 . 28928% 
ClO k=0 . 124 (k*k=x . xxxe-4 ) ? ? ?  0 . 361888 ? ? ?  8 . 28986% 
ClO k=0 . 126 (k*k=x . xxxe-4 )  ? ? ?  0 . 361862 ? ? ?  8 . 29044% 
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ClO k=0 . 128 (k*k=x . xxxe-4 ) ? ? ?  0 . 361837 ? ? ?  8 . 29102% 
ClO k=0 . 130  (k*k=x . xxxe-4 ) ? ? ?  0 . 361812 ? ? ?  8 . 2916% 
ClO k=0 . 132 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 134  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 136  (k*k=x . xxxe- 4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 138 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 140  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 142 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 144  (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 146  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 148 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 150 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 152 (k*k=x . xxxe- 4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 154 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 156 (k*k=x . xxxe-4 )  ? ? ?  0 . 36180 1 ? ? ?  8 . 29185% 
ClO k=0 . 158 (k*k=x . xxxe-4 )  ? ? ?  0 . 36-1801 ? ? ?  8 . 2-91-85% 
ClO k=0 . 160 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 162 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 164 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 166 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 168 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 170  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 172 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 174  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 176  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 178  (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 180 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 182 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 184 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 186 (k*k=x . xxxe-4 )  ? ? ?  0 . 36180 1 ? ? ?  8 . 29185% 
ClO k=0 . 188 (k*k=x . xxxe-4 ) ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 190 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 192 (k*k=x . xxxe-4 )  ? ? ?  0 . 36180 1 ? ? ?  8 . 29185% 
ClO k=0 . 194 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 196 (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 
ClO k=0 . 198 (k*k=x . xxxe-4 ) ? ? ?  0 . 36180 1 ? ? ?  8 . 29185% 
ClO k=0 . 200  (k*k=x . xxxe-4 )  ? ? ?  0 . 361801 ? ? ?  8 . 29185% 

F.1 .5 Output File from "number_c.c" Containing the Numbers of Small Errors (file name:number_c.dat) 
ClO 
k=0 . 002 mean_value = 0 . 365670 number = 17 
k=0 . 004 mean_value = 0 . 365836 number = 30 
k=0 . 00 6  mean_value = 0 . 366069 number = 37 
k=0 . 00 8  mean_value = 0 . 366314 number = 43 
k=0 . 01 mean_value = 0 . 366413 number = 46 
k=0 . 012 mean_value = 0 . 366487 number = 51 
k=0 . 014 mean_value = 0 . 366586 number = 55 
k=0 . 016  mean_value = 0 . 366594 number = 59 
k=0 . 018 mean_value = 0 . 366498 number = 62 
k=0 . 020 mean_value = 0 . 366367 number = 62 
k=0 . 022 mean_value = 0 . 366240 number = 62 
k=0 . 024 mean_value = 0 . 366141 number = 63 
k=0 . 026 mean_value = 0 . 366034 number = 64 
k=0 . 028 mean_value = 0 . 365911 number = 64 
k=0 . 030  mean_value = 0 . 365815 number = 67 
k=0 . 032 mean_value = 0 . 365712 number = 69 
k=0 . 034  mean_value = 0 . 365579 number = 70 
k=0 . 036  mean_value = 0 . 365464 number = 70 
k=0 . 038 mean_value = 0 . 365325 number = 71  
k=0 . 04 0  mean_value = 0 . 365197 number = 72  
k=0 . 042 mean_value = 0 . 365104 number = 74 
k=0 . 044  mean_value = 0 . 364997 number = 74 
k=0 . 046  mean_value = 0 . 364887 number = 74 
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k=0 , 048 mean_value 0 . 364766 number 75 
k=0 , 050 mean_value 0 . 364649 number 76 
k=0 . 052 mean_value 0 , 364544 number 76 
k=O .  054 mean_ value = 0 , 364439 number 76 
k=0 . 056 mean_value 0 . 364334 number 76 
k=0 , 058 mean_value 0 . 364228 number 76 
k=O . 060 mean_value 0 . 364123 number 76 
k=0 . 062 mean_value 0 , 364018 number 76 
k=0 , 064 mean_value 0 . 363913 number 76 
k=0 . 066 mean_value 0 , 363807 number 76 
k=0 . 068 mean_value 0 . 363702 number 76 
k=0 . 070  mean_value 0 . 363597 number 76 
k=0 , 072 mean_value 0 . 363515 number 77 
k=0 . 074 mean_value 0 . 363437 number 77 
k=0 . 076 mean_value 0 . 363359 number 77 

k=0 , 078  mean_value 0 . 363281 number 77 
k=0 . 08 mean_value = 0 . 363203 number = 77 
k=0 , 082 mean_value = 0 . 363125 number 77 
k=0 . 084 mean_value = 0 . 363047 number 77 
k=0 . 086 mean_value 0 . 362969 number 77 
k=0 . 088 mean_value 0 , 362891 number 77 
k=0 , 090 mean_value 0 . 362813 number 77 
k=0 , 092 mean_value 0 . 362735 number 77 
k=0 . 094 mean_value 0 . 362657 number 77 
k=0 . 096 mean_value 0 . 362580 number 77 
k=0 . 098 mean_value 0 , 362502 number 77 
k=0 . 100 mean_value 0 , 362441 number 78 
k=0 . 102 mean_value 0 . 362390 number 78 
k=0 . 104  mean_value 0 . 362339 number 78 
k=0 . 106 mean_value 0 , 362287 number 78 
k=0 . 108 mean_value 0 . 362236 number 78 
k=0 . 110 mean_value 0 . 362185 number 78 
k=0 . 112 mean_value 0 , 362134 number 78 
k=O . 114 mean_value 0 . 362082 number 78 
k=0 . 116 mean_value 0 . 362031 number 78 
k=0 . 118 mean_value 0 , 361980 number 78 
k=0 . 120 mean_value 0 , 361938 number 79  
k=0 . 122 mean_value 0 , 361913 number 79 
k=0 . 124 mean_value 0 . 361888 number 79 
k=0 . 126 mean_value 0 . 361862 number 79 
k=0 . 128 mean_value 0 , 361837 number 79 
k=0 . 130 mean_value 0 , 361812 number 79 
k=0 . 132 mean_value 0 . 36180 1 number 80 
k=0 . 134 mean_value 0 . 36180 1 number 80 
k=0 . 136 mean_value 0 . 36180 1 number 80 
k=0 . 138 mean_value 0 . 36180 1 number 80 
k=0 . 140 mean_value 0 . 361801 number 80 
k=0 . 142 mean_value 0 . 361801 number 80 
k=0 . 144 mean_value 0 . 361801 number 80 
k=0 . 146  mean_value 0 , 361801 number 80 
k=0 . 148  mean_value 0 . 361801 number 80 
k=0 . 150 mean_value 0 . 361801 number 80 
k=0 . 152 mean_value 0 . 361801 number 80 
k=0 . 154 mean_value 0 . 361801 number 80 
k=0 . 156 mean_value 0 . 361801 number 80 
k=0 . 158 mean_value 0 , 36180 1 number 80 
k=0 . 160 mean_value 0 . 36180 1 number 80 
k=0 . 162 mean_value 0 . 36180 1 number 80 
k=0 . 164 mean_value 0 , 36180 1 number 80 
k=0 . 166 mean_value 0 . 361801 number 80 
k=0 . 168 mean_value 0 . 36180 1 number 80 
k=0 . 170 mean_value 0 . 36180 1 number 80 
k=0 . 172 mean_value 0 . 36180 1 number 80 
k=0 . 174  mean_value 0 , 361801 number 80 
k=0 . 176 mean_value 0 . 36180 1 number 80 
k=0 . 178  mean_value 0 , 361801 number 80 
k=0 . 180 mean_value 0 , 361801 number 80 
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k=0 . 182 mean_value 0 . 361801 number 80 
k=0 . 184 mean_value 0 . 361801 number 80 
k=0 . 186  mean_value 0 . 361801 number 80 
k=0 . 188 mean_value 0 . 361801 number 80 
k=0 . 190  mean_value 0 . 361801 number 80 
k=0 . 192 mean_value 0 . 361801 number 80 
k=0 . 194 mean_value 0 . 36180 1 number 80 
k=0 . 196 mean_value 0 . 36180 1 number 80 
k=0 . 198 mean_value = 0 . 361801 number = 80 
k=0 . 020 mean_value 0 . 361801 number = 80 
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F.2 Parameter T 

F .2 . 1  The Circuit File 

file tau . ckt 

expression 

i 

k 

1 ;  

i / 100 ; 
index 
rescale for correct display interval 

number of small errors for different threshold 
numbers obtained from the file "number_t . dat" which is 
an output file of the C program "number_t . c" 

tau_number [ lO O ]  = [ 
18 23 30 33 40  44 48 49  54  58  
59 60 64 64 64 66 66 67 68 70 
70  70  70  70  70  70  70 70  70 70 
70  70  70  70  70  70 70 70 72 72 
72 72 72 72 72 72 72 72 72 72 
72 72 72 72 72 72 72 72 73 73 
73 73 73 73  73  74  74 74 74 74  
74  74 74 74  74 74 74  74 74  74  
74  74  74 74  74 74  74 74 74 74 
74 75 75 75 75 75 75 75 75 75 
] ; 

calculate the percentage 
tau_percent [ lOO ] = 100 * tau_number / 80 ; 

end 

sweep 
i :  from 1 to 100 step 1 k tau_percent [ i ]  
{parametric Title = "percentage o f  assumed small errors for TAU" 

X = k Y = tau_percent [ i ]  

end 

Ymin = 0 Ymax = 100 NYticks = 4 
Xmin = 0 Xmax = 1 NXticks = 4 
X_title = "k" Y_title = "percentage" } ;  

F.2.2 C Program to Calculate the Number of Small Errors 

/* File : number_t . c  * / 
4J:include "stdio .h" 
#include " string .h" 
4J:include "math . h" 

main ( )  

int i ,  number ; 
float j ,  mean , up_boundary, lw_boundary , tau [ 80 ] ; 
char k_value [20 ] ; 
FILE *file_data = NULL ; 
FILE *file_mean = NULL ; 
FILE *file_out = NULL ; 

1 29 

file_data = fopen( "tau_data . dat" , "r" ) ;  
file_mean = fopen( "tau_detail .  dat" , "r" ) ;  

/* contains the extracted parameters */ 
/* contains the estimated means and */ 

file_out = fopen ( "number_tau . dat" , "w" ) ;  
/* standard deviations from 0SA90/hope */ 
/* contains the number of small errors */ 
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for ( i  = l ;  i < 8 1 ;  i++) 

fscanf( file_data , "%f" , &tau [ i- 1 ] ) ;  /* reads in the extracted parameters */ 

/* a reminder * / fprintf( file_out , "TAU\n" ) ;  

for ( j  = 0 . 01 ;  j < 1 . 02 ;  j = j + 0 . 01 )  { 

} 

number = O ;  

for ( i  = 1 ;  i < 3 ;  i++) 
fscanf( file_mean , " %s " ,  k_value ) ;  

fprintf ( file_out , "%s  " ,  k_value ) ;  

for ( i  = 1 ;  i < 3 ;  i++ ) 
fscanf( file_mean, " %s " ,  k_value ) ;  

fscanf( file_mean , "%f" , &mean) ; 

fprintf( file_out , "mean_value = %f 

for ( i  = 1;  i < 3;  i++ ) 
fscanf ( file_mean, " %s " ,  k_value ) ;  

" ,  mean) ; 

/* calculate the boundary of the band */ 

up_boundary = mean + j ;  
lw_boundary = mean - j ;  

/* calculate the number of the small errors */ 

for ( i  = 1 ;  i < 8 1 ;  i++) 

/* to read correct text , skip 2 eel ' s */ 

/* output the current threshold value */ 

/* to read correct text , skip 2 eel ' s */ 

/* read the corresponding mean */ 

/* adjust the pointer to the beginning 
of the file "c lO_detail . dat" */ 

if(  ( tau [ i- 1 ]  >= lw_boundary ) && ( tau [ i-1 ]  <= up_boundary ) 
number++ ; 

fprintf ( file_out , "number = %d\n" , number ) ;  

F.2.3 Eighty Extracted 'f Values (file name:tau_data.dat) 

2 . 12742 2 , 18777 2 . 17859 2 . 12656 2 . 17465 2 . 1775 2 . 19197 2 . 21798 
2 . 33714 2 . 15528 2 . 18736 2 . 2225 2 . 22436 2 . 21208 2 . 22253 1 . 45189 
2 . 17705 2 . 18329 2 . 20177 2 . 22969 2 . 31806 2 . 29611 2 . 27188 1 . 75367 
2 . 20324 2 . 22871 2 . 26579 2 . 29229 2 . 19074 2 . 29612 2 . 20923 2 . 21387 
2 . 28671 2 . 35304 1 . 17145 0 . 0636748 2 . 20641 2 . 29232 2 . 34982 2 . 08324 
2 . 07417 2 . 11242 2 . 19065 2 . 13068 2 . 0772 2 . 08495 2 . 08396 2 . 1062 
2 . 25574 2 . 09906 2 . 11657 2 . 07227 2 . 12352 1 . 96091 2 . 19077 2 . 18401 
2 . 18293 2 . 1715 2 . 22586 2 . 00958 2 . 18663 0 . 132958 2 . 15652 2 . 18759 
2 . 20099 2 . 21515 2 . 17997 2 . 19088 2 . 19255 0 . 29736 2 . 15612 2 . 13826 
2 . 19294 2 . 24055 2 . 26081 1 . 75062 0 . 0063146 2 . 21265 0 . 00329595 1 . 52677 

F.2.4 Data File Containing 'f Statistics for Different Threshold Values 
(file name:tau _ detail.dat) 

TAU k=0 . 01 (k*k=0 . 00 0 1 )  ? ? ?  2 . 18518 ? ? ?  2 . 45378% 
TAU k=0 . 02 (k*k=0 . 0004 ) ? ? ?  2 . 18458 ? ? ?  2 . 32971% 
TAU k=0 . 03 (k*k=0 . 0009 ) ? ? ?  2 . 18312 ? ? ?  2 . 3 1765% 
TAU k=0 . 04 (k*k=0 . 00 16 )  ? ? ?  2 . 18126 ? ? ?  2 . 3834% 
TAU k=0 . 05 (k*k=0 . 0025 ) ? ? ?  2 . 17884 ? ? ?  2 . 51659% 
TAU k=0 . 06 (k*k=0 . 0036 ) ? ? ?  2 . 17683 ? ? ?  2 . 73397% 
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TAU k=0 . 07 (k*k=0 . 0049 )  ? ? ?  2 , 17535 2 . 99408% 
TAU k=0 . 08 (k*k=0 . 0064 ) ? ? ?  2 , 17421 3 . 20145% 
TAU k=0 . 09 (k*k=0 . 0081 )  ? ? ?  2 . 17305 3 . 39659% 
TAU k=0 . 1  (k*k=0 . 0 1 )  ? ? ?  2 . 1723 1 ? ? ?  3 . 56784% 
TAU k=0 . 11 (k*k=0 . 0121 )  ? ? ?  2 . 1718 ? ? ?  3 . 72553% 
TAU k=0 . 12 (k*k=0 . 0144 ) ? ? ?  2 . 17121 ? ? ?  3 . 89158% 
TAU k=0 . 13 (k*k=0 . 0 169 ) ? ? ?  2 . 17015 ? ? ?  4 . 05931% 
TAU k=0 . 14 (k*k=0 . 0196 ) ? ? ?  2 . 16889 ? ? ?  4 . 22188% 
TAU k=0 . 15 (k*k=0 . 0225 ) ? ? ?  2 . 16765 ? ? ?  4 . 37681% 
TAU k=0 . 16 (k*k=0 . 0256 ) ? ? ?  2 . 16632 ? ? ?  4 . 53111% 
TAU k=0 . 17 (k*k=0 , 0289 ) ? ? ?  2 . 16511 ? ? ?  4 . 66948% 
TAU k=0 . 18 (k*k=0 . 0324 ) ? ? ?  2 . 1638 ? ? ?  4 . 80911% 
TAU k=0 . 19 (k*k=0 . 0361 )  ? ? ?  2 . 16242 ? ? ?  4 . 94393% 
TAU k=0 . 2  (k*k=0 . 04 )  ? ? ?  2 . 16083 ? ? ?  5 . 08428% 
TAU k=0 . 21 (k*k=0 . 04 4 1 )  ? ? ?  2 . 1594 ? ? ?  5 . 22785% 
TAU k=0 . 22 (k*k=0 . 0484 ) ? ? ?  2 . 15798 ? ? ?  5 . 37332% 
TAU k=0 . 23 (k*k=0 . 0529 ) ? ? ?  2 . 15655 ? ? ?  5 . 52183% 
TAU k=0 . 24 (k*k=0 . 0576 ) ? ? ?  2 . 15511 ? ? ?  5 . 67251% 
TAU k=0 . 25 (k*k=0 . 0625 ) ? ? ?  2 . 15369 ? ? ?  5 . 82672% 
TAU k=0 . 26 (k*k=0 . 0676 )  ? ? ?  2 . 15226 ? ? ?  5 . 98234% 
TAU k=0 . 27 (k*k=0 . 0729 ) ? ? ?  2 . 15082 ? ? ?  6 . 14113% 
TAU k=0 . 28 (k*k=0 . 0784 ) ? ? ?  2 . 1494 ? ? ?  6 . 30084% 
TAU k=0 . 29 (k*k=0 . 0841 )  ? ? ?  2 . 14798 ? ? ?  6 . 46321% 
TAU k=0 . 3  (k*k=0 . 09 )  ? ? ?  2 . 14655 ? ? ?  6 . 62716% 
TAU k=0 . 31 (k*k=0 . 0961 )  ? ? ?  2 . 14511 ? ? ?  6 . 79297% 
TAU k=0 . 32 (k*k=0 . 1024 ) ? ? ?  2 . 14368 ? ? ?  6 . 9602% 
TAU k=0 . 33 (k*k=0 . 1089 ) ? ? ?  2 . 14226 ? ? ?  7 . 12875% 
TAU k=0 . 34 (k*k=0 . 1156 ) ? ? ?  2 , 14083 ? ? ?  7 . 29832% 
TAU k=0 . 35 (k*k=0 . 1225 ) ? ? ?  2 . 13941 ? ? ?  7 . 46964% 
TAU k=0 . 36 (k*k=0 . 1296 ) ? ? ?  2 . 13797 ? ? ?  7 . 61286% 
TAU k=0 , 37 (k*k=0 . 1369 ) ? ? ?  2 . 13654 ? ? ?  7 . 75046% 
TAU k=0 . 38 (k*k=0 . 1444 ) ? ? ?  2 . 13512 ? ? ?  7 . 88894% 
TAU k=0 . 39 (k*k=0 . 1521 )  ? ? ?  2 , 13393 ? ? ?  8 . 02538% 
TAU k=0 , 4  (k*k=0 . 16 )  ? ? ?  2 . 1328 ? ? ?  8 . 16176% 
TAU k=0 . 4 1 (k*k=0 . 1681 ) ? ? ?  2 , 1317 ? ? ?  8 , 29997% 
TAU k=0 . 42 (k*k=0 . 1764 ) ? ? ?  2 , 13059 ? ? ?  8 . 43909% 
TAU k=0 . 43 (k*k=0 . 1849 )  ? ? ?  2 . 12948 ? ? ?  8 . 57905% 
TAU k=0 . 44 (k*k=0 . 1936 ) ? ? ?  2 . 12836 ? ? ?  8 . 72069% 
TAU k=0 . 45 (k*k=0 . 2025 ) ? ? ?  2 . 12725 ? ? ?  8 . 86328% 
TAU k=0 . 46 (k*k=0 . 2116 ) ? ? ?  2 . 12614 ? ? ?  9 . 00722% 
TAU k=0 . 47 (k*k=0 . 2209 ) ? ? ?  2 . 12504 ? ? ?  9 . 15143% 
TAU k=0 . 48 (k*k=0 . 2304 ) ? ? ?  2 . 12393 ? ? ?  9 . 29705% 
TAU k=0 . 49 (k*k=0 . 2401 ) ? ? ?  2 . 12282 ? ? ?  9 . 44364% 
TAU k=0 . 5  (k*k=0 . 25 )  ? ? ?  2 . 12169 ? ? ?  9 . 59151% 
TAU k=0 . 51 (k*k=0 . 2601 )  ? ? ?  2 . 12058 ? ? ?  9 . 740 18% 
TAU k=0 . 52 (k*k=0 . 2704 ) ? ? ?  2 . 11947 ? ? ?  9 . 88943% 
TAU k=0 . 53 (k*k=0 . 2809 )  ? ? ?  2 . 11837 ? ? ?  10 . 0392% 
TAU k=0 . 54 (k*k=0 . 2916 ) ? ? ?  2 . 11726 ? ? ?  10 . 1902% 
TAU k=0 . 55 (k*k=0 . 3025 ) ? ? ?  2 . 11614 ? ? ?  10 . 3375% 
TAU k=0 . 56 (k*k=0 . 3 136 )  ? ? ?  2 . 11503 ? ? ?  10 . 4698% 
TAU k=0 . 57 (k*k=0 . 3249 ) ? ? ?  2 . 11392 ? ? ?  10 . 603% 
TAU k=0 . 58 (k*k=0 . 3364 ) ? ? ?  2 . 1128 ? ? ?  10 . 7373% 
TAU k=0 . 59 (k*k=0 . 3481 )  ? ? ?  2 . 11176 ? ? ?  10 . 8693% 
TAU k=0 . 6  (k*k=0 . 36 )  ? ? ?  2 . 1108 ? ? ?  1 1 . 0043% 
TAU k=0 , 61 (k*k=0 . 3721 ) ? ? ?  2 . 10986 ? ? ?  11 . 1379% 
TAU k=0 . 62 (k*k=0 . 3844 )  ? ? ?  2 . 1089 ? ? ?  11 . 2602% 
TAU k=0 . 63 (k*k=0 . 3969 ) ? ? ?  2 . 10793 ? ? ?  11 . 3791% 
TAU k=0 . 64 (k*k=0 . 4096 ) ? ? ?  2 . 10697 ? ? ?  11 . 497 1% 
TAU k=0 . 65 (k*k=0 . 4225 ) ? ? ?  2 . 10602 ? ? ?  11 . 6124% 
TAU k=0 . 66 (k*k=0 . 4356 ) ? ? ?  2 . 10516 ? ? ?  11 . 7272% 
TAU k=0 . 67 (k*k=0 . 4489 ) ? ? ?  2 . 10435 ? ? ?  11 . 8419% 
TAU k=0 . 68 (k*k=0 . 4624 ) ? ? ?  2 . 10353 ? ? ?  1 1 .  9574% 
TAU k=0 . 69 (k*k=0 . 4761 )  ? ? ?  2 . 10272 ? ? ?  12 . 076% 
TAU k=0 . 7  (k*k=0 . 49 )  ? ? ?  2 . 10191 ? ? ?  12 . 1903% 
TAU k=0 . 7 1 (k*k=0 . 50 4 1 )  ? ? ?  2 . 10109 ? ? ?  12 . 3133% 
TAU k=0 . 72 (k*k=0 . 5184 ) ? ? ?  2 . 10029 ? ? ?  12 . 4292% 
TAU k=0 . 73 (k*k=0 . 3295 ) ? ? ?  2 , 09947 ? ? ?  12 . 553% 
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TAU k=0 . 74 (k*k=0 . 5476 )  ? ? ?  2 . 09867 ? ? ?  12 . 6736% 
TAU k=O .  75 (k*k=0 . 5625 ) ? ? ?  2 . 0 9786 ? ? ?  12 . 7837% 
TAU k=O . 76 (k*k=0 . 5776 )  ? ? ?  2 . 09705 ? ? ?  12 . 9169% 
TAU k=0 . 77 (k*k=0 . 5929 ) ? ? ?  2 . 09622 ? ? ?  13 . 0257% 
TAU k=O . 78 (k*k=0 . 6084 ) ? ? ?  2 . 09542 ? ? ?  13 . 1627% 
TAU k=O .  79 (k*k=0 . 6241 )  ? ? ?  2 . 09462 ? ? ?  13 . 2862% 
TAU k=0 . 8  (k*k=0 . 64 )  ? ? ?  2 . 09379 ? ? ?  13 . 4109% 
TAU k=0 . 81 (k*k=0 . 6561 ) ? ? ?  2 . 09298 ? ? ?  13 . 5354% 
TAU k=0 . 82 (k*k=0 . 6724 ) ? ? ?  2 . 09217 ? ? ?  13 . 6606% 
TAU k=0 . 83 (k*k=0 . 688 9 )  ? ? ?  2 . 09137 ? ? ?  13 . 7863% 
TAU k=0 . 84 (k*k=0 . 7056 ) ? ? ?  2 . 09056 ? ? ?  13 . 9124% 
TAU k=0 . 85 (k*k=O . 7225 ) ? ? ?  2 . 08975 ? ? ?  14 . 0456% 
TAU k=0 . 86 (k*k=0 . 7396 ) ? ? ?  2 . 08894 ? ? ?  14 . 1665% 
TAU k=0 . 87 (k*k=0 . 7569 ) ? ? ?  2 . 08813 ? ? ?  14 . 2879% 
TAU k=0 . 88 (k*k=0 . 7744 ) ? ? ?  2 . 08731 ? ? ?  14 . 3944% 
TAU k=0 . 89 (k*k=0 . 7921 )  ? ? ?  2 . 08651 ? ? ?  14 . 5011% 
TAU k=0 . 9  (k*k=0 . 81 )  ? ? ?  2 . 0857 ? ? ?  14 . 6086% 
TAU k=0 . 91 (k*k=0 . 8281)  ? ? ?  2 . 08489 ? ? ?  14 . 7167% 
TAU k=0 . 92 (k*k=0 . 8464 ) ? ? ?  2 . 08417 ? ? ?  14 . 8235% 
TAU k=0 . 93 (k*k=0 . 864 9 )  ? ? ?  2 . 08349 ? ? ?  14 . 9305% 
TAU k=0 . 94 (k*k=0 . 883 6 )  ? ? ?  2 . 08284 ? ? ?  15 . 0374% 
TAU k=0 . 95 (k*k=0 . 9025 ) ? ? ?  2 . 08218 ? ? ?  15 . 1448% 
TAU k=0 . 96 (k*k=0 . 9216 ) ? ? ?  2 . 0815 ? ? ?  15 . 2526% 
TAU k=0 . 97 (k*k=0 . 9409)  ? ? ?  2 . 08084 ? ? ?  15 . 3609% 
TAU k=0 . 98 (k*k=0 . 9604 ) ? ? ?  2 . 08016 ? ? ?  15 . 47% 
TAU k=0 . 99 (k*k=0 . 9801 )  ? ? ?  2 . 07951 ? ? ?  15 . 579% 
TAU k=l (k*k=l )  ? ? ?  2 . 07882 ? ? ?  15 . 6893% 
TAU k=l . 0 1 (k*k=l . 0201 )  ? ? ?  2 . 07818 ? ? ?  15 . 799% 

F.2.5 Output File from "number_t.c" Containing the Numbers of Small Errors 
(file name:number_t.dat) 

TAU 
k=O . 0 1 mean_value = 2 . 185180 number = 18 
k=0 . 02 mean_value = 2 . 184580 number = 23 
k=0 . 03 mean_value = 2 . 183120 number = 30 
k=0 . 04 mean_value = 2 . 181260 number = 33 
k=0 . 05 mean_value = 2 . 178840 number = 40 
k=0 . 06 mean_value = 2 . 176830 number = 44 
k=0 . 07 mean_value = 2 . 175350 number = 48 
k=0 . 08 mean_value = 2 . 174210 number = 49 
k=O .  09  mean_value = 2 . 173050 number = 54 
k=0 . 1  mean_value = 2 . 172310 number = 58 
k=0 . 11 mean_value = 2 . 17 1800 number = 59 
k=0 . 12 mean_value = 2 . 171210 number = 60 
k=0 . 13 mean_value = 2 . 170150 number = 64 
k=0 . 14 mean_value = 2 . 168890 number = 64 
k=0 . 15 mean_value = 2 . 167650 number = 64 
k=0 . 16 mean_value = 2 . 166320 number 66 
k=0 . 17 mean_value = 2 . 165110 number 66 
k=0 . 18 mean_value = 2 . 163800 number 67 
k=0 . 19 mean_value = 2 . 162420 number 68 
k=0 . 2  mean_value = 2 . 160830 number = 70 
k=0 . 21 mean_value = 2 . 159400 number = 70  
k=0 . 22 mean_value = 2 . 157980 number = 70 
k=0 . 23 mean_value = 2 . 156550 number = 70  
k=0 . 24 mean_value = 2 . 155110 number = 70 
k=0 . 25 mean_value = 2 . 153690 number = 70 
k=0 . 26 mean_value = 2 . 152260 number = 70 
k=0 . 27 mean_value = 2 . 150820 number = 70 
k=0 . 28 mean_value = 2 . 149400 number = 70  
k=0 . 29 mean_value = 2 . 147980 number = 70  
k=0 . 3  mean_value = 2 . 146550 number = 70 
k=O . 3 1 mean_value = 2 . 145110 number 70 
k=0 . 32 mean_value = 2 . 143680 number = 70 
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k=0 . 33 mean_value 2 . 142260 number 70 
k=0 . 34 mean_value 2 . 140830 number 70  
k=0 . 35 mean_value 2 . 139410 number 70  
k=0 . 36 mean_value 2 . 137970 number 70  
k=0 . 37 mean_value 2 . 136540 number 70  
k=0 . 38 mean_value 2 . 135120 number 70 
k=0 . 39 mean_value 2 . 133930 number 72 
k=0 . 4  mean_value = 2 . 132800 number = 72 
k=0 . 4 1 mean_value = 2 . 131700 number = 72 
k=0 . 42 mean_value 2 . 130590 number 72 
k=0 . 43 mean_value 2 . 129480 number 72 
k=0 . 44 mean_value 2 . 128360 number 72 
k=0 . 45 mean_value 2 . 127250 number 72 
k=0 . 46 mean_value 2 . 126140 number 72 
k=0 . 47 mean_value 2 . 125040 number 72 
k=0 . 48 mean value 2 . 123930 number 72 
k=0 . 49 mean:=value 2 . 122820 number 72 
k=0 . 5  mean_value = 2 . 121690 number = 72 
k=0 . 51 mean_value = 2 . 120580 number = 72 
k=0 . 52 mean_value 2 . 119470 number 72 
k=0 . 53 mean_value 2 . 118370 number 72 
k=0 . 54 mean_value 2 . 117260 number 72 
k=0 . 55 mean_value 2 . 116140 number 72 
k=0 . 56 mean_value 2 . 115030 number 72 
k=0 . 57 mean_value 2 . 113920 number 72 
k=0 . 58 mean_value 2 . 112800 number 72 
k=0 . 59 mean_value 2 . 111760 number 73 
k=0 . 6  mean_value = 2 . 110800 number = 73 
k=0 . 61 mean_value = 2 . 109860 number = 73 
k=0 . 62 mean_value 2 . 108900 number 73 
k=0 . 63 mean_value 2 . 107930 number 73 
k=0 . 64 mean_value 2 . 106970 number 73 
k=0 . 65 mean_value 2 . 106020 number 73 
k=0 . 66 mean_value 2 . 105160 number 74 
k=0 . 67 mean_value 2 . 104350 number 74 
k=0 . 68 mean_value 2 . 103530 number 74 
k=0 . 69 mean_value 2 . 102720 number 74 
k=0 . 7  mean_value = 2 . 101910 number = 74 
k=O .  7 1  mean_value = 2 . 101090 number = 74  
k=0 . 72 mean_value = 2 . 100290 number = 74 
k=0 . 73 mean_value 2 . 099470 number 74 
k=0 . 74 mean_value 2 . 098670 number 74 
k=0 . 75 mean_value 2 . 097860 number 74 
k=0 . 76 mean_value 2 . 097050 number 74 
k=0 . 77 mean_value 2 . 096220 number 74 
k=0 . 78 mean_value 2 . 095420 number 74 
k=0 . 79 mean_value 2 . 094620 number 74 
k=0 . 8  mean_value = 2 . 093790 number = 74 
k=0 . 81 mean_value = 2 . 092980 number = 74 
k=0 . 82 mean_value = 2 . 092170 number = 74 
k=0 . 83 mean_value 2 . 091370 number 74 
k=0 . 84 mean_value 2 . 090560 number 74 
k=0 . 85 mean_value 2 . 089750 number 74 
k=0 . 86 mean_value 2 . 088940 number 74 
k=0 . 87 mean_value 2 . 088130 number 74 
k=0 . 88 mean_value 2 . 087310 number 74 
k=0 . 89 mean_value 2 . 086510 number 74 
k=0 . 9  mean_value = 2 . 085700 number = 74 
k=0 . 91 mean_value = 2 . 084890 number = 74 
k=0 . 92 mean_value = 2 . 084170 number = 75 
k=0 . 93 mean_value 2 . 083490 number 75 
k=0 . 94 mean_value 2 . 082840 number 75 
k=0 . 95 mean_value 2 . 082180 number 75 
k=0 . 96 mean_value 2 . 081500 number 75 
k=0 . 97 mean_value 2 . 080840 number 75 
k=0 . 98 mean_value 2 . 080 160 number 75 
k=0 . 99 mean_value 2 .  079510 number 75 
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k=l mean_value = 2 . 078820 number = 75 
k=l . 0 1 mean_value = 2 . 078180 number = 75 
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F .3 Parameter L

g 

F.3.1 The Circuit File 

file lg . ckt 

expression 

i 1 ;  

k i / 200 0 ;  
index 
rescale for correct display interval 

number of small errors for different threshold 
numbers obtained from the file "number_l . dat" which is  
an output file of the C program "number_l . c "  

lg_number [ lO O ]  = [ 
7 12 16 20 22 28 34 37  38 44 

49 52 53 54 57 58 59 61 65 67 
68  69 70 70 70 70 71 71  72 72 
73 73 73 73 73 73 73  73 73 73  
74 74 74 74  74 74 74 74 74 74 
74  74 74  74  74  75  75 75 75 75 
75 75 75 75 75 75 75 75 75 75 
75 75 75 75 75 75 75 75 75 75 
75 75 75 75  75 75 75 75 75 75 
75 75 75 75  75 75 75 75 75 75 
] ; 

calculate the percentage 
lg_percent [ lO O ]  = 100 * lg_number / 80 ; 

end 

sweep 
i :  from 1 to 100 step 1 k lg_percent [ i ]  
{parametric  Title = "percentage o f  assumed small errors for LG" 

X = k Y = lg_percent [ i ]  

end 

Ymin = 0 Ymax = 100 NYticks = 4 
Xmin = 0 Xmax = 0 . 05 NXticks = 4 
X_title = "k" Y_title = "percentage" } ;  

F .3.2 C Program to Calculate the Number of Small Errors 

/* File : number_l . c  */ 
1/include "stdio . h" 
11include " string .h" 
11include "math .h" 

main ( )  

int i ,  number ; 
float j ,  mean , up_boundary , lw_boundary , lg [ 80 ] ; 
char k_value [20 ] ; 
FILE *file_data = NULL ; 
FILE *file_mean = NULL ; 
FILE *file_out = NULL ; 

1 3 5 

file_data = fopen ( "lg_data . dat" , "r" ) ;  
file_mean = fopen ( "lg_detail . dat" , "r" ) ;  

/* contains the extracted parameters */ 
/* contains the estimated means and */ 

file_out = fopen ( "number_lg . dat" , "w" ) ;  
/* standard deviations from 0SA90/hope */ 
/* contains the number of small errors */ 
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} 

for ( i  = 1 ;  i < 81 ;  i++) 
fscanf( file_data,  "%f" , &lg [ i- 1 ] ) ;  

fprintf ( file_out , "LG\n" ) ;  

for ( j  = 0 . 0005 ; j < 0 . 0505 ; j = j + 0 . 0005 ) { 

number = O ;  

for ( i  = 1 ;  i < 3 ;  i++ ) 
fscanf( file_mean, "%s"  

I 
k_value ) ;  

fprintf ( file_out , "%s I I  k_value ) ;  

for ( i  = 1 ;  i < 3 ;  i++) 
fscanf( file_mean , "%s"  

I 
k_value ) ;  

fscanf( file_mean ,  " %f" , &mean) ; 

fprintf ( file_out , "mean value = %f 

for (i = 1; i < 3 ;  i++ ) 
fscanf( file_mean ,  "%s " , k_value ) ;  

" mean ) ; 

/* calculate the boundary of the band */ 

up_boundary = mean + j ;  
lw_boundary = mean - j ;  

/* calculate the number of the small errors */ 

for (i = 1; i < 8 1 ;  i++ ) 

/* reads in the extracted parameters */ 

/* a reminder */  

I*  to  read correct text , skip 2 eel ' s 

I* output the current threshold value 

I* to read correct text , skip 2 eel ' s 

/* read the corresponding mean */ 

/* adjust the pointer to the beginning 
of the file "lg_detail . dat" */ 

*I 

*I 

*I 

if(  ( lg [ i- 1 ]  >= lw_boundary ) && ( lg [ i- 1 )  <= up_boundary ) 
number++ ; 

fprintf ( file_out , "number = %d\n" , number ) ;  

F.3.3 Eighty Extracted Lg Values (file name:lg_data.dat) 

F.3.4 

0 . 0249343 0 . 0382752 0 . 0244437 0 . 0305276 0 . 0320525 0 . 0351226 0 . 0384052 0 . 0404104 
0 . 0203612 0 . 0295276 0 . 0338138 0 . 0378106 0 . 0401943 0 . 0439019 0 . 0400248 0 . 19135 
0 . 0253422 0 . 0309073 0 . 0351278 0 . 0362827 0 . 0361359 0 . 040135 0 . 0377837 0 . 00740458 
0 . 0277345 0 . 0336417 0 . 0338764 0 . 0354762 0 . 0342489 0 . 0377881 0 . 0304654 0 . 0321601 
0 . 0340442 0 . 0361249 0 . 198991 0 . 0291953 0 . 0262987 0 . 026106 0 . 024076 0 . 0352524 
0 . 0397872 0 . 03 11892 0 . 0342306 0 . 0215204 0 . 0439407 0 . 0443833 0 . 0302681 0 . 0349599 
0 . 0146805 0 . 0396286 0 . 0420346 0 . 0426165 0 . 0406111 0 . 04 11889 0 . 0255615 0 . 0235038 
0 . 0326257 0 . 037303 0 . 0387938 0 . 0378664 0 . 0419138 0 . 23049 0 . 02803 0 . 0333612 
0 . 035629 0 . 03844 0 . 0375648 0 . 0342395 0 . 0396309 0 . 0257349 0 . 0290948 0 . 03 18604 
0 . 0368525 0 . 0378124 0 . 0357473 0 . 192996 0 . 189776 0 . 0312339 0 . 0367897 0 . 0 195684 

Data File Containing L� Statistics for Different Threshold Values 
(file name:lg_detail.datJ 

LG k=0 . 0005  (k*k=2 . 5e-7 ) ? ? ?  0 . 035257 ? ? ?  41 . 0532% 
LG k=0 . 00 1  (k*k=le-6 )  ? ? ?  0 . 0351909 ? ? ?  36 . 50 16% 
LG k=0 . 0015 (k*k=2 . 25e-6 ) ? ? ?  0 . 0352069 ? ? ?  15 . 359% 
LG k=0 . 002 (k*k=x . xxxe-4 ) ? ? ?  0 . 0352478 ? ? ?  42 . 5559% 
LG k=0 . 0025 (k*k=6 . 25e- 6 )  ? ? ?  0 . 0352647 ? ? ?  12 . 9723% 
LG k=0 . 003 (k*k=9e- 6 )  ? ? ?  0 . 0351938 ? ? ?  12 . 7343% 
LG k=0 . 0035 (k*k=l . 225e-5 )  ? ? ?  0 . 0351363 ? ? ?  12 . 7979% 
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LG k=0 . 004  (k*k=l . 6e-5 ) ? ? ?  0 . 0350772 ? ? ?  13 . 0777% 
LG k=0 . 0045 (k*k=2 . 025e-5 ) ? ? ?  0 . 0350465 ? ? ?  13 . 4091% 
LG k=0 . 005 (k*k=2 . 5e-5 ) ? ? ?  0 . 0350246 ? ? ?  14 . 0233% 
LG k=0 . 0055 (k*k=3 . 025e-5 ) ? ? ?  0 . 0349771 ? ? ?  14 . 6756% 
LG k=0 . 006 (k*k=3 . 6e-5 ) ? ? ?  0 . 0349285 ? ? ?  15 . 3 166% 
LG k=0 . 0065 (k*k=4 . 225e-5 ) ? ? ?  0 . 0348863 ? ? ?  15 . 9721% 
LG k=0 . 007 (k*k=4 . 9e-5 ) ? ? ?  0 . 0348427 ? ? ?  16 . 5859% 
LG k=0 . 0075 (k*k=5 . 625e-5 ) ? ? ?  0 . 0348016 ? ? ?  17 . 0682% 
LG k=0 . 008  (k*k=6 . 4e-5 ) ? ? ?  0 . 0347553 ? ? ?  17 . 4792% 
LG k=0 . 0085 (k*k=7 . 225e-5 )  ? ? ?  0 . 0347052 ? ? ?  17 . 8692% 
LG k=0 . 009 (k*k=8 . le-5 ) ? ? ?  0 . 0346713 ? ? ?  18 . 2168% 
LG k=0 . 0095 (k*k=9 . 025e-5 )  ? ? ?  0 . 0346492 ? ? ?  18 . 5394% 
LG k=0 . 01 (k*k=le-4 ) ? ? ?  0 . 0346271 ? ? ?  18 . 8613% 
LG k=0 . 0105 (k*k=l . 1025e-4 ) ? ? ?  0 . 0346097 ? ? ?  19 . 1918% 
LG k=0 . 011  (k*k=l . 21e- 4 )  ? ? ?  0 . 034602 ? ? ?  19 . 5273% 
LG k=0 . 0115 (k*k=l . 3225e-4 ) ? ? ?  0 . 0346006 ? ? ?  19 . 8438% 
LG k=0 . 012 (k*k=l . 44e-4 ) ? ? ?  0 . 0346006 ? ? ?  20 . 1548% 
LG k=0 . 0125 (k*k=l . 5625e-4 )  ? ? ?  0 . 0346006 ? ? ?  20 . 4635% 
LG k=0 . 013 (k*k=l . 69e-4 ) ? ? ?  0 . 0346006 ? ? ?  20 . 7507% 
LG k=0 . 0135 (k*k=l . 8225e-4 ) ? ? ?  0 . 0346065 ? ? ?  21 . 0 172% 
LG k=0 . 014 (k*k=l . 96e-4 ) ? ? ?  0 . 0346136 ? ? ?  21 . 2748% 
LG k=0 . 0145 (k*k=2 . 1025e-4 ) ? ? ?  0 . 034624 ? ? ?  21 . 5371% 
LG k=0 . 015 (k*k=2 . 25e-4 ) ? ? ?  0 . 0346379 ? ? ?  21 . 8037% 
LG k=0 . 0155 (k*k=2 . 4025e- 4 )  ? ? ?  0 . 0346575 ? ? ?  22 . 0736% 
LG k=0 . 016 (k*k=2 . 56e-4 ) ? ? ?  0 . 034678 ? ? ?  22 . 3483% 
LG k=0 . 0165 (k*k=2 . 7225e-4 ) ? ? ?  0 . 0346986 ? ? ?  22 . 6279% 
LG k=0 . 0 17 (k*k=2 . 89e- 4 )  ? ? ?  0 . 0347191 ? ? ?  22 . 9123% 
LG k=0 . 0175 (k*k=3 . 0625e-4 )  ? ? ?  0 . 0347396 ? ? ?  23 . 2013% 
LG k=O . 018 (k*k=3 . 24e- 4 )  ? ? ?  0 . 0347602 ? ? ?  23 . 4948% 
LG k=0 . 0185 (k*k=3 . 4225e-4 )  ? ? ?  0 . 0347807 ? ? ?  23 . 7763% 
LG k=0 . 019 (k*k=3 . 61e- 4 )  ? ? ?  0 . 0348013 ? ? ?  24 . 0322% 
LG k=0 . 0195 (k*k=3 . 8025e-4 )  ? ? ?  0 . 0348218 ? ? ?  24 . 2919% 
LG k=0 . 0205 (k*k=4 . 2025e-4 )  ? ? ?  0 . 0348672 ? ? ?  24 . 8202% 
LG k=0 . 021 (k*k=4 . 4 1e-4 ) ? ? ?  0 . 0348942 ? ? ?  25 . 0879% 
LG k=0 . 0215 (k*k=4 . 6225e-4 )  ? ? ?  0 . 0349213 ? ? ?  25 . 3587% 
LG k=0 . 022 (k*k=4 . 84e- 4 )  ? ? ?  0 . 0349483 ? ? ?  25 . 6326% 
LG k=0 . 0225 (k*k=5 . 0625e-4 ) ? ? ?  0 . 0349753 ? ? ?  25 . 9093% 
LG k=0 . 023 (k*k=5 . 29e-4 ) ? ? ?  0 . 0350023 ? ? ?  26 . 1888% 
LG k=0 . 0235 (k*k=5 . 5225e-4 ) ? ? ?  0 . 0350294 ? ? ?  26 . 4709% 
LG k=0 . 024 (k*k=x . xxxe-4 )  ? ? ?  0 . 0350564 ? ? ?  42 . 7882% 
LG k=0 . 0245 (k*k=x . xxxe-4 )  ? ? ?  0 . 0350834 ? ? ?  42 . 7552% 
LG k=0 . 025 (k*k=x . xxxe-4 )  ? ? ?  0 . 0351104 ? ? ?  42 . 7223% 
LG k=0 . 0255 (k*k=x . xxxe-4 )  ? ? ?  0 . 0351375 ? ? ?  42 . 6895% 
LG k=0 . 026 (k*k=x . xxxe-4 )  ? ? ?  0 . 0351645 ? ? ?  42 . 6567% 
LG k=0 . 0265 (k*k=x . xxxe-4 )  ? ? ?  0 . 0351915 ? ? ?  42 . 6239% 
LG k=0 . 027 (k*k=x . xxxe-4 ) ? ? ?  0 . 0352185 ? ? ?  42 . 5912% 
LG k=0 . 0275 (k*k=x . xxxe-4 )  ? ? ?  0 . 0352455 ? ? ?  42 . 5586% 
LG k=0 . 028 (k*k=x . xxxe-4 )  ? ? ?  0 . 0352744 ? ? ?  42 . 5238% 
LG k=0 . 0285 (k*k=x . xxxe-4 )  ? ? ?  0 . 0353077 ? ? ?  42 . 4837% 
LG k=0 . 029 (k*k=x . xxxe-4 ) ? ? ?  0 . 035341 ? ? ?  42 . 4436% 
LG k=0 . 0295 (k*k=x . xxxe-4 )  ? ? ?  0 . 0353743 ? ? ?  42 . 4036% 
LG k=0 . 03 (k*k=x . xxxe-4 ) ? ? ?  0 . 0354077 ? ? ?  42 . 3637% 
LG k=0 . 0305 (k*k=x . xxxe-4 )  ? ? ?  0 . 035441 ? ? ?  42 . 3239% 
LG k=0 . 03 1  (k*k=x . xxxe-4 )  ? ? ?  0 . 0354743 ? ? ?  42 . 2841% 
LG k=0 . 03 15 (k*k=x . xxxe-4 )  ? ? ?  0 . 0355077 ? ? ?  42 . 2444% 
LG k=0 . 0320 (k*k=x . xxxe-4 )  ? ? ?  0 . 03554 1 ? ? ?  42 . 2048% 
LG k=0 . 0325 (k*k=x . xxxe-4 )  ? ? ?  0 . 0355743 ? ? ?  42 . 1652% 
LG k=0 . 0330 (k*k=x . xxxe-4 )  ? ? ?  0 . 0356077 ? ? ?  42 . 1258% 
LG k=0 . 0335 (k*k=x . xxxe-4 )  ? ? ?  0 . 035641 ? ? ?  42 . 0864% 
LG k=0 . 0340 (k*k=x . xxxe-4 )  ? ? ?  0 . 0356743 ? ? ?  42 . 0471% 
LG k=0 . 0345 (k*k=x . xxxe-4 )  ? ? ?  0 . 0357076 ? ? ?  42 . 0078% 
LG k=0 . 0350 (k*k=x . xxxe-4 ) ? ? ?  0 . 035741 ? ? ?  4 1 . 9686% 
LG k=0 . 0355 (k*k=x . xxxe-4 )  ? ? ?  0 . 0357743 ? ? ?  4 1 . 9295% 
LG k=0 . 0360 (k*k=x . xxxe-4 )  ? ? ?  0 . 0358076 ? ? ?  4 1 .  8905% 
LG k=0 . 0365 (k*k=x . xxxe-4 )  ? ? ?  0 . 035841 ? ? ?  4 1 .  8515% 
LG k=0 . 0370 (k*k=x . xxxe-4 )  ? ? ?  0 . 0358743 ? ? ?  4 1 .  8127% 
LG k=0 . 0375 (k*k=x . xxxe-4 )  ? ? ?  0 . 0359076 ? ? ?  4 1 .  7739% 
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LG k=0 . 0380 (k*k=x . xxxe-4 ) ? ? ?  0 . 03594 1 ? ? ?  4 1 .  7351% 
LG k=0 . 0385 (k*k=x . xxxe-4 )  ? ? ?  0 . 0359743 ? ? ?  4 1 . 6964% 
LG k=0 . 0390 (k*k=x . xxxe-4 ) ? ? ?  0 . 0360076 ? ? ?  4 1 . 6578% 
LG k=0 . 0395 (k*k=x . xxxe-4 )  ? ? ?  0 . 036041 ? ? ?  4 1 .  6193% 
LG k=0 . 0400 (k*k=x . xxxe-4 )  ? ? ?  0 . 0360743 ? ? ?  4 1 . 5809% 
LG k=0 . 0405 (k*k=x . xxxe-4 )  ? ? ?  0 . 0361076 ? ? ?  4 1 .  5425% 
LG k=0 . 04 10 (k*k=x . xxxe-4 ) ? ? ?  0 . 0361409 ? ? ?  4 1 .  5042% 
LG k=0 . 0415 (k*k=x . xxxe-4 )  ? ? ?  0 . 0361743 ? ? ?  41 . 4659% 
LG k=0 . 0420 (k*k=x . xxxe-4 )  ? ? ?  0 . 0362076 ? ? ?  4 1 .  4278% 
LG k=0 . 0425 (k*k=x . xxxe-4 )  ? ? ?  0 . 0362409 ? ? ?  4 1 .  3897% 
LG k=0 . 0430 (k*k=x . xxxe-4 )  ? ? ?  0 . 0362743 ? ? ?  4 1 .  3516% 
LG k=0 . 0435 (k*k=x . xxxe-4 )  ? ? ?  0 , 0363076 ? ? ?  4 1 .  3 137% 
LG k=0 . 0440  (k*k=x . xxxe-4 )  ? ? ?  0 . 0363409 ? ? ?  4 1 . 2758% 
LG k=0 . 0445  (k*k=x . xxxe-4 )  ? ? ?  0 . 0364409 ? ? ?  4 1 . 1625% 
LG k=0 . 0450 (k*k=x . xxxe-4 ) ? ? ?  0 . 0364076 ? ? ?  4 1 . 2002% 
LG k=0 . 0455 (k*k=x . xxxe-4 )  ? ? ?  0 . 0364409 ? ? ?  4 1 . 1625% 
LG k=0 . 0460 (k*k=x . xxxe-4 ) ? ? ?  0 . 0364743 ? ? ?  4 1 . 1249% 
LG k=0 . 0465 (k*k=x . xxxe-4 ) ? ? ?  0 . 0365076 ? ? ?  4 1 .  0874% 
LG k=0 . 0470 (k*k=x . xxxe-4 ) ? ? ?  0 . 0365409 ? ? ?  4 1 .  0499% 
LG k=0 . 0475 (k*k=x . xxxe-4 ) ? ? ?  0 . 0365742 ? ? ?  4 1 . 0 125% 
LG k=0 . 0480 (k*k=x . xxxe-4 ) ? ? ?  0 . 0366076 ? ? ?  40 . 9751% 
LG k=0 . 0485 (k*k=x . xxxe-4 ) ? ? ?  0 . 0366409 ? ? ?  40 . 9379% 
LG k=0 . 0490 (k*k=x . xxxe-4 )  ? ? ?  0 . 0366742 ? ? ?  40 . 9007% 
LG k=0 . 0495 (k*k=x . xxxe-4 ) ? ? ?  0 . 0367076 ? ? ?  40 . 8635% 
LG k=0 . 0500 (k*k=x . xxxe-4 ) ? ? ?  0 . 0367409 ? ? ?  40 . 8264% 

F.3.5 Output File from "number_l.c" Containing the Numbers of Small Errors 
(file name:number I .dat) 

LG 
k=0 . 0005 mean_value = 0 . 035257 number = 7 
k=0 . 00 1  mean_value = 0 . 035191 number = 12 
k=0 . 0015 mean_value = 0 . 035207 number = 16 
k=0 . 002 mean_value = 0 . 035248 number = 20 
k=0 . 0025 mean_value = 0 . 035265 number = 22 
k=0 . 003 mean_value = 0 . 035194 number = 28 
k=0 . 0035 mean_value = 0 . 035136 number = 34 
k=0 . 004 mean_value = 0 . 035077 number = 37 
k=0 . 0045 mean_value = 0 . 035046 number = 38  
k=0 . 005 mean_value = 0 . 035025 number = 44 
k=0 . 0055 mean_value = 0 . 034977 number = 49  
k=0 . 006 mean_value = 0 . 034929 number = 52 
k=0 . 0065 mean_value = 0 . 034886 number = 53 
k=0 . 007 mean_value = 0 . 034843 number = 54 
k=0 . 0075 mean_value = 0 . 034802 number = 57 
k=0 . 008  mean_value = 0 . 034755 number = 58 
k=0 . 0085 mean_value = 0 . 034705 number = 59 
k=0 . 009  mean_value = 0 . 034671 number = 61 
k=0 . 0095 mean_value = 0 . 034649 number = 65 
k=0 . 01 mean_value = 0 . 034627 number = 67 
k=0 . 0105 mean_value = 0 . 034610 number = 68 
k=0 . 011  mean_value = 0 . 034602 number = 69 
k=0 . 0 115 mean_value = 0 . 034601 number = 70 
k=0 . 0 12 mean_value = 0 . 034601 number = 70 
k=0 . 0125 mean_value = 0 . 034601 number = 70  
k=0 . 0 13 mean value = 0 . 034601 number = 70 
k=0 . 0135 mea�_value = 0 . 034607 number = 71 
k=0 . 014 mean_value = 0 . 034614 number = 71 
k=0 . 0 145 mean_value = 0 . 034624 number = 72 
k=0 . 015 mean_value = 0 . 034638 number = 72 
k=0 . 0155 mean_value = 0 . 034658 number = 73 
k=0 . 016 mean_value = 0 . 034678 number = 73 
k=0 . 0165 mean_value = 0 . 034699 number = 73 
k=0 . 0 17 mean_value = 0 . 034719 number = 73 
k=0 . 0 175 mean_value = 0 . 034740 number = 73 
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k=0 . 0 18 mean_value = 0 . 034760 number = 73 
k=0 . 0185 mean_value = 0 . 034781 number = 73  
k=0 . 0 19 mean_value = 0 . 034801 number = 73  
k=0 . 0 195 mean_value = 0 . 034822 number = 73 
k=0 . 0205 mean_value = 0 . 034867 number = 73 
k=0 . 021 mean_value = 0 . 034894 number = 74 
k=0 . 0215 mean_value = 0 . 034921 number = 74 
k=0 . 022 mean_value = 0 , 034948 number = 74  
k=0 . 0225 mean_value = 0 . 034975 number = 74 
k=0 . 023 mean_value = 0 . 0 35002 number = 74 
k=0 . 0235 mean_value = 0 . 035029 number = 74 
k=0 . 024 mean_value = 0 . 035056 number = 74 
k=0 . 0245 mean_value = 0 . 035083 number = 74 
k=0 . 025 mean_value = 0 . 035110 number = 74  
k=0 . 0255 mean_value = 0 . 035138 number = 74 
k=0 . 026 mean_value = 0 . 035165 number = 74 
k=0 . 0265 mean_value = 0 . 035191 number = 74 
k=0 . 027 mean_value = 0 . 035218 number = 74 
k=0 . 0275 mean_value = 0 . 035246 number = 74 
k=0 . 028 mean_value = 0 . 035274 number = 74 
k=0 . 0285 mean_value = 0 . 035308 number = 75 
k=0 . 029 mean_value = 0 . 035341 number = 75 
k=0 . 0295 mean_value = 0 . 035374 number = 75 
k=0 . 03 mean value = 0 . 035408 number = 75 
k=0 . 0305  mean_value = 0 . 035441 number = 75 
k=0 . 031  mean_value = 0 . 035474 number = 75 
k=0 . 03 15 mean_value 0 . 035508 number 75 
k=0 . 0320 mean_value 0 . 035541 number 75 
k=0 . 0325 mean_value 0 . 035574 number 75 
k=0 . 0330 mean_value 0 . 035608 number 75 
k=0 . 0335  mean_value 0 . 035641 number 75 
k=0 . 0340 mean_value 0 . 035674 number 75 
k=0 . 0345 mean_value 0 . 035708 number 75 
k=0 . 0350 mean_value 0 . 035741 number 75 
k=0 . 0355 mean_value 0 . 035774 number 75 
k=0 . 0360 mean_value 0 . 035808 number 75 
k=0 . 0365 mean_value 0 . 035841 number 75 
k=0 . 0370 mean_value 0 . 035874 number 75 
k=0 . 0375 mean_value 0 . 035908 number 75 
k=0 . 0380 mean_value 0 . 035941 number 75 
k=0 . 0385 mean value 0 . 035974 number 75 
k=0 . 0390 mean_value 0 . 036008 number 75 
k=0 . 0395 mean_value 0 . 036041 number 75 
k=0 . 0400 mean_value 0 . 036074 number 75 
k=0 . 0405 mean_value 0 . 036108 number 75 
k=0 . 0410 mean_value 0 . 036141 number 75 
k=0 . 0415 mean_value 0 . 036174 number 75 
k=0 . 0420 mean_value 0 . 036208 number 75 
k=0 . 0425 mean_value 0 . 03624 1 number 75 
k=0 . 0430 mean_value 0 . 036274 number 75 
k=0 . 0435 mean_value 0 . 036308 number 75 
k=0 . 0440 mean_value 0 . 036341 number 75 
k=0 . 0445 mean_value 0 . 036441 number 75 
k=0 . 0450 mean_value 0 . 036408 number 75 
k=0 . 0455 mean_value 0 . 036441 number 75 
k=0 . 0460 mean value 0 . 036474 number 75 
k=0 . 0465 mean=value 0 . 036508 number 75 
k=0 . 0470 mean value 0 . 03654 1 number 75 
k=0 . 0475 mean=value 0 . 036574 number 75 
k=0 . 0480 mean_value 0 . 036608 number 75 
k=0 . 0485 mean_value 0 . 036641 number 75 
k=0 . 0490 mean value 0 . 036674 number 75 
k=0 . 0495 mean=value 0 . 036708 number 75 
k=0 . 0500 mean_value 0 . 036741 number 75 
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