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SCOPE AND CONTENTS 

This thesis presents a unified treatment of circuit and system 

design methods embodying centering, tolerancing and tuning. The 

approach incorporates the nominal parameter values, the corresponding 

tolerances and tuning variables simultaneously into an 

optimization procedure designed to obtain the best values for all of 

them in an effort to reduce cost, or make an otherwise impractically 

toleranced design more attractive. Intuitively, the aim is to 

produce the best nominal point to permit the largest tolerances and 

the smallest tuning ranges (preferably zero) such that one can 

guarantee, in advance, that in the worst case, the design will meet 

all the constraints and specifications. 

Reduced problems are formulated for digital computer 

implementation, Interpretations are given. Implications of 

biquadratic functions in the circuit tolerance problems are 

investigated. Practical implementation in circuit design problems 

in the frequency domain is treated. The thesis also includes 

illustrative examples and two realistic problems. 
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CHAPTER l 

INTRODUCTION 

With readily available and ever increasing computing power at 

hand, computer-aided designers are now venturing to deal with more 

realistic problems. Useful and important material in computer-aided 

circuit design may be found, for example, in the collection of reprints 

in COMPUTER-AIDED CIRCUIT DESIGN, edited by Director (1973), in 

COMPUTER-AIDED FILTER DESIGN, edited by Szentirmai (1973), in MODERN 

FILTER THEORY AND DESIGN, edited by Ternes and Mitra (1973), in the 1971 

Special Issue on Computer-Aided Circuit Design of the IEEE 

TRANSACTIONS ON CIRCUIT THEORY and also in the 1974 Special Issue on 

Computer-Oriented Microwave Practices of the IEEE TRANSACTIONS ON 

MICROWAVE THEORY AND TECHNIQUES. 

The tolenanee pnoblem, which is also known as the design 

centering and tolerance assignment problem, has attracted deep 

interest among designers. Besides books by Geher (1971) and Calahan 

(1972) which deal briefly with this subject, some relevant papers 

are also contained in Szentirmai's selection. A short list of recent 

publications in this area is included in the Additional Bibliography 

to give an indication of current efforts. 

The two objectives in the tolerance problem are: 

(1) Some strict tolerance limits may be met by placing the 

nominal values of a design at a suitable 'center' (called 

1 



deo,i_gn Qen,teJv[ng) and distributing the corresponding 

tolerances (called tole.JtanQe ali�ignmerit) . 

(2) A more economical design may be obtained by minimizing 

a function which describes the cost-tolerance relationship. 

Four recent, relevant approaches have been proposed in the 

area of circuit design. 

(1) One approach is based on the concept of la.Jtge-Qhange 

�en/2).;t,[vUy as described by Butler (1971a, 1971b) to center 

a design. It involves pe.JtooJr.manQe QOYLtoUJi.l> and deals with 

pairwise parameter interaction to specify tolerances. The 

centering and tolerancing are separate procedures. See Butler 

(1971) and also Karafin (1971) . 

(2) A second approach is based on the concept of 

�ta.;t,,,[}.,:t{Qa,l momen..t6 which are parameters describing a 

distribution of values. It finds the maximum possible 

moments of each component value distribution given the 

constraints on the second moment of the circuit or system 

response. See, for example, Seth and Roe (1971) and Seth 

(1972). 

(3) Annrh�r approach is based on a �e�6.ltlv-�ty mod�l. 

Multivariate Taylor series approximations of the circuit 

responses evaluated at the nominal point are used in the 

formulation of constraints for a nonlinear program. It is, 
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essentially, an extension to the n,Ut.6t-onde.Jt .6ent,,Ltlvliy 

method. Computation may be saved by evaluating some well

chosen first- or second-order derivatives. See Pinel and 

Roberts (1972) .  By introducing extra variables which represent 

changes in nominal values, Pinel (1973) reported that the 

approach can also deal with centering and tolerancing 

simultaneously with some success. 

(4) The last approach is based on containing the toleJtanQe 

negion (a set of all possible outcomes of a design) in a 

QOn.6btainx negion (a set of points in the parameter space 

with performance specifications and design constraints 

satisfied). To save some computational effort, a well-chosen 

set of points from the tolerance region should be used. An 

appropriate cost function and a set of transformed constraints 

are employed in the optimization. See Bandler (1972, 1974) 

and Bandler and Liu (1973, 1974a) . Both centering and 

tolerancing are treated simultaneously for the benefits of 

increased tolerances by permitting the nominal point to move. 

No approximation is used by this approach. The idea of a 

floating and expanding polytope may give some intuitive 

insight into the method. 

Except for the second approach, all the other three are 

deterministic in nature. These are commonly known as WOMX-Qa.6e 

de.o,lgn methods. 



In the worst-case approach, the aim is to meet the 

performance specifications in all possible cases, even in the "worst" 

cases. Thus, it is also sometimes called the 100% yield duign. For 

the small-change sensitivity model, the worst case always occurs at a 

vertex of the tolerance region indicated by signs opposite to those of 

the corresponding partial derivatives. This is also true if the 

response of the circuit or system varies monotonically with respect 

to the variations in the component values taken one at a time. For 

large-change variations, however, this is not always true. 

Assumptions to predict the worst points have to be made and, 

subsequently, these assumptions have to be tested. 

Another important practical consideration in design is the 

tuning p�oblem. A design often requires tuning or alignment as a 

post-manufacturing process (Pinel 1971) . 

The work described in this thesis provides a theory of 

optimal WoMt-c.ru,e., duign embodying all the c.e.,n.t�ng, toleJzanung 

and tuning problems in a unified manner at the design stage. The 

approach incorporates the nominal design parameter values, the 

corresponding tolerances and tuning variables simultaneously into 

an optimization procedure so as to obtain the best values for all of 

them in an effort to reduce cost, or make an otherwise 

impractically toleranced design more attractive. Intuitively, the 

aim is to produce the best nominal point to permit the largest 

tolerances and the smallest tuning ranges (preferably zero) such that 

we can guarantee, in advance and in the worst case, the design 

4 



satisfies all the constraints and meets all the performance 

specifications. See Bandler and Liu (1974c, 1974d) , Bandler, Liu 

and Chen (1974a, 1974b, 1975) , Bandler, Liu and Tromp (1975a, 1975b) . 

The formulation is general such that the worst-case purely 

toleranced problem and the purely tuned problem fall out as special 

cases. Any of the nominal values, tolerances or tuning (relative or 

absolute) can be fixed or varied. Solutions can be continuous or 

discrete. Variable specifications such as tuned circuits can be 

extended without any additional theoretical difficulty. 

The general formulation is presented in Chapter 2. Reduced 

problems to simplify computation are also treated and conditions of 

validity are stated in appropriate theorems. A geometric 

interpretation using concepts of projection and slack variables is 

discussed. Simple examples are studied to illustrate the effects of 

tuning and the interdependency of tolerancing, tuning and centering. 

Chapter 3 deals with constraints arising from certain circuit 

applications. Implications of biquadJta:Ue nunc.tionJ.> in the circuit 

tolerance problem are studied deriving some necessary conditions to 

have the worst case occurring at the boundary of an interval. A 

one-dimensional case is studied. See Bandler and Liu (1974b, 1975) . 

Chapter 4 suggests practical implementation which may lead to 

5 

the development of user-oriented design optimization packages. Part 1 

discusses topics such as vmex Je.lec.tion Jeheme6, de6ign Jymmetlty and 

its implications, performance specifications and parameter constraints. 

Implementation of the tolerance problem is demonstrated. Part 2 deals 



with tuning problems. Cases with separated as well as mixed 

tolerancing and tuning components are treated. Part 3 presents the 

results for two real problems reported by industry (Karafin 1971, 

Pinel and Roberts 1972, Pinel 1974, and Roberts 1974) . 

Circuit examples throughout the thesis are confined to lumped 

or distributed, linear, time-invariant networks in the frequency 

domain. The optimization in the minimax sense of the 2-section 10:1 

quarter-wave transmission-line transformer has been previously 

studied by Matthaei, Young and Jones (1964), Baudler and Macdonald 

(1969) , Baudler and Charalambous (1972a) , and Baudler, Srinivasan and 

Charalambous (1972). The study of the 5-section transmission-line 

filter has been reported by Braucher, Maffioli and Premoli (1970) , 

Baudler and Charalambous (1972a) , and Baudler, Srinivasan and 

Charalambous (1972). The adjoint network approach for evaluating the 

gradients of the response function with respect to network parameters 

was used (Director and Rohrer 1969, Baudler and Sevtora 1970) . 

For the sake of conciseness and continuity, related material 

is presented in the Appendices including mathematical concepts, 

nonlinear (continuous and discrete) progrannning, a basic theorem 

concerning convexity and a proposal for a user-oriented tolerance 

optimization package. 

The major contributions claimed for this thesis are: 

(1) A unified approach to the theory of optimal worst-case 

design embodying centering, tolerancing and tuning. 
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(2) The statement and formulation of reduced problems 

adaptable to computer implementation. 

(3) A geometric interpretation of tuning and tolerancing. 

(4) Necessary conditions for a biquadratic function of a 

single variable to be pseudoconcave or pseudoconvex, and some 

implications of these conditions in the circuit tolerance 

problem. 

(5) Special algorithms to exploit symmetry and monotonicity 

of the response functions. 

7 



CHAPTER 2 

OPTIMAL WORST-CASE DESIGN 

2. 1 Introduction 

Component tolerance assignment is now considered to be an 

integral part of the design process. The optimal worst-case 

tolerance problem with variable nominal point has benefitted in 

terms of increased tolerances (Baudler and Liu 1974a) . Tuning, on 

the other hand, does not seem to have been given its proper place 

in the design process. This work, therefore, brings in tuning of 

one or more components basically to further increase tolerances to 

reduce cost or to make unrealistically toleranced solutions more 

attractive. In this chapter, the mathematical formulation of an 

approach which embodies centering, tolerancing and tuning in a 

unified manner is presented (Baudler and Liu 1974c, 1974d) . 

Simplified problems and appropriate geometric interpretations are 

discussed. The worst-case purely toleranced problem and purely 

tuned problem fall out as special cases, as is to be expected. 

Numerical examples involving some simple functions illustrate the 

concepts. 

2. 2 Fundamental Concepts and Definitions 

A duign consists of design data of the nominal. point �
0
, the 

tole.Jtanee veeto� s and the tuning veeto� �' where 

B 



cp 0 

1 El tl 
cpo 

2 E2 t2 

cpo Ii E � and t � 

"' 0 
Ek 't'k L-k 

k is the number, for example, of network parameters which may be 

indexed by 

I
cp 

� {l, 2, ••• , k}. 

9 

(2 . 1) 

(2. 2) 

We will assume that (1) the parameters can be varied continuously, 

and (2) the parameters can be chosen independently. Extra conditions 

such as discretization and imposed parameter bounds may be treated as 

constraints. See Bandler, Liu and Chen (1974a, 1974b, 1975) . Some of 

the parameters can be set to zero or held constant. 

0 0 An oux:eome {cp ,E,µ} of a de.l.)ign {cp ,E,t} implies a point in the 

parameter space given by 

cp = cpO 
+ Eµ, (2. 3) 

E � (2. 4) 



and µsR . R is a set of multipliers determined from realistic 
~ µ µ 

situations of the tolerance spread. For example, 

where 

0 < < 1 . - ai - • 

(2. 5) 

(2. 6) 

The most commonly used continuous range is obtained by setting a. to 
1 

zero. A commercial stock will probably have the better toleranced 

components taken out, thus O < a. � 1. Unless otherwise stated, the 
1 

case 

R 
6 

{µj - 1 < < 
µ µi 

is considered (Bandler and Liu 1974a) . 

(2. 7) 

The tole.Jtanee negion R ,  as described by Butler (1971) and 
E 

Bandler (1972, 1974) , is a set of points defined by (2.3) for all 

µsR . In the case of -1 < µi: 1, isl�, 
~ µ 'f' 

R� C' =f:J. ��_1'.1.ri = �o
+c- u 1 < u < � l'f' w 'f'i. �i�i' -- �i 

which is a convex negu.laJL polytope of k dimensions with sides of 

(2.8) 

length 2si, isl
<f>
, and centered at cp

0
• The extreme points of R are 

E 

10 



obtained by setting µ.= ±1. Thus, the set of veJr.;{:j_eu may be defined 
1 

as 

= ¢? + s.µ., µ.s{-1,1}, isl�}: 
1 1 1 1 't' 

(2.9) 

The number of points in R is 2
k

. Let each of these points be indexed 
V 

by <P
i, isl, where 

V 

l � {l, 2, •. . , 2
k

}. 
V 

1 2 2
k 

Thus , R = { ¢ , ¢ , •. . , ¢ } • 
V 

(2 .10) 

The tuning negion Rt(µ) is defined as the set of points (see 

Baudler and Liu 1974c, 1974d) 

¢=<PO + Eµ + Tp, 

for all psR , where 
~ p 

T A 

'-k 

Some of the common examples of R are 
p 

(2 .11) 

(2.12) 

11 



R � {pl - 1 < < 1 . I} 
p pi_ , lE ¢, 

or in the case of one-way �uning or bvteve.JL6ible bumming, 

or 

R = {p 1' 0 < -
p pi 

< 1, 

(2.13) 

(2.14) 

(2.15) 

Unless otherwise indicated, the case given by (2.13) is considered. 

The eon6:tltaint. negion R is defined as (Butler 1971, Bandler 
C 

1972, 1974), 

(2.16) 

where 

I � {1, 2, . . .  , m} 
C C 

(2 .17) 

is the index set for the performance specifications and parameter 

constraints. R is assumed to be not emptye Other conditions and 
C 

assumptions will be imposed on R as the theory is developed further. 
C 

12 

The definitions are illustrated in Fig. 2.1 by a two-dimensional 

example. 



r-----7

tolerance I __J.-tuning region Rt<,u > 
. R I 

I reg1_on £ i j , ;-\----tt� I "� 

I - , "'' 

13 

--------------------'P, 

Fig. 2 .1 An illustration of regions R ,  R and R .. E t C 



A tunable eon.J.>bta.int negion is denoted by R (�) , where� 
C ~ ~ 

represents other independent variables. Figure 2.2 depicts three 

different regions of an example of R (�) .  Overlapping of these C ~ 

regions is allowable. The value of� may be continuous or discrete. 

R (w) = R in the ordinarv sense if w is a constant. 
C ·:' C 

� T 

2. 3 The Original Problem P
O 

The problem may be stated as follows: obtain a set of optimal 

0 0 design values {¢ , E,t} such that any outcome {¢ ,£,µ}, µER , may be 
~ µ 

tuned into R for some pER .  
C ~ p 

where 

It is formulated as the nonlinear programming problem: 

0 minimize C (¢ ,E,t) , 

subject to¢ E R , 
~ C 

¢ = ¢ O + Eµ + Tp (2. 18) 

0 and constraints¢ , E, t � O, for all µER and some pER .  C is an 
~ ~ ~ ~ ~ µ ~ p 

appropriate function chosen to represent a reasonable approximation to 

known component cost data. 

Stated in an abstract sense, the woMt-eaoe �olu.:tion of the 

problem must satisfy 

14  



15 

Fig. 2.2 An example of three different settings of 

the tunable constraint regions. 



for all µER , where 0 denotes a null set. 
~ µ 

2.4 The Reduced Problem P1 

The original problem P0 of the preceding section can be 

reduced by separating the components into ennec.tively tuned and 

en&ec.tively tolVtanQed parameters. Let 

I � {il E. > ti, id
cj>
}, 

E l. 

It � {il t. > Ei' id
cj>

}, 
l. 

-

E! � E. - t., i E I E' l. l. l. 

and 

It is obvious that It and IE are disjoint and ItU IE
= I

cj>
. 

Now, consider the problem 

0 minimize C (cj> , E, t), 

subject to ¢ E .R ,  
~ C 

16 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 



where 

( . for i E: I 
<1>? 

1 
s: µ. 

</>
i 

+ 1 1 E: (2. 24) = 
1 t! p! for i E: I 

1 1 t' 

for all -1 < µi 
< 1, iE:I and for some -1 < p ! < 1, idt. - - E: ' - -

1 

2. 4. 1 Theorem 2. 1 

A feasible solution to the neduced pnoblem P1 is a feasible 

solution to the original problem P0• 

Proof Given </>o
, s, t we will show that 

(1) 

(2) 

s.µ. + t. p. = s! µ. 
1 1 1 1 l l 

E:. µ. + t.p. = t! p! 
l l l l l l 

i s I , E: (2. 25) 

(2. 26) 

under the restrictions on µ. , p. and p! . 
l l l 

(1) Since pi can be freely chosen from -1 < pi
< 1, we can 

let p. = -µ. giving 
l l 

(e:. - t.)µ. = 
l l l 

(2. 27) 

(2) For any -1 < pi < 1 and all -1 � µi 
< 1, we can choose 
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(t. -E. )p ! - E
1
.µ

1
. 

1 1 1 
< 1 

t. 
1 

t. � o. 
1 

(2. 28) 

Thus, any point with components represented by (2. 24) of the 

reduced problem can be represented by (2. 18) of the original 

problem. See Baudler and Liu (1974d). 

Intuitively, this theorem states the fact that a feasible 

solution to a restrictive problem is also a feasible solution to an 

appropriate less restrictive problem. The variable transformation 

equations (2. 22) and (2. 23) may be considered as extraneous 

constraints to be satisfied. 

2. 4. 2 Concept of One-Dimensional Convexity 

The concept of one-dimensional convexity is important in this 

study. A region R is said to be QOnvex if 

implies that 

(2. 29) 

for all O �A � 1. See Mangasarian (1969) . We define a region R to be 

one-dJJnen/2ionaUy QOnvex (see Baudler 1972) if, for all jEI¢, 

18 



¢ a
, ¢b (j) �¢ a + ae. E R, 

~J 
(2. 30) 

where a is a constant and e. is the jth unit vector, implies that 
_J 

e: R' (2.31) 

for all O � A� 1. See Fig. 2.3 for some illustrations. R1 is both 

convex and one-dimensionally convex whereas R2 is one-dimensionally 

convex only. R3 is neither. Since convexity implies one-dimensional 

convexity, the latter is less restrictive. 

2.4. 3 Theorem 2. 2 

A feasible solution to the original problem P0 implies a 

feasible solution to the reduced problem P1 if R
e 

is one-dimensionally 

convex. 

Proof Consider the following. 

(1) We note, for iEI , that 
€ 

¢? - €. + t.p. (-1) < ¢? - €. + t. < ¢? + (E. -t. )µ. 
1 1 1 1 1 1 1 1 1 1 1 

< ¢? + E. - t. < ¢? + E. + t.p. (l) 
1 1 1 1 1 1 1 

(2.32) 

where p. (-1) corresponds to µ. = -1 and p. (l) corresponds to 
1 1 1 
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Fig . 2 . 3  

cf:.a <pb(1} --•------• 

Illustrations of  convex , one-dimensionally convex 

and nonconvex regions . 
,,,_�.-:�·'•. ' -
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µ. = 1. If R is one-dimensionally convex, the following 
l. C 

assumption 

� t.p. (-1) ] , l. l. 

implies that 

- t. )µ. l. l. 
e: R , 

C 

e: R 
C 

(2. 33) 

(2. 34) 

where we consider changes in the ith component only and impose 

the required restrictions on µ. and p .• 
l. l. 

(2) On the other hand, for ie:I , given feasible p. (-1) and 
t 1 

p. (l) such that 
l. 

there exists a feasible ,.. , I-Ii such that 

¢? - e:. + t
l.
.p

l.
. (-1) 

l. l. 
< ¢? + (t. - e:.)p ! < l. l. 1 l. 

(2. 35) 

¢? + e:. + t.p. (l) , 
1. l. 1 1.  

(2. 36) 
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This is true for t. = E. and can be seen for t. > E. by 
1 1 1 1 

rewriting this inequality as 

-E. + t. p. (-1) 
1 1 1 

t. - E. 
1 1 

< p ! < 
1 

E. + t. p. (1) 
1 1 1 

t. - E. 
1 1 

Hence, if R is one-dimensionally convex, the assumption 
C 

implies that 

[ </> � + (�. - e:. )p '. ] E R • 
1 1 1 1 C 

(2. 37) 

(2.38) 

Thus, a feasible solution to the original problem can be 

transformed to a feasible solution of the reduced problem P1• See 

Bandler and Liu (1974c, 1974d). 

2.5 A Geometric Interpretation 

Let us define a p�ojewon mClt!u..x P as a diagonal matrix such 

that 

P2 

p � (2. 39) 

2 2  



where 

( 
0 for 

t 
i E It pi = (2.40) 

for i E I 
E 

In general, a projection operator p is defined as a linear operator 

2 such that p = p. P obviously obeys such a property. See Finkbeiner 

23 

(1960) , _Yale(1968) and Lancaster(1969) , for some properties of a projection 

operator. 

The projection of a point¢ may be denoted as¢ = P¢. It may 
~P ~~ 

be noted that the projections of two points ¢a, ¢b (j) =¢a + ae., for 
~J 

je:It, and some constant a, coincide. The projection concept and the 

introduction of slack variables provide a key to understanding the 

tuning concept. 

Let 

(2.41) 

and 

(2.42) 

denote the regions defined by the effectively toleranced and 

effectively tuned parameters. Then consider the following regions 

(2.43) 



and 

R � R It Rt , 
CtE C E 

R g {¢ I¢ = P¢ 
ctEp ~P ~P 

¢ER }. 
~ CtE 

(2.44) 

(2.45) 

Figure 2.4 illustrates the definition of the regions. Any point 

whose components are given by (2.24) lies in the intersection of R 
Et 

Suppose the projection of R t onto the subspace spanned by 
C E 

the effectively toleranced parameters includes the projection of that 

point. Then it may be tuned into RctE by adjusting the value of p1, 

id . t 

The reduced problem P1 may be stated as: solve a pure 

tolerance problem (i.e., no tuning) in the subspace spanned by the 

toleranced variables with R t as the tolerance region and R as E p ctEp 

the constraint region. 

In other words, the regions defined by a feasible solution must 

satisfy the condition that 

R t 
SR 

E p ctEp 

Figure 2c5 illustrates a case ·where REtp¢.: RctEp• 

at ¢O cannot be tuned to R within the effective tuning range. 
C 

However, there exists a solution to the original formulation by 

(2.46) 

tuning both components. R is not one-dimensionally convex in this 
C 

case. 
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Rctep 

Fig. 2.4 A geometric interpretation of the reduced 

. problem P 1. 
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2. 5. 1 Special Cases 

We will consider two special cases. 

Case 1: I = 0, the pWte :tuning p�oblem. 
£ 

In this case, REt is the entire space and P is a zero matrix. 

R is a single point at the origin. The problem has a Etp 

solution if 

R :/: (/J. 
CtE 

Case 2: It
= 0, the pWte tol�anee p�oblem. 

(2. 4 7) 

In this case, RtE 
is the entire space and P is a unit matrix. 

R = R and R = R = R The problem has a solution 
Etp Et CtEp CtE c• 

if 

(2.48) 

From a tolerance-tuning point of view, the first case is a 

trivial case theoretically. Except when there is only one single 

point R ,  the pure tuning problem is equivalent to an optimization C 

of the nominal parameter values. On the other hand, the pure 

tolerance problem is very important from a practical point of view. 
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2.6 Extension of P1 for Tunable Constraint Region 

Three types of components can be identified when the constraint 

region is considered to be tunable. They are: 

(a) Toleranced components, 

(b) Components tuned by the manufacturer, and 

(c) Components tunable by the customer. 

In this case, 

cp E R (lJ;) C ~ 

where 

s!µ. for i € I 
l l € 

cp i = cp? + t!p� for i € 1tm (2. 49) l l l 

t!p�(lJJ) for i € I 
l l ~ tc 

where I identifies components (b) and I identifies components (c). tm tc 

Setting the lJJ to a particular value will control the setting 

of p�, i s  Itc' such that cp will be in that particular constraint 

region R (lJJ). C ~ 

2.7 The Reduced Problem P2 

It is impossible to test all the points in R to be in R stp ctsp 

In order to make the problem tractable a number of simplifying 

assumptions could be made to obtain an acceptable solution to the 
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problem with reasonable computational effort. 

To this end we replace the continuous range -1 � µi 
< 1 by a 

discrete set µ_s{-1,1}, isl 
1. s 

where 

Now, consider the problem 

�? �i 1. 

0 minimize C (� ,s,t), 

subject to� s R ,  
C 

{ 
s! µ. for i s 

+ 
1. 1. 

t! p! for i s 
1. 1. 

I s 

It, 

for all µ. s{-1,1}, isl , and some -1 s p! S 1, isl . 
1. s 1. t 

(2.50) 

Let us define the set of p�oject.ed vvi:tJ.,Qef., (or the vertices of 

the projected region) by 

,... , e: i·�v J' 

The condition may be now stated as 

R s R
,. �LC"D • vp .... """ £"" 

,,,, ... 1 '  
\_L • .:J J.) 
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2. 7.1 Theorem 2. 3 

A feasible solution to �edueed p�oblem P2 implies a 

feasible solution to reduced problem P1 if R
t 

is one-dimensionally 
C e:p 

convex. 

This is a pure tolerance problem in the subspace spanned by 

the effectively toleranced parameters. For a proof in the tolerance 

parameter space, see Appendix B which describes the proof by Bandler 

(1972, 1974). 

2. 8 The Objective Function 

Several objec_Uve iunc..Uow., (or eo�x iunc_UoM) have been 

proposed by Bandler (1972, 1974), Pinel and Roberts (1972) and Bandler 

and Liu (1973, 1974a). In practice, a suitable modelling problem would 

have to be solved to determine the cost-tolerance relationship. Here, 

it is assumed that the tolerances and tuning ranges (either absolute 

or relative) are the main variables and that the total cost of the 

design is the sum of the cost of the individual components. 

The objective function should have the following properties, 

0 
C(cp ,e:, t) -+ C as e: -+ 00 

0 
C(cp , e:, t) -+ 00 for any e: . -+ 0' 1. 

(2.52) 

0 0 
C(cp , e:, t) -+ C(cp , e:) as t -+ o, 

0 
c<<P , e:, t) -+ 00 for any ti 

-+ 00 
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Suitable objective functions will be, for example, of the form 

k 
C I 

i=l 

c. 1 
x. 1 

k 
+ I 

i=l 
C � y. ' 1 1 

(2.53) 

where x. and y. denote the tolerances and tuning ranges, respectively. 
1 1 

In the case of relative tolerances or relative tuning ranges 

E. 
1 100, x. = 

1 cp? 
1 

(2.54) 

t. 
1 100. Yi 

= 
ox 
cj>i 

(2.55) 

We may set the appropriate c� to zero if tuning is considered either 1 

free, or fixed or is not required. 

corresponding tolerance is fixed. 

2.9 A Tolerance Example 

Consider the constraints 

- cl>� + l 6cj> 1 > 0.  
L .1. -

c. may be set to zero if the 1 

A convex region R is defined by these constraints. 
C 

We will take R as an infinite set of discrete points 
µ 

(2.56) 

(2. 57) 
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� (i), i = 1, 2, •. • , where -1 � µ1 (i) � 1 and -1 � µ2 (i) < 1. Thus a 

relevant problem may be formulated as follows. Minimize 

with respect to E1, E2, ¢� and ¢�, and subject to 

g5(i) 

g6 (i) 

= (¢0 + E
2
µ

2
(i) ) -

2 

= - (¢0 
+ 2 E2µ2

(i) ) 2 

(¢0 + 1 

g = "'O > O ,  
3 "'l 

Elµl (i)) - 2 

+ 16(¢� + Elµl (i)) 

where -1 � µ1 (i) � 1 and -1 � µ2(i) � 1. 

> -

> -

o, 

g4 = ¢� � o, 

(2.59) 

i = 1, 2, . . .  

(2.60) 

o, i = 1, 2, . . .  

( 2.6 1)  

The Kuhn-Tucker (1951) necessary conditions for a 

constrained minimum require that (see also Baudler 1973) 

16µ1(i) 

u2 µ2(i) 

+ 
� 

u5(i) + f u6(i) 
1 1 

0 1 1  -1 ... 3 16 

0 1 -2(¢�+E2µ2(i)) 

(2.62) 
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ulgl 
= = u4g4 = u5(i)g5(i) = u6(i)g6(i) = o ,  

i = 1' 2 ' { 2.63) 

ul ' 
e e C , U4 , us(i), u6(i) > o, i = 1, 2, . . .  (2.64) 

where u denotes a multiplier. To solve the above equations , assume 

0 0 that s1, s2, ¢
1 and ¢2 are not zero, therefore, set u1, u2, u3 and u4 

to zero. Minimize g5(i) of (2.60) and g6(i) of (2.61) with respect 

to µ(i). This leads, respectively, to 

(2.65) 

using µ(i) = [1 -l] T and 

(2.66) 

using µ(i) = [-1 l] T. The optimality conditions (2.62) - (2.64) are 

correspondingly reduced yielding the solution 

s2 = 0. 5 , 0 ¢1 
= 4 . 5, 

2.10 A Tuning Example 

Consider the problem of minimizing 

1 C = s' 2 

,i., O = 7 5 "'2 • • 

(2 . 67) 
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with respect to ti, E2, ¢�, ¢� and p1 (i), and subject to 

g8(i) = 1 - p i(i) > o, i = 1, 2, . • • 

g9(i) = 1 + p i(i) > O, i = 1, 2, . . • 

¢ 0 > 0 , 2 

34 

(2.68) 

(2.69) 

(2.70) 

(2. 72) 

(2.73) 

Here, El is considered fixed at 0.5 and there is a maximum effective 

tuning range of 10%. Hence, the first component does not contribute to the 

cost. The effective tuning range t1 
= t1 - 0.5 is used as a variable. 

The optimality conditions require that 

0 1 -p i(i) ul - -;a 1 

2 U2 0 µ2(i) 
E2 t' 
0 + us 

1 I u6(i) -1 = u3 ¢02 + 

1 
0 U4 0 1 

0 0 0 -ti:i 
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16pi(i) 0 

-2(¢�+E2µ2(i))µ2(i) 0 

+ I u1 < i) 16 + I us (i) 0 

i 
-2(¢�+E2µ2(i)) 

i 
0 

16tie. 
_ ]. 

-e . 
_ l. 

0 

0 

+ 
� 

u9(i) 0 , (2. 7 4) 

0 

e .  
_ l. 

ulgl 
= = u5g5 = u6(i)g6(i) = = u9(i)g9(i) = o ,  

i = 1' 2, . . .  (2. 75) 

ul, U
5
, u6(i), u9(i) > o ,  i = 1, 2, . . .  (2. 76) . . .  , . . .  ' 

Minimize g6(i) of (2. 70) and g7(i) of (2. 71) with respect to 

µ2(i). We use µ2(i) = -1 in (2. 70) and µ2(i) = 1 in (2. 71) for this 

purpose. The corresponding pi(i) = -1 and pi(i) = 1, respectively, are 

obtained by maximizing g6(i) and g7(i) with respect to pi(i). This 

yields the solution 

ti = 0. 5432 , E2 = 1.444 , ¢� = 5. 4321 , ¢� = 8 .  3333 • 

As expected, the inclusion of tunable elements can increase 

the tolerance on the components. The tolerance of the second parameter 



increases from s2 
= 0.5 to s2 

= 1. 444 when the first component is 

allowed to have a maximum effective tuning range of 10%. This means 

that an actual absolute tuning of 1.0432 and a tolerance of 0.5 are 

designed for ¢1• The result can only be accomplished by allowing the 

nominal point to move . For example , the firs t component moved from 

3. 5 to 5.4321 , a shift of 55%. 

2.11 Summary 

36 

In this chapter, the problem of design centering , tolerancing 

and tuning has been presented in a unified manner. Definitions of 

constraint , tolerance and tuning regions are given. The concept of a 

tunable constraint region that allows variable specifications as set 

by the customer has also been treated. Reduced problems and conditions 

of validity are stated and proved in appropriate theorems. A geometric 

interpretation is discussed. Two simple examples have been studied to 

give some insight. 



CF��PTER 3 

SOME IMPLICATIONS OF BIQUADRATIC FUNCTIONS 

3. 1 Introduction 

It has been stated in Chapter 2 that the constraint region R 

may be defined by a set of constraint functions . However , Chapter 2 

is primarily concerned with the region itself rather than the 

functions. Conditions for the worst cases to occur at the vertices 

of the tolerance region will be studied in this chapter. In 

C 

practice , two kinds of constraint functions may be identified. The 

first kind which determines the iecv.,ibilily of a design is denoted as 

gf ( ¢) . The second kind which determines the aQQeptabilily of a design 

is denoted as �a ( �). �f ( �) is usually derived from physical 

considerations such as nonnegativity of parameter values , component 

bounds or any other physical restrictions in manufacturing. �a (�) , 

on the other hand , is derived from performance specifications. We 

shall be concerned mainly with the latter kind of constraint 

functions. In particular , this chapter is motivated by those 

electrical circuit responses which can be expressed as biquadratic 

functions of the parameter of interest. A one-dimensional case is 

presented. See Fidler and Nightingale (1972) for some biquadratic 

relationships ; Parker , Peskin and Chirlian (1965) and Geher ( 1971) for 

some circuit properties ; Mangasarian (1969) and Zangwill (1969) for a 
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discussion of functions more general than concave and convex 

functions. See also Bandler and Liu (1974b, 1975). 

We elaborate in this chapter on an underlying assumption made 

in a theorem proposed by Bandler (1972, 1974). See Appendix B. 

3. 2 The Biquadratic Functions 

3. 2. 1  General Properties 

Consider the biquac/Jta..tie nunw..on 

F(¢) = N(¢) = c¢2 
+ 2d¢ + e 

M(¢) ¢2 + 2a¢ + b 

The first derivative of F(¢) is 

F ' (cp ) = z (c¢+d)M(¢) - (¢+a)N(¢) 

M2(¢) 

(3. 1) 

(3. 2) 

It may be noted that the numerator of (3. 2) is a quadratic function of 

¢ which implies that the derivative has at most two changes of sign 

for finite values of ¢. Fur thermore, the function value approaches 

the value of c as ¢ ➔ ± oo .  

r s s r s Take any two points ¢ and ¢ and let b¢ = ¢ - ¢ . F(¢ ) 

may be expressed in terms of ¢r, b¢ and the coefficients of N(¢) and 

M(¢) as follows: 

= N(¢r) + 2b¢(c¢r+d) + cb¢ 2 

M(¢r) + 2b¢ (¢r+a) + M
2

-
. (3 . 3 ) 
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(3. 4) 

may be related to the first differential sensitivity F ' (¢r). We have 

therefore, 

= 2A¢{(c¢r+d)M(¢r)-(¢r+a)N(¢r) }-A¢2{N(¢r)-cM(¢r
) }  

M(¢r)M(¢s) 

(3.5) 

Given a fixed value ¢r, we can find uniquely one other point ¢s 
such 

or M(¢r) = 0. The point ¢s is given, using (3.5) with bF = O, by 

¢s = ¢r + F'(¢r)M(tr) 

F(¢r) - c 

(3 . 6) 

For the case F'(¢r) = 0, the point ¢r is either at the maximum or at 

the minimum of the function. There is only one finite point ¢c 
such 

that F(¢c) = c. The other points with the same value can only be at 

infinity. See, for example, Fig. 3.1. 
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F:Lg •. 3 . 1  A :general l?iquadratic - function . 
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3 . 2 . 2  As sumptions 

In the following discus sion , we shall as sume that M (¢ ) does 

h . ["'r , ,.,, s ] . not c ange sign on � � We shall also exclude points where 

M ( ¢ )  = 0 since the derivative of F (¢ )  is not defined at such points . 

3 . 3  Some Lemmas and Theorems 

3 . 3 . 1  Lemma 3 . 1 

0 < A < 1 provided that 

!::i.F - . 
!::i.¢ 

dF I 
d¢ ¢=� 

> o , (3 . 7 )  

h !::i.F . . . ( 3  4 ) l w ere 
!::i.¢ is given in • , � is ¢r or ¢s whichever corresponds to 

the lower function value . 

Proof 

Figure 3 . 2 illus trates this lemma . 

The case F (¢s ) > F (¢r ) will be considered firs t .  From 

(3 . 5 ) , we have 

where 

O < A < l . 

(3 . 8 )  

(3 . 9 ) 

4 1  



F 
I 

Fi�t!' 3 . 2  

I ........ -- � cf, 
I 

'Pr 

., I  
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6F dF I > O �-� 'P= efl 

Illustration of  pseudoconcavity on an interval . 



If condition (3.7) is satisfied, F ' (¢r) - dF I > O, then - d¢ ¢=¢r 

implies, since M (�) must not change sign, that 

Therefore, 

(3.10) 

(3.11) 

F(¢) - F(¢r) > O. (3.12) 

Similarly, for the case when F(¢r) > F(¢s), it is required from 

(3.7) that F'($ s) = :: 
1 $=$ s 

< 0. The equations corresponding to 

(3.5) and (3.8) are, respectively, 

and 

S .  l:i.F 0 ince - < , 
bi.¢ 

(3.13) 

(3.14) 

(3.15) 
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implies, since M(<P) must not change sign, that 

(3.16) 

and hence 

F(¢) - F(¢s) > O. (3 .17 )  

Inequalities (3.12) and (3.17) are true for all O < A < 1, hence the 

lemma is proved. 

provided that 

dF I d,1, 
> O, 

'I' ¢=¢ 

where ¢  is <Pr or <P
s whichever corresponds to the higher function 

value. 

The corollary may be proved by defining a new function 

(3.18) 

G(¢) = - F(¢) and applying Lemma 3.1. See Fig. 3.3 for an 

illustration. Figure 3.4 shows an example where both the lemma and 

its corollary apply. 

3.3.2 Lemma 3.2 

The function F(¢) is p� eudOQOnQave (see Appendix A) on the 
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Fig . 3 . 3  Illustration of pseudoconvexity on an interval .  
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Illus tration o f  monotonicity on an interval • .  



interval [ ¢r, ¢s ] except where M ( ¢) = 0 if the conditions of Lemma 3. 1 

are satisfied. 

Proof Consider the case F (¢s) > F (¢r). The other case follows a 

similar argument. Let us as sume that the function has more than one 

turning point in the interval. By the nature of the biquadratic 

function, there are at most two turning points. If we assume that 

there are two turning points on [ ¢r, ¢s ] ,  there exist two points 

a. r S r ¢ = ¢ + a.�¢ and ¢ = ¢ + S�¢, where O < a. <  S < 1 such that the 

following inequalities hold: 

and 

As a direct consequence of Lemma 3. 1 and inequality (3.20), the 

following inequalities can be made to hold: 

and 

(3. 19) 

(3 . 20) 

(3 . 21) 

(3. 22) 

Rewriting the function values in terms of F' (¢13), F (¢13) and M (¢S) as 

in (3 . 5) ,  we obtain 
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(3. 23) 

(3 . 24) 

and 

Multiply (3 . 23) by M(¢a) ,  (3 . 24) by M(¢r) and (3 . 25) by M(¢s) . 

Subtracting appropriately , we have 

a�� (F (� S ) - c )  { 
> 0 for M > 0 

< 0 for M < 0 , 
(3. 26) 

and 

- (1-a) �� (F (� S ) - c )  { 
> 0 for M > 0 

< 0 for M < o. 
(3 . 27) 

The last two pairs of inequalities are inconsistent , therefore ,  the 

as sumption that there are two turning points on the interval is false .  

F(¢) , ¢s[¢r , ¢s ] , is unimodal with a positive derivative at ¢r
. 

Given any two points ¢a 
and ¢b , such that F(¢b) > F(¢a) ,  we 

will consider the following: 

(1) F'(¢a) > O ,  then ¢b 
> ¢a 

because F is an increasing 

function between ¢r
and ¢a. 

(2) a b a F'(¢ ) < O ,  then ¢ < ¢ because F is a decreasing 

function between ¢a 
and ¢8

• 

Therefore ,  in both cases F(¢b) > F(¢a) implies F'(¢a)(¢b-¢a) > O ,  

which proves the lemma . 



Corollary: The function F(¢) is p-0eudoeonvex (see Appendix A) on the 

interval [¢r, ¢s ] except where M(¢) = 0 if the conditions of the 

corollary to Lemma 3 , 1 are satisfied. 

3.3.3 Theorem 3.1 

The min�mum of F(¢), ¢£ [¢r, ¢s ], lies on the boundary of the 
maximum 

interval if one of the following conditions is satisfied. 
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F '  (¢r) > 0 and F ' (¢s) < 0 (3.28a) 
< > 

F '  (¢r) > 0 � F ' (¢s) > 0 and F(¢r
) < F(¢s) 

or 

F ' (¢r) < 0, F ' (¢s) < 0 and F(¢r) > F(¢s). 

See, for example, Figs. 3.2 - 3.4. 

Proof We will prove the case for the minimum of F(¢) to be on 

(3.28b) 

(3.29) 

(3.30) 

the boundary of an interval for the conditions of (3.28a), (3.29) and 

(3.30). 

v r s r !::.F (1) Take ¢= ¢ , then F(¢ ) > F(¢ ) and 1::.¢ > 0. Using 

Lemma 3.1, F(¢r + A(¢
s-¢r)) > min[F(¢r), F(¢s)], 

0 < A < 1, will hold if F ' (¢r) > 0. This is satisfied in 

(3.28a) and (3.29). 

(2) Take �-= ¢8
, then F(¢r) > F(¢s) and �i < 0. Using 

Lemma 3 . 1 again, the requirement that F ' (¢s) < 0 



will be met in (3.28a) and (3 . 30). 

r s 6F (3) Suppose F(¢ ) = F(¢ ) and hence 6¢ = 0. We can find one 

point ¢a 
such that F(¢a) > F(¢r) = F(¢s). Two subintervals 

are thus obtained, each of which may be considered under 

cases (1) and (2) above. 

It should be noted that, from Lemma 3. 2, (3. 28a), (3.29) and 

(3.30) imply pseudoconcavity. From its corollary, (3.28b), (3.29) 

and (3.30) imply pseudoconvexity. 

3.3.4 Theorem 3. 2 

An aQQepxable in;teJLval denoted by I as a 

where S ., i£I ,  and S 0 . ,  i£I 0 , are the upper and lower 
Ul u Ni N 

specifications, respectively, and where Iu and Ii 
are disjoint 

(3. 31) 

index sets, is convex if the condition (3. 28a), (3. 29) or (3. 30) is 

s atisfied by Fi(¢), for all i£It ' and condition (3. 28b), (3.29) or 

(3.30) is satisfied by F.(¢), for all i£I . 
l U 

Proof Consider the case i£It and let 

(3.32) 
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Take two different points ¢r, ¢ s sI . . If the condition (3. 28a) , 
1 

(3. 29) or (3. 30) is satisfied, then from Theorem 3. 1 

thus 

Since 

0 < A < 1, 

0 < A < 1. 

r s ¢ 
'
¢ e: I. , 

1 

Therefore, 

l =  

51 

(3. 33) 

(3. 34) 

(3. 35) 

(3. 36) 

Hence Ii, ie:It ' 
is a convex interval by definition of a convex set. 

Similarly, for the case isl , if the condition (3. 28b) , (3. 29) or (3. 30) u 

is satisfied , using Theorem 3. 1 ,  we may prove that Ii ' isiu ' is convex. 

The intersection of convex sets is convex, and since by 

definition 



I a = n 

I is convex. a 

ie:I2 
ie:I 

I . , 1 

If any F(¢) has both upper and lower specifications, the 

( 3 . 37 ) 

1. c'iu.i.i.e'1 cuu'1.i.i...i.ous for a convex acceptable interval are restricted 

to (3.29) and (3.30). 

3.4 The Network Tolerance Problem 

We consider a b,L.,U._neaJt nej];Jonk nunc.,;Uon of the form 

(A + ¢B)/(C + ¢D) where A, B, C, and D are, in general, complex and 

frequency dependent. For a discussion on bilinear network 

functions, see Parker, Peskin and Chirlian (1965) and Geher (1971). 

Thus, we assume a function of the form 

F(¢) = A +  ¢B 
C + ¢D 1

2 N(¢) = M(¢) • (3 . 38 )  

In this case N, M � O .  The coefficients of (3 . 1) are related to the 

bilinear function as follows: 

a = 
C D  + C. D. r r 1 1 

l n l 2 

1 � 1 2  

C = � , I n 1 2 

e = I A l 2 

I D I 2 , 

_ l c l
2 

b -
l n l 2 ' 

d = 
A B  + A.B. r r 1 1 

l n l 2 (3. 39) 
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where the subscripts i and r denote the imaginary and real parts of 

the complex number. 

3. 4. 1 Filter Example 

2 
We have studied the behaviour of jp j , the modulus squared of 

the reflection coefficient p, for the LC lowpass filter (Fig. 3. 5) with 

respect to the variations of L, c
2 

and c
3, respectively. Figure 3. 6 

shows some of the curves for different values of frequency. The 

three vertical lines on each 4rawing represent the nominal values and 

the extreme values of ± 25% relative tolerance. The nominal values for 

L, c
2 

and c3 are 2, . 125 and 1, respectively. c1 = c3 for reasons of 

symmetry. 

The curves for L and c
2 

have two turning points each. For 

example, at w = 1 ,  (w denotes frequency in rad/sec. ) 

8112 - 1441 + 64 

8212 
- 1601 + 128 

(3. 40) 

The turning points are at L = . 889 and L = 8. 0 corresponding to the 

minimum of jp j 2 
= 0 and the ·maximum of I P l

2 
= 1, respectively. 

Setting I P l 2 = :; = c, we can solve for one unique point L = 4. 44 at 

which the curve is divided into two parts: I P l
2 

� . 988 for 

L � 4. 44 and I P l 2 � . 988 for L � 4. 44. The maximum and minimum 

function values occur separately in the two parts. The derivatives 

at the boundary of the tolerance region are both positive, 

indicating that the curve is monotonic in the region (both 
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1 - c  3 

- - - --•-

L 

Fig . 3 . 5  An LC elliptic lowpass filter example . 
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pseudoconvex and pseudoconcave) . 

For parameter c2 at w = 1 

2 4c2 + 4C2 + 1 

8C2 
+ 2 2 

(3.41 ) 

The maximum and minimum occur at values of . 5  and -.5. At c2 
= O, 

the curve is again divided into two parts for I P l 2 � .5  and I P l 2 
� . 5  

for positive or negative c2 values, respectively. 

The curves for c3 have only one turning point. The biquadratic 

function is of the form 

C� + 2ac3 + e 

c; + 2ac3 + b 
( 3 . 42 ) 

The minimum occurs at c3 = -a. The curves are pseudoconvex on (-00, 00) 

for frequencies in both the passband (0 � w S 1) and stopband (w � 2) . 

For the worst case at stopband frequencies to occur at the boundary 

of an interval, it is required that the curves corresponding to these 

frequencies also be pseudoconcave on the interval, i. e. ,  the curves 

should be monotonic on the interval. 

A situation which violates the conditions may be found, for 

example, by studying the w = 2. 0 curve of Fig. 3. 6 (a) for L between 

0 and 1. 
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Fig . 3 . 6 (a) I P l
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versus L for the ellip tic filter example . 
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3. 5  Conclusions 

Conditions for the worst case to occur at the boundary of an 

interval have been presented. The conditions may be used at least to 

partially justify the usual assumption that the worst case occurs at 

a vertex of the tolerance region. The present chapter deals with a 

one-dimensional case. Bandler (1972, 1974) has already related a 

one-dimensional convexity assumption for the acceptable interval to 

that of the k-dimensional case. Thus, Theorem 3. 1 involves necessary 

conditions for the vertices of a k-dimensional region . 
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CHAPTER 4 

IMPLEMENTATION IN NETWORK DESIGN 

4. 1 Introduction 

In this chapter, it is shown how to implement the ideas of 

Chapters 2 and 3 on a digital computer. Objective functions, 

performance specifications and parameter constraints are handled in 

a manner such that any of the nominal values, tolerances or tuning 

parameters can be fixed or varied. Time-saving techniques for 

choosing constraints (vertices selection) are discussed in detail. 

Schemes based on the assumptions of generalized convexity and 

monotonicity properties of the constraint functions are proposed. 

The schemes also check the conditions listed in Chapter 3 and perform a 

worst-case analysis. The schemes suggest the development of a general 

user-oriented computer program package called TOLOPT (TOLerance 

np�;m; 7 � � ; nn) described in Appendix D. See also Bandler, Liu and 

Chen (1974b, 1975) . 

This chapter contains a brief discussion of network symmetry 

and how it may be implemented to further reduce the number of 

constraints� 

The optimal worst-case tolerance problem which is very 

important in its own right is treated in Part 1. Part 2 brings in the 

tuning of one or more circuit components basically in order to further 

60 



increase tolerances on all the components. The implementation of 

tolerance-tuning problems is similar to the implementation of the 

tolerance problem. See Bandler, Liu and Tromp (1975a, 1975b). 

The nonlinear programming problem takes the general form: 

minimize f (x) 

subj ect to g. (x) > 0, l ~ i = 1 ,  2, . •. , m. 

f is the chosen obj ective function. The vector x represents a set of 

design variables which include the nominal values, the relative and/or 

absolute tolerances or tuning variables of the network components and 

all the slack variables associated with each distinct outcome. The 

. . . , g (x) , comprise the selected m ~ 

response specifications, component bounds, slack variable bounds and 

any other constraints . The constraints are numbered from 1 to m for 

simplicity. 

Unless otherwise indicated, the examples in this chapter are 

solved by the following methods. The nonlinear programming problem 

is transformed into an unconstrained minimax problem by the 

Bandler-Charalambous technique (1972a, 1974) . The solution of the 

resulting minimax problem is found by least pth approximation 

al gnri rhm� also proposed by Bandler and Charalambous (1972b, 1972c). 

Fletcher ' s  minimization methods (1970, 1972) are used to minimize 

the transformed unconstrained function. The solution of discrete 

problems in this thesis are obtained by the branch and bound 
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approach (Dakin 1966, Garfinkel and Nemhauser 1972) . These 

methods are featured in a user-oriented computer program called 

DISOPT (see Baudler and Chen 1974, Chen 1974) which is described 

in Appendix C so as not to interrupt the flow of the chapter. 

Part 3 deals with two realistic circuit design problems. 

The bandpass filter was studied by Butler (1971) , Karafin (1971) and 

Pinel and Roberts (1972) . Substantial improvement is obtained by 

our method. The highpass filter was suggested by Pinel (1974) and 

Roberts (1974) . They did not exploit the advantages of tuning. We 

have, however, explored the effects of tuning in this example. 
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PART 1 

TOLERANCE OPTIMIZATION 

4.2 Numbering Scheme for Vertices 

The set of vertices of a tolerance region R is given by V 

We will label each vertex by 

that 

an integer from the index set I such V 

where µ; E {-1, l }  and satisfies the relation 

Thus , 

k 
r = 1 + I 

j =l 

-1 

-1 

-1 

r 
µ · + l i -1 [ 1 J 2" • 2 

2 � µ 

+1 

-1 

-1 

The set of vertices may now be identified as 

. . .  ' 
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-1 

+1 

-1 

, . . . , 

(4 . 1) 

(4 . 2) 

+1 

+1 

+1 

(4. 3) 

(4.4) 



This notation will be used throughout this chapter unless otherwise 

indicated. 

4. 3 One-Dimensional Quasiconcave Functions 

A function g (¢) is said to be qucuieoneave in a region if, for 

all ¢ a , ¢b in the region, 

(4.5) 

for all O � A �  1. See Mangasarian (1969) and Appendix A for some 

other definitions and some properties of the function. An 

immediate consequence of (4 . 5) is that the region defined as 

{¢ l g (¢) � 0} is convex. It can be proved that the intersection of 

convex regions is also convex. Now, the convexity condition implies 

the one-dimensional convexity condition necessary for Theorem 2. 2 

and Theorem 2. 3. We have given the term one-cUmen1> ional qucu ieoneave 

6unc.tion to a function which satisfies (4.5) when ¢b is given by 

(4 . 6) 

for some constant a. The region defined by such functions is called a 

one-cUmen1>ional eonvex �egion. Pseudoconcavity implies quasiconcavity. 

The conditions for concavity and monotonicity with respect to each 

variable discussed in Chapter 3 certainly apply to the case of 

one-dimensional quasiconcave functions. 
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4. 4 Conditions for Monotonicity 

Given a differentiable one-dimensional quasiconcave function 

g (¢) (here we consider one variable denoted by ¢  for convenience) , 

the function is mono�onie with respect to ¢ on an interval [¢a , ¢b
] if 

sgn (g' (¢a) )  = sgn (g' (¢b) ) ,  where g' is the first derivative of g with 

respect to ¢, and sgn ( • ) denotes the sign of the function. 

Furthermore, the minimum of g (¢) is at 

(4. 7) 

This may be proved as follows. 

Consider the case sgn (g' (¢a) )  = sgn (g' (¢b) )  > 0. Suppose 

g (¢) is not monotonic. Then there exist two points 

where 

1 
such that g' (¢ ) < 0 and 

2 1 g (¢ ) > g (¢ ) . 

Thus, for some O < A < 1 

(4.8) 

(4 . 9) 

(4 . 10) 
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which contradicts the definition of quasiconcavity . The assumption 

that g(¢) is not monotonic is wrong, hence, g(¢) is monotonic. 

Furthermore, it is nondecreasing on [¢a, ¢b ]. The minimum is at 

�a 1 [ a b a b a 
J � = 2 ¢ + ¢ - sgn(g'(¢ ))(¢ - ¢ )  (4 . 12) 

in this case . 

Similarly, it may be proved that the case 

a b sgn(g'(¢ )) = sgn(g'(¢ )) < 0 implies monotonicity with g(¢) 

nonincreasing on [¢a , ¢b ]. The minimum is at ¢b. 

4.5 Implications of Monotonicity 

Suppose g. is monotonic in the same direction with respect to 
1 

¢j throughout R£. Then the minimum of gi is on the hyperplane 

o agi ¢
J
. = ¢. - £ .  sgn (�) . Hence, only those vertices which lie on 

J J �j 
hyperplane need to be constrained. In general, if there are 2 

that 

variables with respect to which the function g. is monotonic in this 
1 

k-2 
way, the 2 vertices lying on the intersection of the hyperplanes 

are constrained. In the case where 2 = k, the vertex of minimum g 

occurs at ¢r, where 

o ag . 
¢: = ¢. - s. sgn(8 ��), 
J J J �J 

for all j £ I¢. (4. 13) 
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4.6 The Vertices Elimination Scheme 

Various schemes may be developed to identify or to predict the 

most critical vertices that are likely to give rise to active 

constraints. Any scheme proposed should eliminate all but one vertex 

for each constraint function in the most favourable conditions. When 

monotonicity assumptions are not sufficient to describe the function 

behaviour , the schemes should increase the number of vertices until , 

at worst , all the 2k vertices are included . 

In principle , our schemes may be stated as follows: 

Step (1) : Systematic generation , for a. > O ,  sets of points 

a.e . •  
~J 

Step (2): Evaluation of the function values and the partial 

Step (3): 

derivatives at these points. 

If 
ag. l sgn < acp. 

J 

ag. l = sgn (acp. 
J 

eliminate the vertices cp
r 

s R on the hyperplane V 

8 g _ 
cp

J
. = <I>� + s . sgn (8=�). 

J J �J 

ag . 

(4 . 14) 

(4.15) 

If , l sgn �acp. 
J 

and 
ag. l sgn (a cp . 

J 
) > 0 , note 

cp=cp b (j) 

that the quasiconcavity assumption is violated . 
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The different schemes depend on the different ways of 

implementing Step (1) . Three methods of increasing complexity can be 

described as follows: 

(b) E . e .  
J ~J  

and 

(c) the vertices of R .  
E 

68 

Method (a) is a special case for which the first part of (3) is 

applicable. For method (c) , a worst-case check can be accomplished as 

a by-product of the vertices elimination scheme since function values 

are computed at each vertex. 

It is possible to further eliminate some vertices by ranking 

the values of g (¢r) ,  where ¢r are the selected vertices, in ascending 

order and rej ecting those having sufficiently large values. 

Since the schemes are based on local information, the vertices 

chosen should be updated at suitable intervals. 

4.7 Symmetry Considerations 

A designer should exploit symmetry to reduce computation time. 

The following is an example of how it may be done in the tolerance 

problem . 



A function is said to be �ymme..tJr.,[cai. with respect to S in a 

region if 

g (S ¢) = g (¢), (4.16) 

where S is a matrix obtained by interchanging suitable rows of a unit 

matrix. It has exactly one entry of 1 in each row and in each column, 

all other entries being O. 

A common physical symmetry configuration is a m,UVton--lmage 

�ymmebt(j with respect to a center line. The S matrix in this case is 

s = 

[ '. 

1 :J (4.17) 

Postmultiplication of a matrix A by any S simply permutes the 

columns of A and premultiplication of A permutes the rows of A. 

SST = 1 and STDS = D ,  where D is a diagonal matrix and D is also a ~s ~ ~s 

diagonal matrix with diagonal entries permuted. 

Consider symmetrical S, ¢ 0 and s. By this we imply 

S (S A) = A ,  (4� 18) 

(4 . 19) 
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and 

ST E S = E .  

Let us premultiply the rth vertex ¢ r by S, giving, from (4 . 1) 

r s I V 

(4. 20) 

Now, S µ
r 

is another vector with +l and -1 entries. Let it be 

d d b  
s 

I I r · · a  . 1 s · f h enote y µ ,  ss . n some cases µ i s i entica to µ , i t e 
V 

vector is symmetrical. In other cases, µr ; µs. In all cases, 

Making use of the symmetrical property of g, 

s 
= g (¢ ) , 

(4 . 22) 

(4 . 23) 

Let the number of symmetrical vector s  µr and the number of pair s  of 
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r s nonsymmetrical µ and µ be denoted by N (r=s) and N (r#s) ,  respectively. 

Then 



N(r=s) 

and 

N(r:/=s) 

k-k 
= 2 s,  2k < k, s 

k ,.,._,.,. 
= (2 - 2��-- L'.s) i 2 ,  2k < k, 

s 

(4.24) 

(4 . 25) 

where k is the number of pairs of symmetrical components. There are, s 

therefore, N(r=s) + N(r#s) effective vertices as compared to 2
k 

topological vertices . Take, for example, k = 6 and k = 3. Only 36 
s 

function evaluations are required for all the 64 vertices. For more 

details about symmetry, see , for example, Yale (1968). 

The above discussion and results may be used to reduce 

computation time. In general, however, it is not certain that a 

nominal design without tolerances yielding a symmetrical solution will 

imply a symmetrical optimal solution with tolerances ; either in the 

continuous or in the discrete cases. 

4. 8 Formulation of Constraints 

After eliminating potentially inactive vertices, each chosen 

i . vertex is associated with a da;ta vedo� a ,  which has the form 

r 

i /j. 1/J i 1, 2, a = . . . ' m a '  

w 

(4.26) 
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where �  is an independent parameter denoting frequency or any number 

to identify a particular function for which the vertex ¢r is chosen, 

µ is the vector associated with ¢r . m is the total number of distinct a 

vectors a .  S is a specification and w a weighting factor associated 

with each � - In our present work, 

l +l if s is an upper specification 
w = 

-1 if s is a lower specification. 
(4. 27) 

The pVLnoJUnanee eonJ.>bt..cunt-6 may now be formulated in the form 

of 

g = w ( S - F) > 0, (4. 28) 

with appropriate subscripts. F is the circuit response function 

evaluated at the appropriate vertex and �. 

The pa!Lame.t:Vt eonJ.>.tJi.cunu that define the feasibility of a 

design are 

and 

¢?  - E - ¢
n J• > 0 J j N 

(4. 29) 

(4.30) 
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where ¢ . and ¢ n . ,  jsl� , are the user supplied upper and lower 
UJ NJ � . 

bounds, respectively . Let m be the total number of constraints, 

including both the specifications and the parameter bounds. 

4. 9 Examples 

4. 9. 1 Two-Section 10:1 Quarter-Wave Transformer 

To illustrate the basic ideas of different cost functions, 

variable nominal point, continuous and discrete solutions, a two

section 10:1 quarter-wave transformer is considered. See Bandler and 

Macdonald (1969), Bandler and Liu (1973, 1974a) . Table 4. 1 shows the 

specification of the design and the result of a minimax solution 

without tolerances. Figure 4. 1 shows the contours of max jp. I with 
. 1 

respect to the characteristic impedances z1 and z2 • pi denotes the 

reflection coefficient at the ith sample point, The unshaded region 

is R which satisfies all the assumptions of convexity. 
C 

Two cases are presented here. 

Case 1: Optimization of relative tolerances 

The cost function is of the form 

where 

1 1 c, = ;-- + -;- ,  - ,.,.1 n2 
(4.31) 
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Relative 
Bandwidth 

100% 

TABLE 4 . 1  

SPECIFICATIONS FOR THE 

TWO-SECTION 10 : 1  QUARTER-WAVE TRANSFORMER 

Sample 
Points 
(GHz ) 

0 . 5 ,  0 . 6 , . . •  , 1 . 5 

Reflect ion Coefficient 
Specification 

0 . 55 

Minimax solution (no tolerances ) ! P l = 0 . 4 286 

Type 

upper 

'1 
.i::--



z 
2 

5 

4 

.7 .65 .6 .55 .5 

75 

cA 15.o,9. ,}% 
c •  

C 1
={15, to} % 

I I 
-�c1· ={ 8.3, 7.7}_% 

I 
C1 :{10, 15} %  

I I 
.75 .8 

.85 

3....._,.....__..___,'---�----J.Z--�.;_....._------..c-----r"'---------,----""-/----1 

Fig. 4 .1 

2 

z 1 

3 

Contours of max I pi I .with respect to z1 and z2 for the 

. 2- section transformer example, indicating a number of 

relevant solution points (see text) . 



El 10 0  xl 
= - x  

¢0 

1 

E: 2  10 0  X2 
= - x  

¢0 

2 (4.32) 
" 

X3 = ¢{ 
= z� 

X4 = ¢0 = zo 
2 2 

The optimal solution of C1 with respect to variables x1 and 

x2 and a fixed nominal point at a yields a continuous 

tolerance set of {8. 3, 7. 7}%. For the same function with a 

variable nominal point, the set is {12.8, 12.8}% with 

optimal nominal solution at b. d and e correspond to the 

two discrete solutions with tolerances 10% and 15%. The 

allowable discrete tolerance set is {l, 2, 5, 10, 15, 20}%. 

Case 2: Optimization of absolute tolerances 

The cost function is of the form 

1 1 c
2 

= - + -, 
xl 

x2 

where 

(4. 33) 
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x2 = E
2 

(4. 34) 
() 

X3 = q> V 

= z v 

1 1 

X4 = q> 0 
= zo 

2 2 

The optimal solution of c2 with respect to xl, x2, X3 and X4 

yields a tolerance set of { 15. 0, 9. 1 }% with nominal solution 

at c. 

It may be noted from this example that an optimal discrete 

solution cannot always be obtained by rounding or truncating the 

continuous tolerances to the discret� values. The nominal points 

must be allowed to move. 

4. 9. 2 Three-Component LC Lowpass Filter 

A three-component LC lowpass filter is studied to illustrate 

some discrete solutions. The circuit is shown in Fig. 4. 2. Table 4. 2 

summarizes the specifications. The objective function is 

7 7  
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Fig . 4 . 2  The circuit for the LC lowpass filter example . 



Frequency 
Range 

(rad/s) 

0 - 1 

2 . 5 

TABLE 4. 2 

SPEC IFICATIONS FOR THE 

LC LOWPASS FILTER 

Sample 
Points 
(rad/ s) 

0 . 5,  0. 55 ,  0. 6 ,  1. 0 

2 . 5  

Insertion Loss 
Specification 

(dB)  

1. 5 

25 

Minimax solution (no tolerances) 

passband 0. 5 3  dB 

stopband 26  dB 

Type 

upper (passband) 

lower (stopband) 

'-I 
1..0 



where 

e: 1 100 xl 
= - x 

</>
o 
1 

e: �  
x2 

= � X 100 
· o  
<l>z 
e: 3 100 x

3 
= - X 

</>
o 
3 (4. 36) 

X4 = </>
o = c

o 
1 

X
S 

= </>
o = LO 

2 1 

x6 
= </>

o = LO 

3 2 

Table 4. 3 lists the results for both the continuous and discrete 

solutions. It may be noted that one of the discrete solutions as 

well as the continuous solution yield symmetrical results although 

symmetry is not assumed in the formulation of the problem. 

4. 9. 3 Five-Section Cascaded Transmission-Line Lowpass Filter 

Consider a five-section cascaded lossless transmission-line 

lowpass filter with characteristic impedances fixed at the values 

z
o = z

o 
= z

o = 0.2, 1 3 5 

(4 . 3 7 )  

z
o 

= z
o 

= 5. 0 2 4 
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Parameters 

0 100 e:1/L1 

100 e:2/ c  0 

0 100 e:/L2 

LO 

1 

co 

LO 

2 

TABLE 4.3 

RESULTS FOR THE LC LOWPASS FILTER 

(TOLERANCE OPTIMIZATION) 

Continuous Solution 
Fixed Nominal Variable Nominal 

3 . 5  % 9.9 % 

3.2 % 7.6 % 

3.5 % 9.9 % 

1.628 

1.090 

1.628 

Discrete Solution 
From { 1, 2,5, 10, 15}% 

1 2 3 

5 % 10 % 10 % 

10 % 5 % 10 % 

10 % 10 % 5 % 

1.999 

0.906 

1.999 

00 
1--' 



and terminated in unity resistances. See Bandler and Charalambous 

(1972c) for a minimax solution without tolerance considerations and 

see Table 4. 4 for the specifications , The length units are 

normalized with respect to Q,q 
= c/4f0, where f0 

= 1 GHz. 

Two problems are presented here . 

Problem 1: Optimization of length tolerances 

A uniform 1% relative tolerance is allowed for each 

impedance. Maximize the absolute tolerances on the section 

lengths and find the corresponding nominal lengths. Let 

the cost function be 

C = (4. 38) 

where 

x. = 
E: Q, , 

i = 1, 2, . . . , 5' 1 
1 

(4. 39) 

0 i 1, 2, 5 . xi+5 
= Q, , ' = . . .  , 1 

Problem 2: Optimization of impedance tolerances 

A uniform absolute length tolerance of . 001 is given. 

Maximize the relative tolerances on the impedances and 

obtain the corresponding nominal lengths. Let the cost 

function be 
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Frequency 
Range 
(GHz ) 

0 - 1 

2 . 5  - 10 

TABLE 4 . 4 

SPECIFICATIONS FOR THE . 

FIVE-SECTION TRANSMISSION-LINE LOWPASS  FILTER 

Sample 
Points 
(GHz ) 

. 35 , . 4, . 45 , . 75 , . 8 , . 85 , 1. 0  

2 . 5 ,  10 

Insertion Lo ss  
Specification 

(dB )  

. 02 

25  

Type 

upper (pas sband ) 

lower (s topband ) 

00 w 



C = 
5 

1 
I 

i=l xi 

where 

sz i x. = -0-
x 100 , 

1. z i 

0 
= R, . '  1. 

(4. 40) 

i = 1, 2, .. . , 5, 

(4. 41) 

i = 1, 2, •. • , 5. 

The filter has 10 circuit parameters which may be arranged in 

the order z
1

, z2, • • . , z
5

, i
1, i2, • • • , 25

• To simplify the problem, 

symmetry with respect to a center line through the circuit is assumed. 

The matrix S is given by 

1 1 0 

1 1 1 

s = 
1 1 

1 1 1 
0 

which also implies that 2� = t� and 2� = t�. The same kind of 

equalities are applied to the tolerances . 

(4 .42) 

The second vertices elimination scheme is applied with values 

at the optimal nominal values without tolerances and the relative 

impedance tolerance and the absolute length tolerances at 2% and . 002, 

respectively. A total of 46 vertices corresponding to all the 

frequency points were selected from a possible set of 9 x 2
10

• 14 

were further eliminated by symmetry. A final total of 15 constraints 

were chosen after comparing relative magnitudes. These 15 constraints 
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were used throughout the optimization. The continuous and discrete 

solutions to the two problems are shown in Tables 4. 5 and 4.6. 

4.10 Discussion 

The schemes discussed could be started, theoretically, from 

any arbitrary initial acceptable or unacceptable design to obtain 

continuous and/or discrete optimal nominal parameter values and 

tolerances simultaneously. Optimization of nominal values without 

tolerances should, however, preferably be done first to obtain a 

suitable starting point . The effort is small compared with the 

complete tolerance problem when a small value of p greater than 

unity, e.g. , p = 2, is used in the least pth optimization . An exact 

minimax solution is not needed . See Charalambous (1974) . This also 

serves as a feasibility check . If R is indicated to be empty, the 
C 

designer has to relax some specifications or change his circuit. 

The solution process may also provide valuable information to the 

designer, e.g., parameter or frequency symmetry. 

With a reasonable starting point, a prediction of the critical 

vertices could be more accurately done. The last example presented 

is a large problem from the tolerance optimization point of view. Out 

of a possible 9216 constraints, only 15 were chosen. The ability to 

choose the minimal number of constraints is very important for the 

branch and bound discrete optimization since each branching step 

involves a complete continuous optimization. 
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TABLE 4. 5 

RESULTS FOR THE 

FIVE-SECTION TRANSMISSION-LINE LOWPASS FILTER 

(TOLERANCE OPTIMIZATION, PROBLEM 1) 

Parameters 

E
,Q, 

= E
,Q, 1 5 

E
,Q, 

= E
,Q, 

2 4 

E
,Q, 3 

i = io 

1 5 

,Q,o = ,Q,o 

2 4 

,Q,o 

3 

Continuous Solution Discrete Solution 
. 0005 Step Size 

0. 0033 

0. 0028 

0 . 0027 

0. 0788 

0. 1414 

0 . 1738 

0 0 0 0 0 z1 = z3 = z5 = 0. 2, z2 = z4 = s 

100 s2 ;z? = 1%, i = 1, 2, . . • , s . 1 

0. 0030 

0. 0030 

0 . 0025 

00 
CJ' 



TABLE 4.6 

RESULTS FOR THE 

FIVE-SECTION TRANSMISSION-LINE LOWPASS FILTER 

(TOLERANCE OPTIMIZATION, PROBLEM 2) 

Parameters 

l00 (sz /Z� 
1 

= Ez /Z�) 
5 

l00 (sz /Z� = Ez / Z�) 
2 4 

0 100 (s2 /z3) 
3 

,Q,o = ,Q,o 

1 5 

,Q,o = ,Q,o 

2 4 

,Q,o 

3 

Continuous Solution Discrete Solution 
From {.5, 1, 1.5, 2, 3, 5}% 

3.56 % 3 % 

2 . 27 % 2 % 

1 .98 % 2 % 

0 . 0786 

0 . 1415 

0.1736 

0 0 0 0 0 z
1 = z3 = z5 = 0 . 2, z2 = z4 = 5 

E
,Q,

. = 0.001, i = 1, 2 , • . •  , 5 

00 
-...J 



Several properties of the centering and tolerance assignment 

process were demonstrated by the examples. In particular, 

(1) Any circuit parameter can be fixed or varied , toleranced 

or otherwise, continuous or discrete. 

(2) An optimal nominal point without tolerances may not be 

optimal when the components are toleranced. By allowing it 

to vary, tolerances may be enhanced. 

(3) The best discrete solution cannot always be obtained by 

rounding or truncating the optimal continuous solution. 

(4) A symmetrical continuous solution does not necessarily 

imply a symmetrical discrete solution. 
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PART 2 

TOLERANCE-TUNING OPTIMIZATION 

4.11 Formulation of Constraints 

Consider the constraints of the form 

g = w(S - F) > O, (4.43) 

with appropriate subscripts. F is the circuit response function 

evaluated at sample point 1/J and point ¢ which is given by 

(¢? + t ! p � (r))e . • 
J J J ~J 

Information required for (4.44) is contained in the vectors 

r 

i 11 1/J i 1 '  2, a = . . . , m a 

w 

( 4. 44) 

( 4. 45) 

The proj ection matrix P and the index sets It and Is are fixed 

for a particular problem. They are determined before optimization 

takes place. 
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The vector of variables x consists of the variable nominal 

values, tolerances, tuning variables and all the appropriate slack 

variables p ! (r) , j.El , rd . 
J · t V 

Each of the slack variables is associated with two extra 

parameter constraints, 

and 

1 - p ! (r) > 0 
J 

(4. 46) 

1 + p ! (r) : O, (4. 47) 
J 

for appropriate j and r. These two constraints, however, may be 

combined to form 

1 - (p ! (r) )
2 > O. 

J 
(4. 48) 

Let m be the total number of constraints which include the 

performance specifications give n by (4. 43) , slack variable bounds 

given by (4. 46) and (4. 47) , parameter bounds given by (4. 29) and 

(4. 30) , and any other extra constraints not considered above. In 

general, for linear network design in the frequency domain 

(4. 49) 
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and 

n
1/J 

m = [ L n (i)] + 2ktn + ... 
i=l V V 

(4.50) 

where k0, ks and kt are the number of variable nominal parameters , 
k 

toleranced and tuned parameters, respectively ; n � 2 s is the number 
V 

of distinct vertices chosen ; n
1/J 

is the number of frequency points 

considered ; n (i) is the number of vertices chosen at the ith 
V 

frequency point and 2k n is the number of slack variable bounds. t V 

4. 12 Three-Component LC Lowpass Filter Examples 

The LC lowpass filter presented in Section 4.9.2 is considered. 

For each frequency sample point 23 = 8 vertices for the tolerance 

region can be obtained. The critical vertices selected are ¢6 
at 

1/J = 1/J
1
, 1/J2, 1/J3 ; �

8 at 1/J = 1/J4 and ¢1 at 1/J = 1/)
5
, where 

¢ = 

i For this problem , the vectors a i = 1 ,  2 ,  

(4.51) 

. . . ' 5, are 
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6 6 6 

+l +l +l 

-1 -1 -1 

1 +l 2 +l 3 +l a = a = a = 

0.45 0. 50 0.55 

1.5 1. 5 1 . 5  

1 1 1 

8 1 

+l -1 

+l -1 

4 +l 5 -1 a = a = 

1.0 2.5 

1.5 25 

1 -1 

Three problems are presented here . See Baudler, Liu and 

Tromp (1975a). 

4.12.1 Effective Tuning for One Component 

Case 1: L, tuned, C and L0 toleranced . 
..I.. '-

We consider an objective function based on the relative 

tolerances of C and L2 in the form 

92 

(4.52) 

(4. 53) 



where, assuming tc 
= tL 

= O, and some fixed value of s1 , 
2 1 

(4 .54) 

The cost of element 11 is assumed fixed. It, therefore, is 

not included in (4 .53) . 

The last three transformations are chosen to avoid changes 

of sign. There are three distinct projected vertices : 

�
8 and �

1
• The projection matrix in this case is 

~P ~P 

p = 

Therefore, the other variables may be identified as 

(4 . 55 ) 
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(4. 56) 

Substituting the numerical values from (4 . 52) into (4. 44) we 

have the following , 

1 2 3 
a a a 

4 
a = > <P 

= 

5 a => <P = 

= 

<P P<j>
6 + (<j> 0 + tipi (6) ) :1 => = 

1 

= [ 

Xl + X
�

X7

] X2 - X5 ' 
2 

X3 + X
6 

P</>8 + (<j> 0 + 1 tipi (S) ) :1 

[ 

x1 + x�
x8 

x2 + xs 
2 

X3 + X
6 

Pl + (<j> 0 + 1 tipi (l) ) :1 

[

xl + 

t
9

] X2 - X5 • 

2 
X3 - X

6 

The performance specifications g. , i = 1, 2, 
1 . . . ' 

be formed. Additional constraints are given by 

(4.57) 

(4. 58) 

(4.59) 

5 , may now 

94 



g5+2i-1 = 1 + x6+i 

i = 1 ? _  i ( Li.  _ hf) )  - , - ,  - ,  ' · - - - ,  

8s+2i 
= 1 - x6+i 

g12 = t xz/xl
. 

r 

The last constraint g12 is designed to limit the tuning range 

to t . Table 4. 7 shows results for three values of t . The r r 
same results are obtained replacing the term x1 + x4xi by 

x1 (1 + trxi) ,  i = 7, 8, 9, allowing g12 to be removed, and 

reducing the number of variables by one, since g12 is active. 

Case 2: C tuned, L1 and L2 toleranced 

We consider an objective function based on the relative 

tolerances of L1 and L2 in the form 

where x1, x2, x3 and x6 are as before but where, 

2 
X4 = El = EL ' 1 

2 t '  X
S 

= = tc 
- EC ' 2 

with t1 = t3 = O, and some fixed Ee · In this case 

(4. 61) 

(4. 6 2) 
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TABLE 4 . 7 

RESULTS FOR THE LC LOWPASS FILTER 

(L1 TUNED, C AND L2 TOLERANCED) 

Parameters t = 0 2 r • t = 0 . 1  t r 

LO 

1 2 . 0932 2 . 2442 

co 0 . 9360 0 . 9059 

LO 

2 1 . 7718 1 . 7569 

1 ' / 
0 00 t1 L1 20 . 00 % 10 . 00 % 

100 s2/c 0 15 . 99 % 14 . 23 % 

0 100 s/L2 21 . 62 % 18 .41 % 

P i (6) -1 . 0000 

P i (8) -1 . 0000 

P i (l) 1 . 0000 

n = 9 m = 12 

= 0 . 05 r 

2 . 1953 

0 . 9062 

1 . 7920 

5 . 00 % 

12 . 60 % 

16 . 23 % 

I.O 
Q"I 



and there are only two distinct projected vertices ¢6 

~P 
and ¢1 • The slack variables are 

~P 

We have now, 

1 2 3 4 ¢ P¢6 
+ (¢ 0 

+ t2p2 (6)):2 a a a a => = 
2 

[ xl 
2 

+ X4 

2 = x2 + X5X7 
2 

X3 + x6 

5 => ¢ P¢1 
+ (¢ 0 

+ tipi (l)):2 a = 
2 

[ 2 ] 
xl - X4 

= x2 + xixs 

X3 - X6 

Additional constraints are given by 

9 7  

(4.63) 

( 4. 64) 

(4.65) 

( 4. 66) 



g5+2i-1 
= 1 + x6+i l 

1. , ,., (4. 67) 

J 
J. ' � ,  

g5+2i 
= 1 - x6+i 

glO 
= t x;/x2. r 

Table 4 . 8  shows results for three values of t . The same 

results are obtained replacing the term x2 + x�xi by 

x2(1 + trxi), i = 7, 8, removing constraint - g10 and reducing 

the number of variables by one . We note that larger 

tolerances are obtained than before for corresponding 

tuning ranges . 

4 . 12 . 2  Tolerancing and Tuning for One Component 

We consider C to be both toleranced and tuned and minimize 

(4 . 68) 

where x1, x2 and x3 are as before but where 

2 
X ,  = E- = E_ 

.L L_ 

2 
X

S 
= E2 

= EC (4 . 69) 

x6 
= E3 

= EL , 
2 
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TABLE 4.8 

RESULTS FOR THE LC LOWPASS FILTER 

(C TUNED, 11 AND 12 TOLERANCED) 

Paramet iers t = 0.2 t = 0 1 
r 

• t 
r 

LO 

1 1.8664 1. 9536 

co 1.1336 1.0077 

LO 

2 1. 8664 1.9536 

0 100 E:1/11 27 . 54 % 21 . 84 % 

100 t2/ C
O 20 . 00 % 10.00 % 

0 100 s3/L2 27.54 % 21 . 84 % 

Pz(6) -1.0000 

Pz(l) 1.0000 

n = 8 m = 10 

= 0.05 
r 

2.0002 

0.9546 

2.0002 

19 . 00 % 

5.00 % 

19.00 % 

\.0 
\.0 



and t1 = t2 = 0 .  The cost of tuning is assumed fixed. It is, 

therefore, not included in (4. 68). The slack variables are 

Here, 

1 2 3 6 
a a a => q> = � + tzPz(6):2 

[ 

2 

] 

xl + x4 

= x2 - xi + trx2x7 ' 

X3 + X6 

4 a => <p = � + t2p2(8):2 

[ 

2 

] 

xl + x4 

= x2 + x� + trx2x8 , 

X3 + X6 

5 1 
a = > q> = � + tzP2< 1):2 

2 

+ thx9] , 
[ 

xl 
- X4 

2 = X2 
- XS 

2 x
.5 

- x6 

1 00 

(4.70) 

(4. 71) 

(4. 72) 

(4. 73) 



0 
with t2 = trC • Constraints g6 to g11 are as in (4. 60). 

The results are shown in Table 4. 9 where we note that for 5% 

and 10% tuning we have an effective tolerance problem, whereas for 

20% tuning we have an effective tuning problem. Rerunning the same 

problem with tr = 0 . 05 and x7 = 1, x8 = -1, x9 = 1, which imply 

effective tolerances, the same solution as for the 5% tuning range is 

obtained. 

4 . 12. 3 Optimal Tuning 

In this example we include the tuning range in the objective 

function. Two cases are presented. 

Case 1 :  Tolerancing and tuning for one component 

We take a similar formulation to the last example except that 

(4. 74) 

where c is a weighting factor and the term trx2 is replaced by 

x�, xi by xi+l' i = 7, 8, 9 . This implies that t2 

constraints remain the same except for g6 to g11 with xi 

updated by xi+l " 

The 

Table 4. 10 shows results for different values of c. Note that 

a threshold value of c seems to occur somewhere between 10 and 

20. Below that threshold, the solution in terms of an 

effective tuning and tolerance problem is unaffected. Note 
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TABLE 4 ,9 

RESULTS FOR THE LC LOWPASS FILTER 

(TOLERANCING AND TUNING FOR C .  Ll AND L2 TOLERANCED) 

Parameters t = 0 . 2  r 

LO 

1 2.0178 

co 
0. 9366 

LO 

2 2 . 0178 

0 100 El/Ll 17 .96 % 

100 t: 2/c 
0 16 . 83 % 

0 100 t:3/L2 17 .96 % 

100 t2/c0 20 . 00 % 

P z (8) 

P z (6) 

p2 (1) 
-

100/COx ti= 3 . 17 % 

n = 9 

t = 0 1 r • 

2 . 0380 

0 . 9061 

2 . 0380 

14 . 81 % 

11 . 66 % 

14 . 81 % 

10 . 00 % 

1 . 0000 

-1 . 0000 

1 . 0000 

Ez = 1 .  66 % 

m = 11 

t = 0 . 05 r 

2 . 0209 

0 . 9040 

2 . 0209 

12 . 41 % 

9 . 64 % 

12 . 41 % 

5. 00 % 

Ez = 4 .64 % 

I--' 
0 
N 



TABLE 4 . 10 

RESULTS FOR THE LC LOWPASS FILTER 

(OPTIMAL TUNING, CASE 1) 

Para.meters C = 1 C = 10 C = 20 C = 50 C = 100 C = 1000 

LO 

1 1 .  8440 1 . 8440 1 .9221 2 . 0492 2 . 0227 1 . 9990 

co 1 . 1730 1 . 1730 1 . 0486 0 . 9069 0 . 9043 0 . 9056 

LO 

2 1 . 8440 1 . 8440 1 .9221 2 . 0492 2 . 0227 1 .9990 

0 100 E:1/Ll 29 . 08 % 29 . 08 % 23 . 84 % 16 . 15 % 12 . 69 % 9 . 89 % 

100 szlC  0 100 . 00 % 31 .62 % 22 . 36 % 14 . 14 % 10 . 00 % 7 .60 % 

0 100 s/L2 29 . 08 % 29 . 08 % 23 . 84 % 16 . 15 % 12 . 69 % 9 . 89 % 

100 t2t c0 122 . 69 % 54 . 31 % 35 . 88 % 14 . 14 % 5 .  71 % 0 . 00 % 

p2 (6) 1 . 0000 

p2 (8) -1 . 0000 

P 2 (1) 1 . 0000 

-

100/COx t2=22 .69% t2=22 .69% t2=13 .52% ti=0 . 00% E: 2=4 . 29% s 2=7 .60% 

n = 10 m = 11 



also the transition for c = 50 from effective tuning to 

effective tolerancing. When c is very large we obtain the 

tolerance solution presented in Table 4.3. 

Case 2: Tolerancing and tuning for three components 

The objective function considered is of the form 

3 <t> ?  t . . 

l 1 
+ C 

1 = 
i= l  e: • cp? 

(4 . 75)  

We consider one additional vertex cp 
3 in order to bound the 

solution during optimization .. 

We omit details of the constraints, and summarize the final 

results in Table 4.11 for different c. The results are the 

same as in Table 4.10, but the computational effort has 

substantially increased. This formulation, however, has 

verified that cp2 = C should be effectively tuned for c less 

than 50, and the other parameters effectively toleranced . 

The values of p(6), p(8), p(l) and p(3) confirm these 

observations. 

4.13 Discussion 

The formulation of the constraints for the tolerance-tuning 

problem has been treated. By its very nature the problem is a large 

one , even for designs with a relatively small number of parameters. 

Practical implementation depends heavily on one 's ability to select 
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100 

10 0  

100 

TABLE 4 .11 

RESULTS FOR THE LC LOWPASS FILTER 

(OPTIMAL TUNING, CASE 2) 

Parameters 

Lo= Lo 

1 2 

c
o 

0 El/11 
= 100 

100 s2/c 
0 

0 t1/L1 
= 10 0  

10 0  t2Jc
0 

p1(6) 

p2(6) 

p3(6) 

Pl (8) 

p2(8) 

p3(8) 

pl(l) 

p2(1) 

p3(1) 

Pl (3) 

p2(3) 

P3 (3) 

0 s ' /L = 10 0  1 1 

10 0  t ' /CO 

2 

0 s/12 

0 t/12 

' / 0 
E3 12 

n = 21 

C = 10 C = 20 

1.8440 1. 9221 

1.1730 1.0486 

31.62 % 23.84 % 

31.62 % 22.36 % 

2.54 % o.oo % 

54.31 % 35.89 % 

-1.0000 -0.7165 

0.1645 0.2466 

-1.0000 -0.9992 

-1.00 00 -1.0000 

-1.0 0 0 0  -1.00 0 0  

-1.0 0 00 -1.0000 

1.0000 0.9887 

1.0000 1.0 0 0 0  

1.0000 0.9989 

1.0000 0. 8433 

-0.1645 -0.1468 

1.0000 0.8944 

29.08 % 23.84 % 

22.69 % 13.53 % 

m = 36 

105 

C = 50 

2.0492 

0.9069 

16.15 % 

14.14 % 

0.0 0  % 

14.14 % 

0.9743 

1.0000 

-0.9846 . 

-0.8813 

-1.0 0 0 0  

-0.9876 

0.9933 

1.0 0 0 0  

0.9029 

-0.6051 

0.6434 

0.6441 

14. 14 % 

0.0 0  % 



a sufficiently small number of relevant vertices or critical points 

and constraints likely to be active , as well as meaningful variables. 

Several properties of the centering, tolerancing and tuning 

process that have been noted previously were very much in evidence in 

the examples studied. In particular, 

(1) Tuning one or more components enhances the overall 

tolerances significantly. The results presented could not , 

have been obtained without considering centering, tolerancing 

and tuning in an integrated manner. 

(2) Tuning of C conserves the symmetrical properties of the 

filter and a set of larger tolerances is obtained than by 

tuning L1 • 

(3) When the tuning range does not appear in the objective 

function, a bound is needed. 

(4) The results of the investigation seem to j ustify the 

reduction of the general tuning problem into one containing 

effectively toleranced and effectively tuned components, 

where appropriate. If the separation of the components is 

not decided in advance, the general problem as demonstrated 

in Section 4. 12. 3 with the cost function reflecting both 

tolerances and tuning ranges is appropriate, since an 

optimization program requires an explicit number of 

variables and constraints in advance. Compare the results 

of Tables 4. 10 and 4. 11. 
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(5) Zero tuning is indicated when the cost becomes too high. 

(6) Except for the last problem considered, all the slack 

variables assume either the value of 1 or -1. This 

observation may indicate ways of simplifying constraints 

and eliminating some slack variables. 
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PART 3 

REALISTIC DESIGN PROBLEMS 

4. 14 Introduction 

Two realistic circuit design problems are now studied. The 

circuits under investigation have been reported to be in production 

in the telephone industry. The first circuit is a bandpass filter 

which is subjected to tolerance optimization. It has been studied by 

Butler (1971), Karafin (1971) and later by Pinel and Roberts (1972). 

The other circuit is a highpass filter for a digital receiver. It 

was suggested by Pinel (1974) and Roberts (1974). We have investigated 

it as a tolerance-tuning problem. 

4. 15 Tolerance Optimization of a Bandpass Filter 

The circuit schematic is shown in Fig. 4 . 3. Specifications of 

insertion loss are shown in Table 4. 12 and a frequency response at the 

nominal values obtained from Karafin ' s  result is shown in Fig . 4. 4. 

The reference frequency is at 420 Hz. Six frequency points are taken, 

two for the passband. A constant Q is assumed for the four inductors 

and, therefore, the four corresponding resistances are dependent 

variables. Parameter values are scaled by normalizing with respect 

to the central frequency and the load resistance such that the 

inductors and capacitors will have the same order of magnitude to 

avoid ill-conditioning during optimization. 

We have considered three different objective functions 
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Fig. 4.3 The circuit for Karafin's bandpass filter. 
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Frequency 
Range 

(Hz) 

0 ·- 240 

360 ·- 490 

700 ·- 1000 

TABLE 4 .12 

SPECIFICATIONS FOR KARAFIN'S BANDPASS FILTER 

Sample 
Points 

(Hz) 

170, 240 

360, 490 

700, 1000 

Relative 
Insertion Loss 
Specification 

(dB) 

35 

3 

35 

Reference Frequency: 420 Hz 

Type 

lower (stopband) 

upper (passband) 

lower (stopband) 

A constant Q is assumed for the inductors. 

1--' 
1--' 
0 



8 cp? 
C
l I 

1. 
(4.76) = E. 

i=l 1. 

8 1 
c
2 

= I (4.77) E .  
i=l 1. 

and 

8 ¢? 
c

3 I log 1. (4.78) = -
e E. i=l 1. 

where 

LO EL 1 

c
o 1 

EC 2 

LO 
2 

EL 3 

c
o 3 

cp 0 EC (4.79) 
= 4 E = 

LO 
4 

5 EL 

c
o 5 
6 EC 

LO 
6 

EL 7 

c
o I 

EC 8 8 

Initially, components L3 and c4 are assumed equal to L1 and c2, 

respectively, reducing the number of variables to 6 and the number of 
{:.. 

vertices to 2v. Because of some violations, synunetry is not assumed 

for the objective function C1. 

The SUMT method (Fiacco and McCormick 1968) is used for this 

particular problem with starting nominal values used by Pinel and 

1 1 1  



Roberts and a ½% tolerance for each component . The penalty parameter 

r (see Appendix C) is set to 1 and is made successively smaller by a 

factor of 10 . Table 4 . 13 shows some results and Fig , 4. 4 shows the 

optimized nominal response using C1. Note that the cost listed in 
8 ¢9 

Table 4 . 13 is I � x . 01 .  There are no violations observed for 
i=l Ei 

both the Monte Carlo and worst-case analysis at the specified 

f . . 28 . requencies assuming vertices. The relative insertion loss, 

however, becomes negative in some instances at other uncontrolled 

frequencies in the passband. 

4. 16 Tolerance-Tuning Optimization of a Highpass Filter 

The circuit diagram is shown in Fig. 4. 5 and the basic 

specifications for the design are listed in Table 4. 14. The insertion 

loss relative to the loss at 990 Hz is to be constrained as 

indicated with resistances R5 and R7 related to L� and L� with 

constant Q. The terminations are fixed, the designable parameters 

where 

The objective function throughout was taken as 

7 
C = l 

i=l 

¢? 
i - ,  E .  
i 

(4 .80) 

11 2 



Parameters 

¢ 0 

1 
¢ 0 

2 
¢ 0 

3 
¢ 0 

4 
¢ 0 

5 
¢ 0 

6 
¢ 0 

7 
¢ 0 

8 

100 
0 

£1/¢
1 

100 
0 

Ez /¢
2 
0 10 0  s/¢
3 
0 100 s4/¢
4 
0 100 s5 !¢
5 
0 100 s6/¢
6 
0 100 s7/¢
7 
r, ., ('\ ('\  - / .t V 

.LVV t. 8 / cp8  
Cost 

TABLE 4. 13 

RESULTS FOR KARAFIN ' S BANDPASS FILTER 

(TOLERANCE OPTIMIZATION) 

Karafin, 
Pinel and 
Roberts 

1. 824xlO
O 

7 . 870xlO 
-8 

l . 824xlO
O 

7. 870xlO 
-8 

4 . 272xl0 
-1 

9 . 880xlO 
-7 

l . 437xlO 
-1 

3 . 400xl0 
-7 

3 

5 

5 

3 

2 

2 

3 

C 
J 

3. 32 

2. 41 

, 3 . 30 

, 2. 41 

, 1 . 14 

, 1. 89 

, 7 . 80 

,., ('\ "7 
9 £. o V /  

2 .60, 3. 45 

Cl 

3. 0142xl0 

4 . 9750xlO 

2. 9020xl0 

5. 0729xl0 

8 . 2836xlO 

5. 553lxl0 

3. 0319xlO 

l .6377xlO 

6 . 99 

6. 52  

6. 97 

6. 55 

4. 36 

5 . 69 

6. 80 

C 'l C: 
J , £. J 

1 . 34 

0 

-8 

0 

-8 

-1 

-7 

-1 

-7 

c2 

2 . 3206xlO 

6 . 3694xlO 

2 . 3206xlO 

6 , 3694xl0 

6 . 0517xlO 

7 .  7708xl0 

2 . 1677xlO 

2. 2630xlO 

2. 29 

11 . 26 

2 . 29 

11. 26 

3 . 30 

3 . 02 

6 . 61 

I. I. f'\ 
4 o 4 V 

2. 06 

0 

-8 

0 

-8 

-1 

-7 

-1 

-7 

c3 

2 . 7682xl0 

5. 26llxl0 

2 . 7682xlO 

5. 261lxl0 

7 . 7895xlO 

5 . 8726xlO 

2 , 5438xl0 

l. 898lxlO 

7.67 

6. 53 

7.67 

6. 53 

4. 33 

8 . 10 

5 . 85 

,., "7 1  
£. o / .L 

1. 46 
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Fig. 4.5 The circuit for the highpass filter example. 
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TABLE 4. 14 

SPECIFICATIONS FOR THE HIGHPASS FILTER 

Frequency Basic Relative Weight 
Range Sample Points Insertion Loss 

(Hz) (Hz) (dB) 

170 170 45. -1 

360 360 49. -1 

440 440 42. -1 

630 - 680 630 4. +l 

680 

680 - 1800 710 1.75 +l 725 
740 

630 
650 
680 

630 - 1800 860 -0.05 -1 
910 
930 

1050  

Reference Frequency : 990 Hz 

0 0 

R5, R7 related to LO and LO through Q = 

21r990L5 21r990L7 1456. = = 

5 7 R5 R7 



c
o 

E
C 1 

c
o 1 

2 E
r. 

c
o ~2 

3 E
C 

¢0 
c

o 3 
= E = E

C 
(4.81) 4 4 

L
V 

E
L 5 

c
o 5 

6 E
C 

L
O 

6 
E

L 7 7 

Verification of the designs to be described was carried out 

using all 27 vertices plus the nominal point at 170, 360, 440, 630-680 

and 680-180 0  Hz. Forty-two logarithmically spaced points were taken 

for the latter interval, and eight for the former interval. 

Four cases are presented here. 

Case 1 :  No tuning 

Table 4 . 15 summarizes the particular frequencies, 

specifications and the particular vertex number employed to 

obtain the final tolerances listed in Table 4 . 16 . The total 

number of variables and constraints are indicated in Table 

4.15. Table 4.16 also lists the shifts in nominal parameter 

values with respect to those of an uncentered design by Pinel 

and Roberts. 

Case 2 :  3%  tuning for L5 

Results corresponding to the ones for Case 1 are tabulated in 

Tables 4.15 and 4 . 16. Note that all the tolerances have 
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TABLE 4.15 

DATA FOR CONSTRAINTS 

OF THE HIGHPASS FILTER EXAMPLE 

Vertex Number 

Frequency s w Case 1 Case 2 Case 3 Case 4 
(Hz) (dB) No Tuning L5 Tuned L5 and L7 Tuned L7 Tuned 

170 45 -1 8 8 8 8 

360 49 -1 48 48 48 48 

440 42 -1 128 128 128 128 

630 4 +l 1 1 1 1 

60, 100, 104, 58, 60,100, 60, 108,120 60,87, 95 
630 -0.05 -1 108,120,126 104,108,120 100, 104,108, 

126 120,126 

637 -0.05 -1 - - - 87 

640 -0.05 -1 - 58 108 52, 58,60 

643 -0.05 -1 - - - 85,93,117 

nominal, 12, nominal,12, nominal, 12, 34, nominal, 12, 

650 -0.05 -1 50,58,102 34,42,50,58, 42,44,58,106, 36, 42,50,58, 
102 ,106 , 126 126 85, 93, 94, 

102,106 , 126 

to be continueid I-' 
I-' 



TABLE 4.15 - continued 

Vertex Number 

Frequency s w Case 1 Case 2 Case 3 Case !+ 
(Hz) (dB) No Tuning L5 Tuned L5 and L7 Tuned L7 Turn�d 

658 -0. 05 -1 - - 42 58 ,69 , 85 

665 -0.05 -1 - - 34 , 42 34 ,58  

670 -0.05 -1 - - - 2 

680 1.75 +l 123 123 123 123 

680 -0 . 05 -1 2 ,6 2 ,6 2 ,6 2 , 6  

710 1.75 +l 43 , 83 43 , 83 43 , 83 , 123 43 , 83 

725 1.75 +l 43 , 83 43 , 83 43 , 83 43 , 83 

730 1.75 +l - - 43 , 83 43 

740 1.75 +l 43 , 83 43 , 83 43 , 83 43 , 83 

860 -0.05 -1 118 , 126 118 , 126 118 , 126 118 , 126 

910 -0.05 -1 118 , 126 118 , 126 118 , 126 118 , 126 

930 -0.05 -1 118 , 126 118 , 126 118 , 126 118 , 126 

1040 -0.05 -1 - - - 3 

1050 -0.05 -1 3 3 3 3 

to be continUE�d 
I-' 
I-' 



TABLE 4. 15 - continued 

Number of Constraints Case 1 Case 2 
and Variables No Tuning L5 Tuned 

Number of Response 31 37 Constraints 

Total Number of 45 51 Constratnts m 

Number of Variables n 14 14 

Case 3 
L5 and L7 Tuned 

37 

51 

14 

Case !+ 
L7 Tuned 

55 

69 

14 

1--' 
N 
0 



TABLE 4.16 

RESULTS FOR THE HIGHPASS FILTER 

Parameters Case 1 Case 2 Case 3 Case 4 
No Tuning LS Tuned LS and L7 Tuned L7 Tuned 

C tolerance (% ) 5. 71 6. 77 7.90 6.63 
1 nom. shift (%) +18.1 +17.8 +18.3 +17 .6 

c2 

c3 

C4 

LS 

c6 

T Ll7 

tolerance (%) 4.33 4.97 5.32 4. 77 
nom. shift (%) +16.2 +15 . 2  +14.4 +15.3 

tolerance (%) 4. 72 5.81 7.23 5.83 
nom. shift (%) +16.6 +18.0 +18.8 +17.8 

tolerance (%) 4.54 5.03 5.15 4.78 
nom. shift (%) - 3.8 - 2.2 - 1.2 - 3.1 

tolerance (%) 3.29 3.95 4.44 3.82 
nom. shift (%) - 3.0 - 3.0 - 4.3 - 4.1 

tolerance (%) 6.32 7.05 7.27 6.66 
nom. shift (%) - 7.3 - 5.1 - 3.6 - 6.0 

tolerance (% ) 3.64 4.34 5.04 4.32 
nom. shift (%) - 6.4 - 7 . 9  - 7.9 - 6.3 

Cost 157 135 121 138* 

*Violation of opccificatiuuo. Relative Loss = -0.052 dB at 658 Hz. 
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increased over the results of Case 1. Figure 4. 6 shows the 

nominal response as well as the worst upper and lower 

7 outcomes based on all 2 vertices. 

A more detailed verification of the results was made. Sixty 

logarithmically spaced points were taken from the critical 

region 630-680 Hz as well as forty from 600-630 Hz. All the 

vertices were checked plus the nominal point, followed by 

4000 Monte Carlo simulations uniformly distributed in the 

effective tolerance region. No violations were detected, and 

the upper and lower limits of response given by the vertices 

bounded the results from the Monte Carlo analysis except at 

638 . 2  Hz , where the lowest relative loss obtained from the 

vertices was -0. 0243 dB, whereas the Monte Carlo analysis 

yielded -0. 0246 dB. 

As a further check on the optimality of these results, L5 

was allowed to be both toleranced and tuned as distinct from 

being effectively toleranced from the point of view of 

optimization. The same vertices, an additional 25 p 

variables and 50 additional constraints on the p variables 

were used without any significant improvement in the results. 

The values of the p variables confirmed the assumption that 

L5 should be effectively toleranced for 3% tuning. 

Case 3: 3% tuning for L5 and L7 

As indicated by Table 4. 16, a further improvement in all 

tolerances has been obtained . 
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Case 4: 3% tuning for 17 

The results for this case are , as shown by Table 4. 16 , slightly 

worse than those for Case 2 .  A slight violation of the 

specifications at 658 Hz was detected. We conclude that if 

only one inductor is to be tuned , 15 should be chosen. 

4. 17 Discussion 

The problems studied are large from a computational point of 

view. The following comments regarding them can be made. 

(1) Sometimes several preliminary runs are required to 

establish a reasonable choice of relevant vertices and 

constraints before a full optimization is attempted. 

(2) Both problems demonstrate that the choice of sampling 

frequency points is very important in practical cases. 

Violations may occur at uncontrolled frequencies. This 

ill-conditioning property may be due to the formulation of 

relative insertion loss in the passband, noting that it is 

the difference of two responses of similar magnitudes. 

(3) The Monte Carlo technique may be employed to test the 

assumptions of convexity after the final optimization. 

Besides the comments made above, other pertinent remarks on 

advantages and observations presented in Part 1 and Part 2 also apply . 

For some more results and illustrations not included in this thesis , 



see Bandler, Liu and Tromp (1975b) . 

4. 18 Conclusions 

The advantages of the integrated approach to circuit design 

embodying centering, tolerancing and tuning have been shown and the 

sucessful implementations have been demonstrated by numerous examples. 

The introduction of tuning variables and allowing the nominal point 

to move have enhanced tolerances and subsequently reduced the cost of 

eventual fabrication. Time-saving techniques including vertices 

selection strategies and symmetry considerations have been presented 

and shown to be indispensible for an efficient automated algorithm. 

Two realistic problems have been studied. Typically , less than 2 

minutes of CDC 6400 computer time is sufficient to optimize small 

problems and 5 to 10 minutes is sufficient for larger problems. 
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CHAPTER 5 

CONCLUSIONS 

In this thesis we have considered the problem of design 

centering, tolerancing and tuning in a unified manner. The concept of 

a tunable constraint region that allows variable specifications as set 

by the customer has also been incorporated. This may find 

application, for example, in tunable filters. Reduced problems 

adaptable for computer implementation have been treated. The purely 

toleranced and purely tuned problems turn out to be special cases. 

The examples we have studied seem to justify the reduction of the 

general tolerance-tuning problem into one containing effectively 

toleranced and effectively tuned components, where appropriate. If 

the separation of the components is not decided in advance, the general 

problems as in Section 4.12 with a cost function reflecting both 

tolerances and tuning ranges is appropriate, since an optimization 

program requires an explicit number of variables and constraints in 

advance. 

A cost function tending to maximize tolerances and minimize 

tuning has been implemented successfully in this context. Zero tuning 

ranges were indicated when the cost became too high. 

As far as the author is aware, this formulation seems to be 

the most general to date dealing with the centering, tolerancing and 
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tuning problem at the design stage. Tuning uncertainties can also be 

taken care of in the formulation by associating tolerances with the 

tuning. 

On the computational side the concept of one-dimensional 

convexity is essential. The application of this generalized convexity 

enables us to reduce an infinite number of constraints and variables 

128 

to a manageable number. A class of functions that, under certain 

conditions, will give rise to such a , region , in particular, the class of 

one-dimensional biquadratic functions, was investigated. These 

functions include the frequency response magnitudes of common linear, 

lumped, time-invariant circuits. Further reduction has been 

demonstrated by exploiting monotonicity and symmetrical properties of 

the network functions. 

Reduction of computation time remains a challenging hurdle to 

overcome, particularly for discrete problems. 

This work has revealed promising directions conceptually and 

algorithmically for future investigation . 

(1) Extension of the formulation to correlated parameters. 

The deviation from the nominal of one component is often a 

function of another. This tracking problem is common in 

(2) A two-dimensional equivalent of (3. 1) is 

N (¢1 ' ¢2 ) 

M (¢1 , ¢2 ) 



X � 

and 

where 

and A and B are 3x3 matrices of the coefficients - of N and M, 

respectively. Conditions for the worst case to occur at one 

of the vertices of the tolerance region can be investigated. 

(3) Instead of considering exact 100% yield problems, bounds 

on the magnitudes of the constraint function may be obtained , 

say, from a multi-dimensional extension of equations (3.5)  

and ( 3.  6 ) to predict the yield of a given design without a 

Monte Carlo simulation , 

(4) Practical applications of tolerance-tuning ideas to 

optimize circuits subjected to parasitic loss effects (Ternes 

1962) , stray elements and uncertainties in modelling. See, 

for example, some efforts by Bandler, Liu and Tromp (1975b) .  

(5) A special purpose optimization method which will choose 

and update constraints in the optimization process. A 

preliminary thought is as follows. Piecewise linearize all 
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the constraints, out of which choose the active ones and 

solve the subproblems in an iterative manner. 

(6) The idea of generalized concave functions and the 

implications of signs of derivatives over a region could be 

applied to speed up some statistical methods that require 

repeated evaluation of function values . 

1 30 



APPENDIX A 

GENERALIZATION OF CONCAVE/CONVEX FUNCTIONS 

There is a vast volume of literature on generalized concave/ 

convex functions. See, for example, relevant papers by Ponstein (1967), 

Greenberg and Pierskalla (1971) and books by Mangasarian (1969), 

Zangwill (1969), and by Roberts and Varbarg (1973). Unless otherwise 

indicated, we will follow definitions used by Zangwill. 

Definition A.l 

Lemma A. l: 

Definition A.2 

(A.l) 

for any O < A < 1. 

Let R.' i = 1, . . .  , m, be convex sets. Then the set 
]. 

m 
R � n R. (A.2) 

i=l ]. 

is also convex. 

A function g on a convex set R is a eoneave nunwon 

if ¢a, ¢b E R  implies 

1 3 1  



Definition A.3 

Lemma A.2 : 

Lemma A , 3 :  

Lemma A. 4 :  

132 

(A.3) 

for any O < A < 1. 

A function g on a convex set R is a  eonvex nunetion 

if -g is concave . 

Let gi , i = 1, 2, • • . , m, each be concave on a convex 

set R. 

g (cp )  {J 

If a. � O, i = 1, 1 

m 
� 

i=l 
a . g . ( cp )  1 1 ~ 

is concave on R. 

. . . , m, the function 

(A. 4) 

Let g be differentiable on a convex open set R. Then 

g is concave if and only if 

(A. 5) 

Let g be a concave function on a convex set R. Then 

for any fixed scalar y the set 

H � { cp l g ( cp ) : y }  y 
(A. 6) 



Definition A. 4 

Definition A. 5 

Definition A. 6 

Definition A. 7 

Lemma A. 5: 

is convex. 

1 
A differentiable function g : En + E is 

p�eudoeoneave on a convex set R if for all 

111
a, 111

b 

't' 't' e: R ,  

implies 

a 
g (¢ ) • 
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(A . 7 ) 

(A. 8) 

A function g is p�eudoeonvex if -g is pseudoconcave. 

A function g 
1 

En + E is called quMieoneave on a 

convex set R if given ¢ a, ¢b e: R 

(A . 9 ) 

for any O < A < 1. 

A fttnl"' H nn g is qun)..}(l r1 V1\J CJ X  if -g is quasiconcave . 

A function g is quasiconcave if and only if the set 

H � { ¢ l g (¢) > y } y 
(A . 10) 



Definition A . 8  

Definition A.9 

is convex for any scalar y. 

A set R S  En is one-dirnenl.)iona.l eonvex if given any 

th a , th b (j ) R · 1 2 h 'I' 'I' E , J = , , • •. , n, w ere 

1 34 

ae . , ~J  
(A.11) 

for some scalar a, implies 

(A.12) 

for all O < A < 1. 

A differentiable function g : En
➔ El is 

one-cUmenl.)iona.l p�eudoeoneave on a convex set R if 

a b (j) 1 2 th b (j ) given any <P , <P s R, j = , ; . • • , n, 'I' as 

in (A.11), for some a 

implies 

The logical equivalent statement of (A.13) and 

(A.14) is as follows: 

(A .13) 

(A.14) 
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(A . 15) 

implies 

(A. 16) 

Definition A . 10: A function g is one-dimensional pseudoconvex if -g 

is one-dimensional pseudoconcave. 

D f. . . A 11 A f · n l · ,.1 : ... • ,., o • 
e inition • : unction g : E + E is one-u.,t11,eri6�onu..,{_. quM�eoneave 

on a convex set R if for some a and for all 

j = 1 ,  2 ,  . . .  , n ,  <P
a

, cp
b ( j ) e: R ,  

(A. 17) 

for any O < A < 1. 

Definition A . 12: A function g is one-cwneri6ional quM ieonvex if -g is 

Lemma A. 6: 

one-dimensional quasiconcave . 

A function g is one-dimensional quasiconcave if and 

only if the set 

H � { <f> l g ( cp ) : y } y 
(A. 18) 
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is one-dimensional convex for any scalar y. 

Mangasarian and Ponstein have related quasiconvex functions to 

pseudoconvex functions and convex functions, with the conclusion that 

the class of quasiconvex functions is the largest class considered and 

the strictly convex class is the smallest. Similar statements can be 

made for quasiconcave functions, etc. 

With the introduction of one·-dimensional generalized concave/ 

convex functions, a larger class of functions is added to the list. 

The class of one-dimensional generalized functions is less restrictive 

than the multi-dimensional counter-part. This can be demonstrated by 

the function 

which is convex over ¢
1 (for any fixed ¢2) and over ¢2 (for any fixed 

¢1) but fails the defining inequality (A. 3) of convexity for 



APPENDIX B 

A BASIC THEOREM (Bandler 1972, 1974) 

Theorem 

If the vertices of R are in R , then R c R if, for all 
E C E C 

j = 1, 2, . • •  , k 

,l.,a + 'I' a.e . 
~J 

E R 
C 

where a. is a scalar and E is the jth unit vector, implies _that 

for all A satisfying O :  A < 1. 

Proof 

(B . 1) 

(B. 2) 

Let �i denote some point, in general, in an t-dimensional 

linear manifold generated by the first 22 vertices as 

with p� satisfying 

2l g, 
E + 2 l (p . l µ ! (i) s . e . )  

i=l 1j=l J J ~J 
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(B. 3) 



p. = 1, 1 i = 1 ,  2, . . .  , 22 

1 38 

(B.4) 

where µ � (i) s { O, 1 1 }, j = 1, 2, • • • , Jl and s. : 0 is the tolerance of the 
J J 

jth component. The index i denotes the vertex: number and must satisfy 

k 
i = 1 + I µ ! (i) 2j

-
l
. (B . 5) 

j=l J 

Assume that �
Jl 

s Rc for all �
i

s Rc. Now consider 

2.R,+l .Hl 
�~ Jl+ 1 

= � O 
- s + 2 I ( q . I µ ! ( i ) E . e . ) ( B • 6) 

i=l 1
j= l J J ~J 

with q. satisfying 1 

22+1 

I q. = 1, 1 i 1, 2, 
Jl+l 

• • •  , 2 • 
i=l 

After some manipulation, we find that 

Let 

�Jl 
n 

= �
Q 

- E + 2 1  [ (q. + q .Q, ) f µ ! (i) s.e.] 
i= l 1 2 +i j =l  J J ~J 

2.R.+l 

+ 2 < I qi
) Ei+1:i+1. 

i=2.Q,+l 

2i+l 

A = I qi 
i=2Q,+1 

(B. 7) 

(B .8) 

(B � 9) 



and 

1. 

Hence (B. 8) becomes 

1 ') 
.1. ' "- ' 
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(B . 1 0) 

(B . 11) 

With A=O, � 2+l = �2 E R
c 

by assumption. If A= l ,  � t+l = �2 + 2E2+1:2+l' 

which represents a translation of the t-dimensional manifold. Thus, 

¢ t+lE Rc. For O < A < 1 we note �2+lE Rc if (B. l) and (B. 2) hold for 

j = 2+1. 

It is easy to verify that � r  E Rc and, furthermore, that �2 E Rc 

if (B. 1) and (B. 2) hold for j= l and j=2, respectively. It follows by 

the foregoing inductive reasoning that �k 
= �, as defined by 

where 

2k 
k 

¢ =¢
a 

- E + 2 I (p . I µ! (i) E. e. ) , 
i= l  1j=l  J J ~J 

p . = 1 , l 
p .  > o ,  

l 
i = 1, 2, . . .  , 

is in R under the conditions of the theorem. 

(B . 12) 

(B . 1 3) 



APPENDIX C 

OPTIMIZATION METHODS 

A brief review of the techniques used for this work is 

presented here. Most of the algorithms described in �his appendix have 

been incorporated in a user-oriented computer program called DISOPT. 

See Bandler and Chen (1974), and Chen (1974). 

C.l The Nonlinear Program 

The nonlinear progrannning problem can be stated as 

minimize f(x) 

subject to 

g . (x) i ~ l = 1, 2, 

(C.l) 

(C. 2) 

where f is the general nonlinear objective function of n parameters x, 

and g1(x), g2(x), • • • , gm(:) are, in general, nonlinear functions of 

the parameters. We will assume that all the functions are continuous 

with continuous partial derivatives. 

The nonlinear program can be solved by methods such as the 

barrier-function method of Fiacco and McCormick (1968). We define, 
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for example, the unconstrained function 

B(x, r) = f (x) + 2 r 

i=l gi (�) , (C .  3) 

and minimize it with respect to x for appropriately decreasing values 

of the parameter r. 

Recently, Bandler and Charalambous (1972a, 1974) proposed a 

minimax approach which involves minimizing 

where 

V(x, a.) = max 
l�i�m 

a. > o .  

[f(x), f(x) - a.g.(x)], 
l ~ 

A sufficiently large value of a. must be chosen to satisfy the 

inequality 

1 m 
I: u. < 1, a. i=l l 

where the u. 's are the Kuhn-Tucker multipliers at the optimum. 
l 

(C. 4) 

(C .5) 
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C. 2 Least pth Optimization 

Several least pth optimization algorithms are available for 

obtaining minimax or near minimax solutions. The unconstrained 

function to be minimized, in the present context, can be of the form 

where 

and 

- e) ( . l ( e. (x) 

)
4

) 
- E 

U (x) + (M (x) J ~ 
M (x) - E 

J EJ 

l 0 for M (x) :/= 0 
E + 

small positive number for M (x) = 0 

q + p sgn (M (x) - E) 

p > 1, 

> 0, J + { j I e. (x) > 0, j = 1, 2, . • • , m+ 1} 
J ~ 

(C .6) 

(C. 7) 

if M (x) (C. 8) 

< O, J + { l, 2, • • •  , m+l}. 

The definition of the e. 's, the appropriate value (s) of p and the 
J 

convergence features of suitable algorithms are summarized in Table 

C. l. For the algorithm with large value of p, see Baudler and 
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Algorithm 

1 

2 

3 

4 

TABLE C.l 

FEATURES OF SOME LEAST pTH FORMULATIONS 

Definition of e. 

I
f _  agi . i _ 1 .  2 .  • •  • ,  m 

e +· 
i f, i = m + 1 

where 
a. > 0 

I f - agi - �r, i = 1, 2, . •. , m 
e .  ·E--

1 f - �r, i = m + 1 

where 

r 
� ·E--

a > 0 

I min [O, MO
+ y],  

v r-1 M + y, r > 1 

r = 1 

r indicates the optimization number 

y :is a small positivE� quantity 

Convergence 
feature 

Increment 
of p 

Extrapolation 

Updating of 

�r 

Value(s) of 
p 

Large 

Increasing 

Geometrically 
increasing 

Finite 

Number of 
optimizations 

1 

Implied by the 
sequence but 
superceded by the 
stopping quantity 

Depend on the 
stopping 
quantity 

I-' 
..i::-w 



Charalambous (1972c), and Charalambous and Baudler (1973) for the 

description of Algorithm 4. See Chu (1974) for extrapolation 

technique used in Algorithm 3. 

C.3 Existence of a Feasible Solution 

The existence of a feasible solution can be detected by 

minimizing (C.6) when 

-gi' j = 1, 2, . . .  , m 

e. + 

- f, j = m +  1, 

where f is an upper bound on f .  A nonpositive value of M at the 

minimum or even before the minimum is reached indicates that a 

(C.9) 

feasible solution exists. Otherwise , no feasible solution satisfying 

the current set of constraints and the upper bound on the obj ective 

function value is perceivable. Only one single optimization with a 

small value of p greater than unity is required. 

C.4 Unconstrained Minimization Method 

Gradient unconstrained minimization methods have become very 

popular because of their reported efficiency. One such program is the 

Fortran subroutine, which utilizes first derivatives, implemented by 

Fletcher (1972). The method used belongs to the class of quasi-Newton 

methods. The direction of search sj at the jth iteration is calculated 
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by solving the set of equations 

(C . 10) 

where Bj is an approximation to the Hessian matrix G of U, V U  is the 

gradient vector and xj is the estimate of the solution at the jth 

iteration. 

As proposed by Gill and Murray (1972) , the matrix Bj is 

factorized as 

(C.11) 

where L is a lower unit triangular matrix and D a diagonal matrix. 

It is important that Bj must always be kept positive definite and, 

with the above factorization, it is easy to guarantee this by 

ensuring d . . > 0 for all i .  
1. 1.  

A modification of the earlier switching strategy of Fletcher 

(1970) is used to determine the choice of the correction formula for 

the approximate Hessian matrix. The Davidon-Fletcher-Powell (DFP) 

formula is used if 

- DTT /vJ \ \ V '-' '"'� / / ' (C.12) 

where 

(C .13) 
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Otherwise, the complementary DFP formula is used. 

The minimization wil l  be terminated when l x� +l 

1 

than a prescribed small quantity, for all i. 

C.5 Discrete Optimization 

x� I is less 1 

A general strategy for solving a nonlinear discrete programming 

problem due to Dakin (1966) is described as follows. 

Dakin's integer tree-search algorithm first finds a solution to 

the continuous problem . If this solution happens to be integral, the 

integer problem is solved. If it is not, then at least one of the 

integer variables, e. g., x . , is non-integral and assumes a value x,, 
l l 

say, in this solution. The range 

where [x�] is the largest integer value included in x�, is 
l l 

inadmissible and consequently we may divide al l  solutions to the 

given problem into two non-overlapping groups, namely, 

(1) solutions in which 

(2) solutions in which 

x .  > [x�] + 1 . 
l - l 

(C . 14) 

146 



Each of the constraints is added to the continuous problem 

sequentially and the corresponding augmented problems are solved. The 

procedure is repeated for each of the two solutions so obtained. Each 

resulting nonlinear programming problem thus constitutes a node and 

from each node two branches may emanate. A node will be fathomed if 

the following happens: 

(1) the solution is integral, 

(2) no feasible solution for the current set of constraints 

is achievable, and 

(3) the current optimum solution is worse than the best 

integer solution obtained so far. 

The search stops when all the nodes are fathomed. 

It seems, then, that the most efficient way of searching would 

be to branch, at each stage, from the node with the lowest f (x) value. 

This would minimize the searching of unlikely subtrees. To do this, 

all information about a node has to be retained for comparison and 

this may require cumbersome housekeeping and excessive storage for 

computer implementation. One way of compromising is to search the 

tree in an orderly manner ; each branch is followed until it is 

fathomed. 

The tree is not, in general, unique for a given problem. The 

tree structure depends on the order of partitioning on the integer 

variables used. The amount of computation may be vastly different 

for different trees. 

For the case of discrete programming problems subject to 

uniform quantization step sizes, the Dakin algorithm is modified as 
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follows . Let x. be the discrete variable which assumes a non-discrete 
l 

solution x�, and q� be the corresponding quantization step , then the 
..L ..L 

two variable constraints added sequentially after each node become 

and 

x. � [x�/q. ]q. + q. 
l l l l l 

x
1
. < [x� / q . ] q . •  

l l l 

(C .15) 

(C.16) 

The integer problem is thus a special case of the discrete problem with 

q. = 1, i = 1, 2, • • • , n, where n is the number of discrete variables. 
l 

If, however, a finite set of discrete values given by 

Di
= { dil' di2, • . • , dij, di (j+l) , • • . , diu}, i = 1, 2, • . .  , n 

(C .17) 

is imposed upon each of the discrete variables, the variable 

constraints are then added according to the following rules: 

(1) if dij < xf < di (j+l) ' then add the two constraints 

x. < d . .  · 
l - lJ 

and 

(C.18) 

(C.19) 
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sequentially, 

(2) if x� < d only add the constraint l il ' 

(3) if x� > d. , only add the constraint 1 1U 

x .  < d . • 1 - 1U 

(C.20) 

(C.21) 

The resulting nonlinear programming problem at each node is 

solved by one of the algorithms described earlier . The feasibility 

check is particularly useful here since the additional variable 

constraints may conflict with the original constraints on the 

continuous problem. An upper bound, f, on f (x) , if not specified, 

may be taken as the current best discrete solution. For a discrete 

problem, the best solution among all the discrete solutions given by 

letting variables assume combinations of the nearest upper and lower 

discrete values (if they exist) may be taken as the initial upper 

bound on f (x) . 

The new variable constraint added at each node excludes the 

preceding optimum point from the current solution space and the 

constraint is therefore active if the function is locally unimodal. 

Thus the value of the variable under the new constraint may be 

optionally fixed on the constraint boundary during the next 

optimization. See Fig. C. l for illustrations of the search procedure 

and a tree structure. 
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Fig. C. 1 

x· 
I 

1 50 

An illustration of · the search for discrete solutJq1_1s. 

(a) Contours of a function of two variables with 

grid and intermediate solutions. 



no feasible 
solution 

continuous 
solution 

upper bound 
exceeded 

optimal discrete 
solution 

(b) The tree structure. 

upper bound 
exceeded 
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APPENDIX D 

PROPOSED STRUCTURE OF A 

TOLERANCE OPTIMIZATION PROGRAM 

A proposal based on the techniques described in Appendix C for 

a TOLerance OPTimization program called TOLOPT is given here . Figure 

D . l  displays a block diagram of the principal subprograms comprising 

the program. TOLOPT is the subroutine called by the user. It 

organizes input data and coordinates other subprograms . Subroutine 

DISOP2 is a general program for continuous and discrete nonlinear 

programming problems. See Appendix C. Subroutine VERTST eliminates 

the inactive vertices of the tolerance region. Subroutine CONSTR 

sets up the constraint functions based on the response specifications, 

component bounds and other constraints supplied in the user subroutine 

USERCN. Subroutine COSTFN computes the cost function. The user 

supplied subroutine NETWRK returns the network responses and the 

partial derivatives . 

Table D.l is a summary of the features and options which may 

be incorporated into TOLOPT. See Bandler, Liu and Chen (1975) . 
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DISO P 2  
-

COSTFN - -

-

TOLOPT CONSTR - USERCN 

Fig . D . 1  

VERTST N ETWRK 
-

The overall s tructure of proposed TOLOPT . The user 

will be responsible for NETWRK and USERCN . 
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Features 

Design paramete�rs 

Obj ective 
function 

Vertices 
selection* 

Constraints 

TABLE D. l 

SUMMARY OF FEATURES, OPTIONS, PARAMETERS AND SUBROUTINES OF TOLOPT 

Type Options Parameten// subroutines 

Nominal and tolerance Variable or fixed Number of parameters 

Cost 

Gradient direction 
strategy 

Specifications on 
functions of 
network parameters 

Network parameter 
bounds 

Other constraints 

Relative or absolute Starting value:s 
tolerances Indication for fixed or 

Reciprocal of 
relative and/or 
absolute tolerances 

Other 

Upper and/or lower 

As many as required 

· variable parameters and 
relative or absolute 
tolerances 

Weighting factors 

Subroutine to define the� 
obj ective function and its 
partial derivatives 

Maximum allowable number of 
calls of the vertices 
selection subroutine 

Sample points (e. g. , fre�quency) 
Specifications 
Subroutine to calculate , for 
example, the network response 
and its partial derivatj_ves 
(NETWRK) 

Upper and lowe!r bounds 

Subroutine to define the 
constraint functions and their 
partial derivatives (USERCN) 

to be continued 

I-' 
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Features 

Nonlinear 
programming 

Solution feasibility 
check* 

Unconstrained 
minimization 
method 

Discrete 
optimization* 

TABLE D. l - continued 

Type 

Bandler-Charalambous 
minimax (or suitable 
alternative) 

Least pth 

Quasi-Newton 

Dakin tree-search 

Options 

Least pth optimization 
algorithms 
See, for example, 
Appendix C, Table 
C. l 

Discrete problem 
Continuous and 
discrete problem 

Parameterst/Subroutj_nes 

Controlling parameter 
Value (s) of p 
Test quantities for 
termination 

Constraint violation tolerance 
Value of p 

Gradient checking at Number of function evaluations 
starting point by allowed 
numerical perturbation Estimate of lower bound on 

least pth obje!ctive 

Reduction of 
dimensionality · 
User supplied or 
program determined 
initial upper bound 
on objective function 
Single or multiple 
optimum discrete 
solution 

Test quantities for termination 

Upper bound on objective 
function 
Maximum permissible number of 
nodes 
Discrete values on step sizes 
Number of discrete variables 
Discrete value tolerance 
Order of partitioning 
Indication for discrete 

Uniform or nonuniform variables 
quantization step 
sizes 

t Parameters associated with the options are not explicitly listed . 

* These features are optional and may be bypassed . 

I-' 
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