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ABSTRACT 

This thesis addresses itself to two main veins of computer­

aided design of electrical networks, namely, simulation and 

optimization. A critical review of the state of the art in 

simulation approaches to networks for analysis and sensitivity 

evaluation, design concepts and optimization algorithms, is 

presented. A new approach for the simulation and design of lumped 

networks in the time domain is presented. The approach is based 

on the transmission-line matrix method of numerical analysis. The 

exploitation of general simulators which can be used as a tool in 

the integrated design process of electrical networks is given with 

specific examples. A new approach for the analysis and design of 

cascaded networks has been developed. This approach proves to be 

efficient and very useful for sensitivity and tolerance analysis. 

The approach has also been generalized to 2p-port cascaded 

networks. 
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CHAPTER 1 

INTRODUCTION 

Methods of analysis and sensitivity evaluation for 

electrical circuits in the time domain and cascaded circuits in 

the frequency domain are the subjects of this thesis. Analysis 

and sensitivity evaluation form an integral part of any computer­

aided circuit design scheme. 

The circuit design problem can be classified into two 

types. The first is the classical type, used during the last 

decade, from which we obtain one set of circuit parameter values. 

This set of parameter values let the desired circuit response (or 

responses) meet optimally the given specifications. Converting 

the results obtained to the real world can be either very 

difficult or very expensive especially if mass production is 

anticipated. This is due to the high price of elements, if they 

are available, with very precise values. This suggests the second 

type which considers the problem more seriously from the 

manufacturing point of view. In this case tolerances on design 

parameters, post-production tuning of certain components and yield 

maximization can be considered. This in turn leads to a more 

sophisticated problem where a nominal set of parameters and their 

associated manufacturing tolerances (and/or tuning) are the 

outcomes. Both types of design have these steps in common 
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a) numerical circuit analysis, 

b) first-order sensitivities (needed for the optimization 

process), 

c) large-change sensitivities. 

This thesis addresses the time-domain analysis of linear 

lumped networks and the sensitivity of the response w.r.t. design 

variables, the use of general simulators to obtain the quadratic 

approximation of a circuit response which is further used in the 

design procedure, and the response and sensitivity analysis for 

cascaded networks in the frequency domain. 

Chapter 2 presents a review of existing methods of circuit 

analysis, sensitivity analysis and optimization. Different 

problem formulations are also given. A section in the chapter is 

devoted to the presentation and formulation of the problem with 

practical considerations. Similar problem formulations and 

methods, which were not developed by electrical engineers but 

which deal with the same type of problem, are briefly discussed. 

A new approach for time-domain analysis and first-order 

sensitivities of lumped networks is presented in Chapter 3. The 

lumped elements are modeled by transmission-line sections or stubs 

and the modeled network is analyzed by the transmission-line 

matrix (TLM) method, which provides an exact solution to the 

model. Compensation of errors arising in modeling the network 

elements is discussed in this chapter. Sensi ti vi ties of the 

model's response w.r.t. design variables, time and time step are 
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derived. Advantages of this method over existing methods are 

mentioned. 

Chapter 4 deals with the use of general simulators and 

their exploitation to obtain the response (of any general network) 

at different points in the parameter space. These response values 

are subsequently used to obtain a multidimensional polynomial 

approximating the response function within an interpolation 

region. The design is then performed using the polynomials 

instead of the real response. For this approach the sensitivities 

w. r. t. design variables are obtained from the polynomial 

approximation directly. Two specific examples are given in this 

chapter. 

An exact and efficient approach to network analysis for 

cascaded structures is presented in Chapter 5. It is very useful 

for differential and large-change sensitivity evaluations. It 

facilitates the exploitation of symmetry to reduce computational 

effort for the analysis. Algorithms for evaluating first- and 

second-order sensitivities, the effect of a multiple of 

simultaneous large changes in the variable parameters, and the 

evaluation of the response, as well as the sensitivity of the 

response, at the vertices of a tolerance region are given in this 

chapter. It is also shown how responses at different loads in 

branched networks, which may be connected in series or in parallel 

with the main cascade, can be obtained analytically in terms of 

the variable elements. The approach has also been generalized to 
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deal with 2p-port cascaded elements. 

Appendix A includes a finite difference formula used to 

approximate the first-order derivative of the time-domain response 

w.r.t. time needed in Table 3.7. 

The data supplied to the general simulator SPICE2 for the 

analysis of the current switch emitter follower example in Chapter 

4 is shown in Appendix B. Appendix C includes the derivations for 

the formulas in Chapter 5, Section 5.6, for the branched circuits. 

Original contributions claimed for this thesis are: 

( 1) A complete exposition of the design problem of electrical 

circuits and suitable methods of formulation. 

(2) A critical review of optimization methods, used in the 

design of circuits, developed by electrical engineers. 

(3) The development of a new method for analysis and 

sensitivity evaluation of lumped linear circuits in the 

time domain. 

(4) The illustration of efficient exploitation of general 

circuit simulators in the design procedure. 

(5) A new approach to the analysis and sensitivity evaluation 

of cascaded networks. 

(6) Algorithms which employ this new approach and their use in 

the design of cascaded networks. 
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CHAPTER 2 

SIMULATION AND OPTIMIZATION OF ELECTRICAL NETWORKS: 

A CRITICAL REVIEW 

2.1 Introduction 

The classical computer-aided circuit design problem can be 

stated as follows: after choosing the appropriate circuit 

topology (configuration) with known components, find a single set 

of designable parameter values which let the circuit response or 

performance optimally meet some given specifications. 

The problem may be reformulated as a nonlinear programming 

problem (minimizing an objective function subject to constraints) 

where the objective and constraints embody the design criteria. 

The objective function itself is usually of the least squares, 

least pth= or: _minimax form. 

The evaluation of a suitable objective function involves 

the evaluation of the response function F(•, w), which is a 

function of the network parameters • (resistors, capacitors, 

inductors, emitter area of integrated circuits transistor, etc.) 

and of other independent variables w (frequency, time~temperature, 

tunable network elements, etc.). The function F(•, w) is usually 

assumed to be continuous in the ranges of• and w of interest. 

Performance specifications are usually functions of w only, 

whereas design constraints are generally functions of•· 
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This chapter reviews the methods and techniques of each 

step involved in the design procedure, namely the response 

evaluation (or circuit analysis), derivative evaluation 

(differential sensitivity), large-change sensitivity, objective 

formulation and design specification, and optimization approaches 

used in the design of electronic circuits. 

The last section deals with optimal design when certain 

additional practical engineering problems are considered. The 

centering problem formulated in a nonlinear programming form is 

presented. Further practical considerations such as tuning, 

tolerance assignment under model and environmental uncertainties 

are discussed. 

The difficulties facing the designer wishing to avail 

himself of efficient nonlinear programming aids are elaborated on. 

Further development of available algorithms and problem 

formulations which can improve the state of the art are suggested 

in Chapter 6. 

2.2 Methods of Analysis 

2.2.1 Linear Networks in the Frequency Domain (the A.C. Case) 

A linear network is described by a set of linear equations 

of the form 

AX= b, (2 .1) -
where A is the matrix describing the circuit (with complex 
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coefficients) and can be the nodal admittance matrix Y, the mesh 

impedance matrix Z or the tableau matrix (Bachtel, Brayton and 

Gustavson 1971). xis the unknown vector consisting of voltages, 

currents or both, b is a known vector consisting essentially of 

sources exciting the circuit. An important feature of the matrix 

A is that it is sparse for large networks. The sparsity of the 

matrix increases with the size of the network. Sparse matrix 

techniques ( see Duff 1977) for storing the matrix A and for the 

near-optimum ordering of the equations, are usually used. The 

reordering of the equations is performed so as to preserve the 

sparsity and to reduce the number of fill-ins (created nonzero 

elements which were formerly zeros) during the LU decomposition, 

which is often used to solve these equations. At each frequency 

point of interest the matrix A is rebuilt and the set of equations 

resolved. Only the numerical values of the entries of the Land U 

matrices, where A= LU, are changing but their structures remain 

fixed. 

For certain circuits special methods may be more efficient 

than general methods of analysis. As an example, cascaded 

networks, such as the one shown in Fig. 2.1, are analyzed by the 

transmission or chain matrix, where each element is considered as 

a two-port subnetwork described by a 2x2 matrix of the form 

(2.2) 

which relates the input to the output of each two-port subnetwork. 
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input outpuJ 

Fig. 2. 1 A cascaded network, consisting of two-port subnetworks 

connected in cascade, with conventional directions of 

currents and voltages. 

The analysis is carried out by assuming a current through the load 

with a value of one (hence the voltage across the load can be 

known) and by successive matrix multiplication we can obtain the 

information at the input (the source) end. Suppose that the 

computed voltage at the source end is VSc and the actual source 

voltage is Vsa· Since the network is linear, the actual values 

for all voltages and currents are found by multiplying the 

computed values by the factor V Sa/V Sc (Bandler, Rizk and Tromp 

1976, Bandler, Popovic and Jha 1974, Green 1969, Parker 1969). 

A special cu,e of the linear A. C. analysis is the D. C. 

analysis of resistive networks. The equations, which are real in 

this case, are set up in the same way as in the A.C. case and then 

solved once • 
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2.2.2 Linear Networks in the Time Domain 

In some problems we are interested in the transients of the 

circuit and the analysis has to be carried out in the time domain. 

The network equations describing the linear network, using the 

state-variable approach ( Chua and Lin 1975) which is commonly 

used, are 

x =Ax+ Bu, (2.3) 

y = Cx + E~, (2.4) 

where A is a coefficient matrix relating the state vector x 

(capacitor voltages and inductor currents, for example) to its 

time derivative i, and B is a coefficient matrix coupling the 

effects of the independent source vector u. Equation (2.4) gives 

the output vector y, where C and D are coefficient matrices. 

Equation (2. 3) is a set of first-order differential equations 

whose solution is given by 

x(t) 
At t 

= e- l 
t 

0 

and the output vector is 

r<t) 

A(t-t) 
e-~T B u(T) dT + e- 0 x(t ), 

- 0 
(2.5) 

-AT } e - BU ( T ) d T + ~~ ( t ) : : . ( 2 . 6 ) 

At Different approaches to evaluating e- and the integrals in (2.5) 
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and (2.6) exist (Calahan 1972, Chua and Lin 1975, DeRusso, Roy and 

Close 1966). 

A new method for analyzing lumped, linear networks in the 

time domain has been developed by Bandler, Johns and Rizk (1977). 

The lumped elements are modeled by their equivalent distributed 

transmission-line models. The transmission-line network is then 

analyzed using the TLM ( transmission-line matrix) method. This 

approach avoids the formulation of the state equations of the 

original network and the evaluation of e~t or any integrals. 

2.2.3 Nonlinear Networks: the D.C. Case 

In the nonlinear D.C. case the network equations are 

expressed in the form 

f(x) = 0. (2.7) 

These equations are usually solved by the Newton-Raphson algorithm 

(see Table 2.1). 

Another method, which is equivalent to the Newton-Raphson 

method, is to linearize the equations describing the nonlinear 

elements of the circuit. The linearized formulas are then 

represented by linear elements, called the discrete or the 

companion elements ( Calahan 1972, Chua and Lin 1975) and the 

resulting linear circuit is analyzed successively until 

convergence is reached. 

Piecewise-linear analysis is also used in solving nonlinear 

networks (Chua 1971). Other approaches dealing with circuits with 
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multiple solutions are described in Branin ( 1972), Chao, Liu and 

Pan (1975), and Chua and Ushida (1976). 

2.2.4 Nonlinear Networks in the Time Domain 

Nonlinear transient networks may be analyzed by different 

methods. One method is to formulate the state equations of the 

network, which are ordinary differential equations in the normal 

form 

X : f(x, t), (2.8) - -
where xis the vector of state variables. Equation (2.8) is then 

solved by a numerical integration scheme. Stability of the 

integration and its ability to deal with stiff equations (Gear 

1971) are some criteria for choosing the integration scheme for 

the analysis. The tableau approach (Hach tel, Brayton and 

Gustavson 1971) is another method for solving nonlinear networks. 

The method discretizes, at the circuit component (branch) level, 

the derivative operator d/dt, obtaining nonlinear algebraic 

difference equations solved by the Newton-Raphson algorithm. The 

process proceeds in two loops, one for solving the nonlinear 

algebraic difference equations and the next for the time 

iteration. In the Newton-Raphson iteration a set of linear 

equations are repeatedly solved and the sparsity of the 

coefficient matrix of these equations should be taken into 

consideration. 
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The nonlinear network problem in the time domain may be 

reduced to a sequence of D. C. analyses. This is achieved by 

discretizing the time derivative operator, then replacing the 

nonlinear elements by their corresponding companion (linearized) 

elements and solving a D.C. network. The tableau approach and the 

companion approach have advantages over the state-space approach 

in the case of large networks. The reason is that formulating the 

state equations of a large network requires tremendous effort. 

The TLM method when used for analyzing nonlinear networks shares 

this advantage with the former two approaches. 

This presentation of different types of networks and 

methods of solutions -is summarized in Table 2.1. 

2.3 Response Function Derivatives 

It is well known that optimization techniques which use 

derivatives are superior to nongradient techniques if first-order 

sensitivities are readily available. In order to get the 

derivatives of the response function F($, w), which is a function 

of certain voltages and/or currents of the circuit, sensitivities 

of these voltages and/or currents with respect to the variable 

parameters have to be evaluated. One of the most commonly used 

approaches to evaluate these sensitivities is the adjoint-network 

approach (Director and Rohrer 1969a). In this approach an adjoint 

network is constructed, having the same topology as the original 

network, and analyzed. The results of both analyses are used to 
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evaluate· the required sensitivities. 

As an example, in the frequency domain, if the network is 

represented by its admittance matrix Y at a frequency point and 

the equations are Y V = I, then the equations representing the 

adjoint network are 

T ,., 
Y V = I, (2.9) 

where 

T denotes transpose, 

Vis the vector of node voltages of the adjoint network, 

I is the current excitation vector of the adjoint network. 

V and V, for example, are substituted into some derived formulas 

to evaluate the sensitivities (Bandler and Seviora 1970, Director 

and Rohrer 1969b). 

Branin (1973) demonstrated that the sensitivities, in 

general, can be obtained by matrix manipulation without the need 

of defining what is termed the adjoint network. Note also that at 

each frequency two sets of equations are solved. Using the LU 

decomposition we can achieve some saving by avoiding the 

decomposition of the matrix transpose (Director 1971). For 

cascaded networks, an analysis approach newly developed, described 

in Chapter 5, provides, with little additional computational 

effort all the information needed to evaluate the required 

sensitivities. In the li'near D.C. case the adjoint network is 
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linear and both original and adjoint networks are analyzed once to 

calculate the sensitivities. A nonlinear D.C. network will have 

an associated linear adjoint network which has to be analyzed. 

In the time-domain case sensi ti vi ties are much more 

difficult to evaluate because the equations are in the form of 

ordinary differential equations. Hachtel and Rohrer (1967) used 

variational techniques to get an adjoint set of equations which, 

when solved along with the original set, allow sensitivities to be 

evaluated. In the adjoint-network approach, if the original 

network is analyzed in the interval t = [ 0, tf], the adjoint 

network is analyzed in the interval T = [O, tf], where T = [tf -

t]. The integration involving the adjoint network is backward on 

the time axis. The formulas for the sensitivities are integral 

formulas, i.e., in evaluating the sensitivities with respect to k 

variables, k integrations have to be performed after analyzing the 

original and adjoint networks. Other methods can be used to 

evaluate the sensitivities (Parker 1971) but they do not appear 

easier or more efficient than the adjoint-network approach. 

The TLM method can, in parallel with the response 

evaluation, provide the sensitivity of the time response w.r.t. 

all the design variables (as is shown in Chapter 3). 

An approach developed by Bandler and Abdel-Malek 

(Abdel-Malek 1977, Bandler, Abdel-Malek, Johns and Rizk 1976, 

Bandler and Abdel-Malek 1978a) avoids the evaluation of the exact 

response function derivatives. Multidimensional polynomial 
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approximations of the response functions are performed using a 

minimal number of evaluations of the actual functions within an 

interpolation region. The approximations are used in the 

optimization process instead of the actual functions. The 

derivatives of the approximations are efficiently and rapidly 

obtained. During optimization the approximation is updated in 

different regions in the space or in smaller interpolation regions 

as indicated by the optimization or to obtain higher accuracy, 

respectively. 

In some cases the response derivative is evaluated as a 

second-order sensitivity. An example of such a case is the group 

delay which is obtained by finding the sensitivity of the output 

voltage w. r. t . frequency. An approach which makes use of the 

adjoint-network concept to find the exact group delay sensitivi­

ties is described in Rizk ( 1975) and Bandler, Rizk and Tromp 

(1976). 

2.4 Large-change Sensitivity 

Large-change sensitivities are important in the centering 

and tolerancing problem described in Section 2. 7. Here, we are 

interested in large changes in the variable parameters which often 

result in a considerable change in the response function. 

Fidler (1976) and Schwarz (1977) explored the relationship 

between large-change and differential sensitivity for bilinear 

networks (where the network function is a ratio of polynomials). 
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They showed that two analyses of the network, with the variable 

element perturbed, in addition to the analysis of the nominal 

network are required to evaluate any large-change and differential 

sensitivity of different network functions w.r.t. this element. 

Singha!, Vlach and Bryant (1973) expressed the network 

function ( the bilinear function) in terms of the variable 

parameters explicitly. The approach requires the solution of the 

network with at most k+1 different excitations (where k is the 

number of variables), evaluation of some of the principal minors 

of a matrix of order k+ 1 and the solution of two triangular 

systems of equations. Once the coefficients of the bilinear 

function is obtained any large change can be easily evaluated. 

Gadenz, Rezai-Fakhr and Ternes ( 1973) used the adjoint­

net work concept for evaluating large-change effects. This 

approach requires k+ 1 analyses of the adjoint network and the 

solution of a linear set of equations of order k. For any set of 

large changes the linear system has to be resolved. 

Goddard, Villalaz and Spence (1971) replaced the large 

change in an element by a current source whose value is identical 

to the current initially flowing through the change of the 

element. If the nodal admittance matrix is used for the analysis, 

only the r. h. s. of the matrix equation is changed. Since the 

inverse of Y (or its LU factorization) is obtained previously for 

the original analysis, only matrix multiplication by the new 

current vector (or forward and backward substitution) is required 
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to obtain the new network response. 

Leung and Spence ( 1975) used matrix inverse modification 

methods (Householder relations) to evaluate the change in response 

due to multiparameter large changes. 

The new approach presented in Chapter 5 for cascaded 

networks provides large-change sensitivities without any 

additional effort (than the analysis). The reason is that the 

variable parameter can be related explicitly with the network 

function and hence any change in this function due to a change in 

the variable can be easily evaluated. 

We have to note that the aforementioned approaches are for 

linear systems in the frequency domain. Rezai-Fakhr and Ternes 

( 1975) . partitioned the nonlinear network into two parts. The 

first is the linear nominal circuit described by its pulse­

response matrix and the second consists of all independent 

sources, all element increments and all nonlinear elements pulled 

out of the network. Combining the circuit relations a reduced set 

of nonlinear equations is obtained which has to be solved 

iteratively, at each time step, for each set of large changes. 

In the quadratic approximation approach (Bandler and 

Abdel-Malek 1978a) once the coefficients of the polynomial are 

obtained (after (k+1)(k+2)/2 analyses), any large-change 

sensitivity can be easily obtained by substituting in the 

multidimensional polynomial the perturbed parameter value. This 

value has to lie within the limits of the approximation region, 
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where the approximation of the response function is assumed to be 

valid. This approach is approximate but its advantages are that 

it is very fast and can be applied in the frequency and time 

domains (Bandler, Abdel-Malek, Dalsgaard, Elrazaz and Rizk 1978). 

2.5 Design Specifications and Error Functions 

The problem where the response function has to meet a 

single specification function S ( $), assuming we have one 

independent variable w, can be demonstrated by an amplifier 

example. Consider Fig. 2. 2 (a), in which V 1 ( jw) is the input 

voltage (voltage of the source) to the amplifier at frequency w 

and v2(jw) is the output voltage at the same frequency. The gain 

of the amplifier, which is a linear circuit, is usually given by 

I::,. 
F(t, lj,) = G(~, w) 20 log 10 (2.10) 

The problem is to obtain ~ which results in a gain as close as 

possible, in some sense, to a desired gain, for example, such as 

the one shown in Fig. 2.2(b). 

Another situation which is frequently encountered in 

practice is the problem defined by upper and lower specifications. 

In filter design, for example, we are generally interested in two 

band types (consisting of intervals of frequency w), namely the 
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+ 

V1 (Jw) amplifier 

(a) 

gain 

response specification S (w) 

w 

_(b) 

Fig. 2.2 An amplifier design problem indicating (a) an applied 

voltage v1 (jw) and output voltage v2 (jw), where w is the 

frequency and j = /:I, (b) a possible gain specification 

for the amplifier. 
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stopband and the passband. In the stopband the signal is to be 

prevented from passing through the filter by making the losses as 

high as possible. This can be expressed by a lower specification 

( or bound) of large value . In the passband the situation is 

reversed and it is expressed by an upper specification (or bound) 

of a small value. Figure 2. 3 shows the upper and lower 

specifications of a bandpass filter and a response function 

violating these specifications on the interval [w1 , wu]. 

A suitable objective for a problem with upper and lower 

specifications will reduce the amount by which the actual response 

fails to meet the specifications, or increase the amount by which 

the circuit response exceeds the specifications (Bandler 1969). 

In electrical circuit design more than one response 

function might have to meet given specifications. As an example, 

a circuit can be designed to meet desired specifications in both 

frequency and time domains. In this case we have more than one 

independent variable w, namely w1 , w2 , 

number of these independent variables. 

specifications s1(w 1), ... ' 
error functions are given by. 

n •.• , w , where n is the 

Accordingly, we have n 

The corresponding 

... ,n' (2.11) 
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Fig. 2.3 The response function pf a barntlpass filter 

violating upper and lower specifications. 
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for the continuous case with wj as a positive jth weighting 

function. It is necessary in practice, on a digital computer, to 

consider a discrete set of samples of~, such that satisfying the 

specification at these sample points implies satisfying them 

almost everywhere. Thus, for the discrete case, taking Ij as the 

index set for the jth functions, 

w~(F~(<t>) 
J. J. -

(2. 12) 

is the jth error function evaluated at the ith sample point along 

the \j,j axis. 

In general, we can have upper and lower specifications for 

each \j,j. In the design of a lowpass filter, for example, we can 

have upper and lower specifications in the frequency domain, and a 

single specification in the time domain. The error functions will 

be of the form 

1 \j,1) w1cw 1) (F 1 (p_, \j,1) - s1cw 1)), (2.13) e ( <t>' = u -- u u 

1 \j,1) wi(\j,1) (F 1 (p_, \j,1) - s1cw 1)), (2.14) e Jl. ( P,, = Jl, 

2 l) w2(w2) (F2 (<I>' l) - S2(/)), (2.15) e (<I>' = 

where the subscripts u and Jl. are for upper and lower 

specifications, respectively, w1 is the frequency wand w2 is the 

time t. Figures 2.4(a) and 2.4(b) show the specifications in the 

frequency and time domains, respectively. 



(a) 

. (b) 

- 24 -

Fig. 2.4 An example of multiple objectives in filter design, 

(a) the insertion loss specification in the frequency 

domain of a 1owpass filter, (b) an impulse response 

specification in the time domain of the lowpass filter. 
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In the preceding discussion we considered that each 

response function and each specification is a function of one 

independent variable wj. In some cases we are confronted with 

response functions and specifications which are functions of then 

independent variables. These variables can for instance, be time 

and temperature; frequency and a tunable circuit parameter; or 

frequencies in a two-dimensional frequency response of a 

two-dimensional digital filter. The response function and the 

specifications will be F(~, w) and S(w), respectively, where 

w1 

w A 
11>2 

(2.16) .g 

The frequency response function of a two-dimensional 

lowpass digital filter, for example, of a symmetrically 

constrained finite impulse response (zero phase) is given by 

Rabiner, McClellan and Parks (1975), namely, 

jw 1 jw2 
H(e ,e ) 

-j(n
1
w

1
+n

2
w

2
) n1 n2 

= e I: I: a(k,R.) coskw 1 cos1w 2 , (2.17) 
k=O R.=0 

where the a(k, R,) are the filter coefficients, and the specifica­

tions are 
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(2.18) 

where w and w are the edges of passband and stopband, 
p s 

respectively. In the discrete case the response function 

evaluated at the ith sample point is denoted by 

F.(cp) l!:t. 
F(!, "'.)' (2.19) 

1 - -1 

for 

"'~ l 

"'~ 1 

"'· -1 = i E I, (2.20) 

"'~ 1 

h 1 2 ,i.n. th 1 f th · d d t · bl were$., $., ... , o/ are e va ues o e 1n epen en var1a es 
l l l 

at the ith sample point in the index set I. 

In general, where we have upper and lower specifications, 

the error functions are generalized to 

e . (4>) 
l!:t. 

e (<I>' 11>. ) (F. (<I>) s . ) ' i I (2.21) = w ui E: u' Ul - u - -1 1 - Ul 

eR..(cp) 
l!:t. 

e1(!, "'. ) (F.(cp) - SH)' i IR,' (2.22) = w R,i E' 
l - -1 l -

where Iu and I 1 are index sets, not necessarily disjoint. These 
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can be used in a suitable objective for the approximation problem. 

Figures 2.5(a) and 2.5(b) show two possible cases in two 

dimensions. 

Suppose 

J euj' 
f. = 

1-etk' 

l 

where 

I = { 1 ' u 

IR, = { 1 ' 

I = { 1 ' 2, 

j E'! I u' 

i 

k E! IR,' 

2, ... ' nu}' 

2, ... ' n R,} ' 

... ' nu+ nR,}, 

e I, (2.23) 

(2.24) 

(2.25) 

(2.26) 

and according to a numbering scheme where the error functions for 

upper specifications are considered first: 

Let 

Then the sign of 

j = i 

k = i - n u 

Mr(!) indicates 

if i _< nu' 

ifi>n. u 

whether the 

satisfied or violated. That is, if 

> 0 the specifications are 

M/!) = 0 the specifications are 

< 0 the specifications are 

(2.27) 

(2.28) 

specifications are 

violated, 

just met, 

satisfied. 
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s 

(a) 

~-------~---L---------~-w1 .,,. 

F,S 

q,) 

0.---------------------v,1 

frequency 

Fig. 2.5 Multidimensional specifications, (a) a possible 

specification for ·a two-dimensional digital filter, 

(b) upper and lower specifications for an amplifier. 

to be designed to operate over a specified tempera-

ture range. 
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2.6 Optimization Approaches in Circuit Design 

Optimization approaches which have been used in circuit 

design are quite numerous . In this section we review the ones 

which we feel have been the most significant. 

2.6.1 Nonlinear Programming Approach 

Optimal design of filters has been treated as a nonlinear 

programming problem by Lasdon and Waren ( 1966) . By defining an 

additional independent variable <l>k+ 1, where k is the number of 

variables, Waren, Lasdon and Suchman (1967) formulated the problem 

as the nonlinear program 

subject to 

minimize "' 'l'k+1 

<l>k+1 2. eui' i e I u' 

i e IJ!., 

(2.29) 

(2.30) 

plus all other constraints. At least one of the constraints has 

to be active at the optimum, otherwise <l>k+ 1 could be further 

minimized without viola ting any of the constraints. If the 

optimum <l>k+ 1 is negative then the specifications are satisfied, 

while if it is positive the specifications are violated. Lasdon 
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and Waren applied the interior penalty sequential unconstrained 

minimization technique by Fiacco and McCormick ( 1968) along with 

the Fletcher-Powell variable metric method (Fletcher and Powell 

1963) to solve this type of problem. This technique has been 

applied to the design of cascade crystal-realizable lattice 

filters, linear arrays (Lasdon, Suchman and Waren 1966), planar 

arrays (Waren, Lasdon and Suchman 1967), and acoustic sonar 

transducer arrays (Lasdon, Waren and Suchman 1973). 

Other penalty functions can also be · used along with the 

Fiacco-McCormick method like the Zangwill penalty function 

( Zangwill 1967) 

where 

and 

m 
P(<!>, r) = U(cj>) +(1/r) L 

i:1 

2 
[X.(C.(<1>))] , 

1 1 -

X . ( C . ( cj>,) ) = [ min ( 0 , C . ( <P ) ) ] , if C . ( $ ) = g
1
. ( p_) , 

1 1 - 1 - 1 - ·-

X. (C. (cj>)) = C. (cj>), 
1 1 - 1 -

if C.(cj>) = h.(cj>), 
1 - 1 -

(2.31) 

(2.32) 

(2.33) 

(2.34) 

which has the advantage of not requiring an initial feasible point 

and the ability to handle equality constraints. The method is 

sensitive to the initial choice of r, and ill-conditioning arises 

when r approaches zero. 

Another penalty function is the Powell extension ( Powell 

1969) to the Zangwill transformation 
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m 
P($, r, s) = 0($) + E 

i:1 

2 ( X. ( C. ( $)) +s. ) 
1 1 ._, 1 

r. 
1 

(2.35) 

wheres. and r. are constants during each sequential optimization 
1 1 

and X.(C.($)) is as defined by (2.32) and (2.33). 
1 1 -

The value of s. is updated by (Powell 1969) 
1 

j+1 
s. = 

1 
s~ + g 

1 i' 
(2.36) 

where j is the present iteration number, and the values of ri form 

a decreasing set approaching zero. 

(The ill-conditioning problem which arises in penalty 

function methods when r tends to zero has been studied by 

Charalambous (1975a), where he extended the work by Powell. The 

approach is based on the simple idea of perturbing the constraints 

outwards for the interior penalty function, and inwards for the 

exterior penalty function by a certain amount so that the r para-

. meter does not have to tend to zero at the optimum. The factor by 

which the constraints are perturbed and the updating formula are 

similar to the s. factor and its · updating formula in Powell's 
1 

transformation.) 

2.6.2 The GRG Method 

Waren et al. ( 1977) developed a generalized reduced 

gradient (GRG) algorithm for solving the nonlinear program 
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minimize U(4>) 

subject to 

h.(4>) = o, i = 1 ' 2, ... ' nh, 
l -

(2.37) 

gi(!) 2. o, i = 1 ' 2, ... ' n g' (2.38) 

by converting it to 

minimize u ( 4>) 

subject to 

i = 1 , 2 , . . . , nh , (2.39) 

i = 1, 2, ... , ng, (2.40) 

i = 1 , ... , k + nh , (2.41) 

i = k + 1 , ... , k + nh , ( 2 . 4 2) 

where 

4>k+n +i 2. o, 
h 

i = 1, 2, ... , ng, 

nh is the number of equality constraints, 

n is the number of inequality constraints, 
g 

k is the number of variables, 

~ ~ are nonnegative slack variables. ~k+1' ... , ~k+n +n 
h g 

(2.43) 

At each stage of the optimization process the variables are 

separated into dependent and independent variables. The number of 

natural dependent variables is the number of active constraints 



- 33 -

na. The slack variables of the nonactive constraints are the 

additional dependent variables. All the remaining ones are taken 

as independent variables. The active constraints are then solved 

for the natural dependent variables n in terms of the natural 
a 

independent ones k - n . This reduces the objective function to a 
a 

function of k - n variables only. 
a . 

The generalized reduced 

gradient algorithm solves the original problem as a sequence of 

reduced problems. The reduced problems are solved using a 

variable metric gradient method. 

Waren et al. used the GRG method in the design of 

dielectric interference filters. The problem, defined by 

inequalities, is reformulated as a nonlinear program (as in 

Section 2.6 .1). The numbers of variables and constraints are 

considerable. The GRG method apparently handles this large 

problem efficiently and yields satisfactory results. 

2.6.3 Least pth Optimization 

Ternes and Zai ( 1969) generalized the least squares method 

of Marquardt (1963) with appropriate damping in the spirit of 

Levenberg (1944) to a least pth method. 

They suggested a simple objective of the form 

(2.44) 

where the e. (<I>) are special cases of ( 2. 12) when the number of 
]. -
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independent variables is equal to one and p 2. 2 is any even 

number. The method was applied to the optimization of a 

four-variable RC active equalizer, where p was equal to 10. The 

maximum deviation from the desired specification for p = 2 was 

found to be 33 percent higher. They also demonstrated the 

nonuniqueness of the optimum in that particular problem. They 

obtained different solutions with different starting points. 

For large values of p in ( 2. 44) accuracy and convergence 

problems arise due to very large and very small numbers involved 

in the calculations. Bandler and Charalambous (1971) alleviated 

this ill-conditioning by considering the objective 

[i;I 
e.(<j>) T/p 

l. -
u = M( <I>) M( <1>) 

, for 1 < p < 00 , (2.45) p 

where 

M(<1>) ~ max I e. < <1> > I . (2.46) 
ieI l. -

The error functions, in general, can be real or complex functions. 

Hebden (1971) employed this type of scaling in some related work. 

2.6.4 Generalized Least pth Objective 

Very recently, Charalambous (1977b) proposed the following 

generalization of the original generalized least pth objective due 

to Bandler and Charalambous (1972c) (Charalambous and Bandler 
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1976) 

for M -1. O, 

(2.47) 

for M = O, 

where the~- are related ton real, nonlinear functions (assumed 
1 

differentiable), identified by an index set I, such that 

and where 

and 

where 

~- = f. - F;, 
1 1 

M = max ~i' 
ieI 

i = 1, 2, ... , n, 

if M > O then K = J and q = p, 

if M < 0 then K = I and q = -p, 

J = {i I ~- > O}. i-

(2.48) 

(2.49) 

(2.50) 

(2.51) 
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When minimizing (2.47) the values of u., sand pare kept 
J. 

fixed. At each optimum point reached a change is made to one or 

more of ui, ~ and ·p, such that the sequence of optimum points of 

U tend to a minimax optimum. p 
Depending on which of the 

parameters we change at each optimum point of U , p 

algorithms can be generated, such as the following. 

different 

Algorithm 1 (Bandler and Charalambous 1972c) Here, we keep u. = 1, 
J. 

i = 1, 2, ... , n, and lets= 0 and strictly increase the value of 

pat each optimum point of UP w.r.t. ~ such that p + 00 • It should 

be noted that if fi(!) 2.. O, i = 1, 2, ... , n, this algorithm turns 

out to be the well known Polya algorithm (Cheney 1966). 

Bandler and Charalambous (1972a, 1973) considered necessary 

and sufficient conditions for optimality in generalized least pth 

optimization for p + 00 and related them to the conditions for 

minimax optimality (Bandler 1971, Dem'yanov and Malozemov 1972). 

Algorithm 2 Here, we keep u. = 1, 
J. 

i = 1 ' 2, ... ' n, with p 

constant and, at each optimum point of U, change the value of s p 
V V 

such that it tends to M/ ! ) , where ! is the solution of the 

minimax problem. Charalambous and Bandler (1973, 1976) considered 

the following two variations for changing s-
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Algorithm 2.1 

(2.52) 

where ;r is the solution point of U at the rth optimization and€ 
p 

is a small number. 

Algorithm 2.2 r This method updates ~ as in Algorithm 2. 1 if 

"r r 
Mf(~ , ~ ) < O, otherwise 

(2.53) 

where 

(2.54) 

In both algorithms, for the first optimization the margin 

~1 is min [O, Mf(!o) + d, where <l>O is the starting point. For r 

> 1 the first algorithm will let all the ~- be negative and be 
J. 

considered in the objective function and the maximum is to be 

moved away from the margin. In the second algorithm, ~ starts 

with zero and increases approaching Mf(i). The small number Eis 

introduced to a void M = O. It is well known that the minimax 

solution will not change if a constant is added to all the 
V 

functions fi. If this constant is greater than jMf(!)l the second 

algorithm will be used throughout the whole optimization even if 
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Algorithm 2.3 Charalambous ( 1975b) and Bandler et al. ( 1976a, 

r+1 1976b) took F; to be the lower bound on the maximum predicted 

under convexity assumptions after each optimization. The constant 

F;r is used as a lower bound for the (r+1)th optimization so that 

all the functions less than this constant are discarded and 

considered inactive . The associated algorithm is called the F; 

algorithm. Any combination of Algorithm 1 and Algorithm 2 can, of 

course, be used. 

Algorithm 3 Recently, Bandler et al. ( 1976b), Chu ( 197 4) used 

extrapolation to p = 00 , after performing least pth approximation 

with different values of p, with u. = 1, i = 1, 2, ... , n, to 
l 

obtain the minimax solution. 

The main drawback of the above three algorithms is that the 

unconstrained objective function becomes more and more 

ill-conditioned as we get closer to the minimax solution. 

Algorithm 4 ( Charalambous 1977b) Very re·cently Charalambous 

introduced the parameters u. into the least pth objective function 
l 

to overcome the ill-conditioning problem. Any of the foregoing 

· three algorithms can be used in conjunction with the following 

updating formula for u. after each optimum point of U is reached, 
l p 
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namely "r Initially, set 1 ' i 1 ' 2, <I> • we u. = = ... ' n. 
1 

Subsequently, 

u. V.' (2.55) + 
1 n 1 

I: vj 
j:1 

where 

[ti<{ .~r) J q-1 vr r 
u. i Et K(<1> ,f:: ) 

1 vr r 
M(! ,F,: ) 

(2.56) v. + 
1 

0 i E K(;r ,f::r) 

From the theoretical and numerical results presented by 

Charalambous (1977b), it is clear that this algorithm is superior 

to the other three algorithms. 

2.6.5 Least pth Objective and Nonlinear Programming 

Bandler and Charalambous (Charalambous 1973, Bandler and 

Charalambous 1974) suggested that the nonlinear programming 

problem could be solved using minimax techniques by transforming 

the problem to minimizing w.r.t. <I> the unconstrained function 

M(cl>, a) = 

where 

max 
1<i<n --g 

[U(<1>), U(<1>) - a.g.(<1>)], 
1 1 -

(2.57) 
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= 

Cl 1 

a.2 

an 
g 

i = 1, 2, ... , n. g 

(2.58) 

(2.59) 

(Equality constraints can be transformed to two inequality 

constraints). They related the Kuhn-Tucker necessary conditions 

for optimality of the nonlinear programming problem to the 

necessary conditions for optimality of M(~, a). These conditions 

require that the a parameters be positive and satisfy 

n 
g 

E 
i:1 

< 1, (2.60) 

where theµ. are the Kuhn-Tucker multipliers (not known a priori). 
1 

Sufficiently large values should be assigned to a to ensure that 

the inequality (2.60) is satisfied. 

This minimax problem can be solved by least pth 

optimization (Charalambous 1974a), with large values of p, by 

letting 

(2.61) 
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j = 1, 2, ... , ng' (2.62) 

(2.63) 

Ill-conditioning can arise when the minimax solution is 

approached because of the tendency of the first partial 

derivatives to be discontinuous. Charalambous ( 1977a) attacked 

the problem by defining a sequence of least pth optimizations 

where the objective function to be minimized w.r.t. $ is 

U U ( r rr), 
p = p !' ex .., (2.64) 

where 

ui = 1 , i = 1, 2, ... , ng+1, (2.65) 

(2.66) 

t j+ 1 ( ! ' 
r tr) r j 1 ' 2, (2.67) t. 1 = a. ' = t1 - a.jgj = ... ' n g' J+ 

M M($' 
r tr) M($' exr) r (2.68) = ex = - t ' 

where r is the optimization number. He proved that if 

r V 

~ = ~ = (n 1 + 1) ~' (2.69) 

the point $ is a stationary point of the function U ( $, exr, tr) 
p "' 

'{; 

for any p and t, where $ is the optimum of the nonlinear 

programming problem, µ are the multipliers at the optimum~' n1 is 

the number of constraints with multipliers greater than or equal 

to a certain small number € 1. 
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An approximation to the multipliers which is an estimate to 
V V 

µ (sinceµ cannot be known beforehand) is used in updating a. 

2.6.6 Minimax Approximation via Linear Programming 

Ishizaki and Watanabe (1968) had the objective function M = 

max I e. ( 4>) I , i e, I. They transformed the problem to a nonlinear 
1 "' 

program of the form of (2.29) and (2.30), with the difference that 

the upper and lower specifications coincide, and an additional 

constraint 

j = 1, 2, ... , k. (2.70) 

The last constraint is to prevent 4>. from changing sign during the 
J 

iteration process. By taking the first-order approximation to the 

constraints at a point <I> r, the problem is reduced to a linear 

program, which is given by 

minimize xk+ 1 

subject to 

j = 1, 2, ... , k, 

(2.71) 

(2.72) 

(2.73) 
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where 

and F. ( 4>) is the approximating function ( or the response 
l. -

function). 

The superscript r denotes the iteration number of a 

sequence of linear programming problems. The linear program is 

solved by the simplex method. Some examples which include the 

design of attenuation and group delay equalizers have been 

presented. A discussion of this method is also presented by Ternes 

and Calahan (1967). 

Bandler, Srinivasan and Charalambous ( 1972) developed the 

grazor search method for nonlinear minimax optimization. The 

method is based on a linear programming problem which uses 

gradient information of one or more near maximum functions to 

produce a downhill direction followed by a linear search to find a 

minimum in that direction. They first define a subset J or such 

that 

(2.74) 

(2.75) 

where 4>j denotes a feasible point at the beginning of the jth 

iteration and E j is the tolerance with respect to the current 
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Mf(!j) within which the fi for i e, J lie. Linearizing fi at <l>j 

Considering 

(2.77) can be written as 

- 1: 
ie:J 

L 
ieJ 

L 
ieJ 

j 
Cl, > o, 
1-

This inequality suggests the linear programming problem 

subject to 

t 
iEJ 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

(2.82) 

and subject to (2.79) and (2.80). kr denotes the number of 

A golden section search follows each 

linear program to obtain <l>j+ 1. 
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Madsen et al. ( 1975a, 1975b) developed two minimax 

algorithms based on successive linearizations of the nonlinear 

functions and the resulting linear systems are solved in the 

minimax sense. At the rth stage of the first algorithm a minimax 

solution A<l>r to the linearized system is found subject to the 

constraints 

(2.83) 

where Ar is automatically adjusted during the process to satisfy 

the inequality 

(2.84) 

so that the new point becomes 

(2.85) 

The choice of Ar gives the flexibility of taking a large 

step if the linear approximations represent the nonlinear 

functions well enough. If the decrease in the maximum function 

(the nonlinear one) does not exceed a small multiple of the 

decrease predicted by the linear approximations ( the maximum of 

the linearized functions) then 4>r+ 1 remains 4>r. 

The second algorithm is similar to the first one but does 

not require derivatives. It uses the Broyden updating formula 

(Broyden 1965) to approximate the derivatives, where the initial 
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approximation is obtained by perturbation. 

Comparison by Madsen et al. of the new algorithms with 

existing ones has been reported. Design of microwave reflection 

amplifiers was also carried out. Madsen and Schjaer-Jacobsen 

(1976) treated common singularities in nonlinear minimax problems 

by modifying the first algorithm. They developed an automatic 

procedure to detect ill-conditioning and singularities in a given 

problem which slow convergence. Intuitively, the reason for slow 

convergence is that the upper bound on the step taken in each 

iteration is very small when a narrow valley is reached. However, 

a common feature of these algorithms is that they have a quadratic 

final convergence (Madsen and Schjaer-Jacobsen 1978a). 

2.6.7 Minimax Optimization of Constrained Problems 

Bandler and Srinivasan ( 197 4) suggested an unconstrained 

minimax objective for a constrained minimax problem. The 

constrained problem is to minimize Mf of (2.28) subject to 

The problem is reduced to 

subject to 

j = 1, 2, ... , n . g 

minimize"' "'k+1 

(2.86) 

(2.87) 
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and (2.86). The problem is then reformulated as an unconstrained 

minimax problem. We may, for example, minimize M of (2.49) (with 

~ = 0) w.r.t. ! and $k+1, where 

~1 = 

~. 1 = 1+ 

~ n+i+1 = 

where 

$k+1 

~1 - a 1 ( ~ 1 

~1 - Cli+1 

ct. > 0 , 
1 

and sufficiently large. 

- f.($)) i = 1 ' 2, ... ' 1 -

gi(P.) ' 
i = 1 ' 2, ... ' 

i = 1, 2, ... , n + 1 g 

(2.88) 

n, (2.89) 

n g' (2.90) 

(2.91) 

Dutta and Vidyasagar ( 1977) developed two algorithms for 

solving the nonlinear constrained minimax problem. They are 

principally a generalization of Morrison's least squares algorithm 

(Morrison 1968) and are quite similar to Algorithm 2.3 as proposed 

by Charalambous. 

2.6.8 Other Methods 

Charalambous and Conn (1975,· 1978) proposed a minimax 

optimization algorithm which overcomes the difficulty of 

discontinuities in the minimax objective's first derivatives. 

Their approach is direct, unlike the generalized least pth 

approach. 
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Einarsson (1975) employed the modified Lagrangians 

(Rockafellar 1974) (augmented Lagrangians) in solving minimax 

problems. In his formulation an assumed active function is to be 

minimized w.r.t. $ subject to n-1 nonlinear constraints. If this 

function is, for example, f
1

(~) the constraints will be 

i = 2, ... , n. (2.92) 

The Hestenes-Powell (Hestenes 1969, Powell 1969) method is used 

for updating the multipliers. This method requires the 

constraints to be equalities. The algorithms developed are thus 

based on knowing the active set of constraints in advance. 

2.7 Centering, Tolerancing and Tuning 

In the classical design problem we are interested in 

finding one single point in the feasible region. This kind of 

solution ts impractical from the manufacturing point of view. 

Many other points (design outcomes) can also meet the required 

specifications. The designer can take advantage of this fact and 

assign tolerances on component values (Bandler 1974, Geher 1971, 

Hersom 1971, Karafin 1971, Seth 1972) so as to minimize production 

cost. The cost of a component may be assumed, for example, to be 

inversely proportional to the tolerance associated with it. 

The formulation of the design problem considering 

manufacturing tolerances, post-production tuning and model 
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uncertainties, besides the objective of reducing the cost, renders 

the design more practical and tends to alleviate realization 

problems. 

In practice, during circuit fabrication components are 

either specially made, chosen randomly or selectively from stock. 

These components usually have statistical distributions which have 

to be considered during the design process for electrical circuit 

components. The aim of tolerance assignment is, consequently, to 

obtain a region in which every point represents an outcome 

optimally taking into consideration the aforementioned concepts. 

All the outcomes, or at least a large percentage, have to meet the 

specifications, after tuning if necessary. 

2.7.1 Definitions 

Consider the vector of nominal design parameters 

~o 
1 

~o 
k 

(2.93) 

defining a nominal point and a vector of associated manufacturing 

tolerances 
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E : (2.94) 

described as the tolerance vector and let 

I<I> ~ {1, 2, ... , k}, (2.95) 

where k represents. the number of network design parameters, 

assumed independent for simplicity in the ensuing presentation. 

A nominal point <I> O will have a tolerance region R 
E 

associated with it defined, under the assumption of independent 

variables, as 

R ti { <I> (2.96) 
E -

This region is a convex regular polytope of k dimensions with 

0 sides of length 2e:i, i e I <I>, and centered at <I> . 

points of the tolerance region, the vertices, are 

The extreme 

R 
V 

µi E, - { - 1 , 1 } , i E, I <I>} , (2.97) 

and the index set of the vertices 

~- { k} I 1, 2, ... , 2 . 
V 

(2.98) 
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Any point in the tolerance region is a possible outcome given by a 

point., which is 

where 

and µ e· R , where 
µ 

E ~ 

(2.99) 

(2.100) 

(2.101) 

Figure 2.6 depicts a tolerance region inscribed in the constraint 

region for a two-dimensional case. In general, 

R A{. I g. <•) 2 o, i ~I} 
C l - C ' 

(2.102) 

where 

(2.103) 

is the index set for the performance specifications (response 

constraints) and other parameter constraints, m being the total 
C 

number of constraints. 



.Fig. 2. 6 

...:. 52 -

A tolerance region R inscribed in the constraint region 
E 

R. Ifs= 0 the conventional-nominal design problem is 
C 

implied. 
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2.7.2 Worst-case Design 

In worst-case design the whole tolerance region has to lie 

in the constraint region, i.e., it is required that 

R c::: R • 
e: C 

( 2. 104) 

This is design with 100% yield, where the yield Y is given by 

number of outcomes which meet specifications 

y /),. 

total number of outcomes 

The 2k vertices of the tolerance region are usually the points 

considered as candidates for worst case. There are two main 

reasons. The first is that it is impractical, or even impossible, 

to consider explicitly the infinite number of points contained in 

the tolerance region. The second is that one-dimensional 

convexity of the constraint region may be assumed. Bandler (1974) 

proved, in this case, that it is sufficient for worst-case design 

to require that 

R c::: R • 
V C 

( 2. 105) 

Bandler and Liu (1975) investigated the validity of these 

assumptions for networks which possess bilinear dependence on each 

parameter. In their investigation they studied the behaviour of 

the modulus squared of the bilinear network function, which is a 

biquadratic function given by 
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C<j)
2 + 2d<j> + e 

2 
<I> + 2a<1> + b 

(2.106) 

and they proved that the worst case assumptions they considered 

are often valid in the frequency-domain case. 

Brayton, Hoffman and Scott (1977) proved, for linear D.C. 

networks, that if each parameter is at its extreme value the 

currents and voltages of the network will be at their local or 

global extrema. The investigation of this kind of problem in 

nonlinear networks or in the time domain has not yet been 

reported. 

2.7.3 Fixed Tolerance Problem 

In this problem we want to find <I> O, the center of the 

tolerance region, where the manufacturing tolerances on the 

components are held fixed. The problem is basically a centering 

problem. 

Let us consider a problem with upper and lower performance 

specifications. The error functions in this case are 

e .(<1>j) Aw .(F.(<j>j) - S .), i e I j e I , 
Ul - Ul l - Ul U ' V 

(2.107) 

(2.108) 

where j denotes the jth vertex contained in I , and <l>j is this 
V 



- 55 -

vertex. According to a specified vertex numbering scheme, each j 

will have a correspondingµ. Any suitable objective function can 

be formulated to incorporate these error functions and then 

minimized to obtain the optimal <I> O. We have to note that a 

worst-case design, in this case, is not necessarily achievable 

since we might not be able to inscribe the whole tolerance region, 

with preselected fixed edges, in the constraint region. 

2.7.4 Variable Tolerance Problem 

In many cases the manufacturing tolerances are considered 

as variables instead of fixed. The larger they are the cheaper 

the circuit components will be. The design problem is 

reformulated as a nonlinear program (Bandler 1974, Bandler 1977, 

Bandler and Liu 1974, Pineland Roberts 1972) as follows: 

minimize C(<1>o, E) 

w.r.t. <l>O and E subject to 

<I> E R for allµ E R' 
C µ 

( 2. 109) 

where <I> is as given in (2.99), and 

(2.110) 

The objective function C is directly related to the component 

cost, and generally possesses the properties 
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C <to, €)+constant 

+ 0) 

A common form of this objective is 

k 
E c. 

i:1 1 

where the c. are constant weights. 
1 

<I>? 
1 

€i 

as € + ~' 

as€.+ O 
1 

(2.111) 

(2.112) 

(2.113) 

The number of variables for 

the optimization is 2k, namely, k independent nominal variables 

and k associated tolerances. 

For large problems, with a large number of variables, the 

number of vertices of the tolerance region becomes enormous. 

Selection schemes which include purging (dropping of constraints 

or vertices) as well as addition of vertices of the tolerance 

region during the optimization process alleviate the need for 

considering the 2k vertices (Bandler, Liu and Chen 1975, Bandler, 

Liu and Tromp 1976b). One of these schemes is based on the 

iterative solution of necessary conditions for the worst vertex 

derived from the Kuhn-Tucker conditions. Efficient selection 

schemes relevant to the tolerance problem are still not well 

developed. 

The tolerance problem described here implicitly solves the 

centering problem,· in which we are interested in finding a 

"center" of the constraint region. Other centering approaches 

include the performance contours approach developed by Butler 
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(1971, 1973), and the simplicial approximation approach (Director 

and Bachtel 1977). 

Madsen and Schjaer-Jacobsen ( 1978b, 1978c) extended their 

earlier work on minimax approximation ( see Section 2. 6. 6) to 

minimax optimization with fixed tolerances and the maximization of 

a single variable tolerance. (A single degree of freedom in 

tolerances has also been considered by Bandler et al. ( 1975).) 

Centering is implicit in these formulations. 

2.7.5 Tolerancing and Tuning 

Tuning some of the components after production is quite 

common in electrical circuit fabrication. Considering independent 

tuning in the design procedure, a tuned design will imply$ such 

that 

$ = $0 + E µ + T p' (2.114) - -
for some p e R p' with 

t1 

T /J. t2 
(2.115) 

tk 

An example of R is p 

R = {p I -1 ~ pi ~· 1, i E I$}. p - (2.116) 
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The corresponding tuning region is defined as 

(2.117) 

which is centered at to + E µ. Figure 2. 7 illustrates the 

constraint, tolerance and the tuning regions. 

The design problem in this case is 

minimize C(to, ~' t) 

subject to (2.109), where, t is as given in (2.114), and the 

constraints 

(2.118) 

for all µ E R and some p e R . C is a function which represents 
µ p 

the component cost, for example, 

k .? k 
t. 

l 
' 

l 

E c. -+ E C. 0 
, (2.119) 

i:1 l e:i i:1 l 
.i 

' where the c. and c. are constants. These may be set to zero if 
l l 

the corresponding element is not to be toleranced or tuned, 

respectively. The worst-case solution of the problem must satisfy 

(2. 120) 
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r-----, 
tolerance J /tuning region R1 (µ.) 

. I I 
region Re 1 1 

r-\----:4>o+R~l I 
I I I 
I 
I 
I 
I 
I 

--~--"---------------------4>1 

Fig. 2.7 An illustration of the constraint, tolerance and tuning 

regions and a possible outcome~. If t = 0 we recover 

the essential features of Fig. 2.6. 
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for allµ~ R, where 0 denotes a null set. 
- µ 

The problem can be reduced by separating the components 

into effectively tuned and effectively toleranced parameters. 

Bandler et al. (1976a),Liu(1975) proved that the solution of the 

reduced problem is the solution of the original one under certain 

conditions. 

2.7.6 Uncertainties 

The values of <I> sufficient to give an acceptable design 

depend on other uncertainties influencing design performance. In 

the simulation of actual circuits models or equivalent circuits 

are used, where uncertainties are associated with the model 

parameters. In microwave circuit design, for example, parasitic 

effects exist due to electromagnetic coupling. Models available 

for common parasitic elements normally include empirical 

uncertainties on the values of the model parameters. These 

uncertainties are due to the fact that the model itself is 

necessarily approximate and that further approximations often have 

to be made in the implementation of existing model formulas. 

Non-ideal terminations also alter the performance, i.e., 

mismatches at the source and the load of the circuit (Bandler, Liu 

and Tromp 1976c). 

In modeling a physical circuit the vector of nominal model 

parameters po will have a vector of model uncertainties associated 

with it, such that the model parameters are described by (Bandler 
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1977) 

p = po(<1>) + ~(<1>) ~o' (2.121) - -
where 

01 

~ 
02 

( 2. 122) ~ 

on 

and for example 

-2 .s. ~o s. 2, 

where n is the number of model parameters with uncertainties and, 

in general, n ~ k. Although the model parameters and the 

uncertainties are explicit functions of the physical parameters <I>, 

it is difficult to map the tolerance region from the <I> space to 

the p space in selecting candidates for the worst-case design. 

Let g( ljJ) denote a set of nonlinear constraint functions 

such that 

g(lj,) 2. 0 ( 2. 123) 

represents an acceptable situation for a particular setting of lj,. 

The nominal performance of the design under ideal environmental 

effects will be denoted by go(lj,). The measured performance might 

be described by 
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0 gi = gi (p, t) + µ (p, Q, $), i=1,2, ... ,m(w), (2.124) 
gi """ ~ ~ 41\,tt 

where µ is the deviation from the ideal performance and q is a 
-g 

vector of external parameters, e.g., ones affecting our ability to 

measure the performance. 

2.7.7 Design with Yield Less Than 100 Percent 

In worst-case design the yield is restricted to 100%. This 

may render the circuit very expensive due to tight tolerances. 

The restriction of 100% yield may be relaxed in order to increase 

the tolerances and reduce the cost of the elements. The overall 

cost, in this case, although failing circuits are discarded, will 

have to be lower than the one obtained by worst-case design. 

The design problem with a restricted yield can be set up as 

minimize C (~o, E) 

subject to 

Y 2. X, (2.125) 

where Xis the specified percentage. For unrestricted yield the 

problem might, for example, have the objective function 

k 1 
C: t -/Y. 

i: 1 Ei 

In both formulations the yield has to be estimated. 

( 2. 126) 
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The yield when the parameters are statistically distributed 

is defined by 

Y =.JP(!) ct~ 1 d~2 ,,, d~k' 

R 
C 

(2 .127) 

where P ( $) is the probability distribution function of the 

variable parameters. This k-fold integration is not very 

attractive, especially when the yield estimation is incorporated 

in an optimization process~ Karafin (1974) approximated the yield 

by computing upper and lower bounds on Y using truncated Taylor 

series approximations for the constraints. He assumed that each 

constraint is normally distributed for all choices of component 

tolerances. The yield estimation problem itself has been ·treated 

largely by the Monte Carlo analysis (Elias 1975). 

Becker and Jensen (1974) used pattern search for maximizing 

the yield by finding a set of nominal variables which is optimal 

for specified tolerances. A feasible solution search precedes the 

yield optimization. 

In the simplicial approximation approach (Director, Hachtel 

and Vidigal 1978) while finding the center of the constraint 

region an approximation to this region is also obtained. A crude 

estimate of the yield can be obtained by performing the Monte 

Carlo analysis directly in the parameter space. The yield 

estimation procedure can be improved by testing a sample point (of 

the Monte Carlo analysis) which lies outside the approximate 
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region to determine whether or not it lies outside the actual 

region. If it lies inside the actual region it can be used to 

improve the approximate region. 

Bandler and Abdel-Malek (1978a) derived exact formulas for 

the yield and its sensi ti vi ties w. r. t. design parameters. The 

formulas are based upon multidimensional linear cuts of the 

tolerance orthotope and uniform distributions of outcomes between 

tolerance extremes in the orthotope. 

This approach has been generalized to estimate the yield 

when components have arbitrary statistical distributions 

(Abdel-Malek 1977, Abdel-Malek and Bandler 1978a, 1978b, 1978c). 

2.7.8 Related Work and Extensions 

Tromp (1977, 1978) has generalized the tolerance assignment 

problem so that physical tolerances, model uncertainties, external 

disturbing effects and dependently toleranced parameters can be 

considered in a unified manner. In essence, the approach begins 

with the definitions of the k0i-dimensional vector ~oi, the 

k.-dimensional vector ~i and the k .-dimensional vector µi so that 
l _ µ1 

~i is a function of ~Oi and µi for all i = 1, 2, ... n, and ~Oi 

i-1 itself depends on all~ for i = 2, 3, ... , n. 

Input parameters, e.g. , the physical parameters available 

to the manufacturer might be identified as ~1, whereas ~n would be 

the output vector, e.g., the sampled response of a system or the 

vector of constraints g, which defined Rc of (2.102). The 
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2 n-1 quantities ! , ... , ! can be identified, for example, as 

intermediate or model parameters . The variables µi, i = 1, 2, 

. . • , n, create the unavoidable or undesirable fluctuations and 

generally embody the unknown or intangible. 

The tolerance region in the !-space is obviously no longer 

restricted to be an orthotope in this formulation. 

Polak and Sangiovanni-Vincentelli (1978) recently 

formulated the design centering, tolerancing and tuning problem as 

a mathematical programming problem in the form 

minimize C(<l>o, e: ' t) - -
subject to 

min min max g/!) 2. 0 (2.128) 
iel µER PE·R 

C - µ - p 

and the constraints (2.118), where <1> is as given in (2.114). They 

demonstrated that their formulation is equivalent to the one of 

Bandler, Liu and Tromp ( 1976a). They suggested a new algorithm 

which deals with the nondifferentiable constraints (2.128). The 

algorithm solves the problem as a sequence of approximating 

problems with Rj ~ R as a discrete set. They showed that, under 
µ µ 

certain conditions, the accumulation points of the sequence of 

stationary points of the approximating problems are stationary 

points of the original problem. 

Bandler and Abdel-Malek ( 1978b) introduced a generalized 

least pth function of the form of ( 2. 4 7) to convert a tolerance 
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and tuning problem to an equivalent tolerance problem. An 

expanded constraint region, namely the tunable constraint region 

Rct' replaces the original region Rc. The region is given for p: 00 

by 

R fl{"' 
ct "' max 

p6R 
- p 

min 
i€I 

C 

g. ( ct> + Tp) 2. 0}, 
1 - --

(2.129) 

where ct> is given by (2.99). They based some definitions of yield 

upon Rct and described worst-case design and worst-case centering. 

Madsen and Schjaer-Jacobsen (1978b, 1978c) proposed the use 

of interval arithmetic . to determine the worst case within the 

tolerance region. In this case the one-dimensional convexity 

assumption is not required, and the worst case can lie at an edge 

of the tolerance region instead of a vertex. 
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CHAPTER 3 

TRANSMISSION-LINE MODELING AND SENSITIVITY 

EVALUATION FOR LUMPED NETWORK SIMULATION 

AND DESIGN IN THE TIME DOMAIN 

3.1 Introduction 

The transmission-line matrix (TLM) method of numerical 

analysis provides a new approach to the time-domain analysis of 

lumped networks. The method has previously been extensively used 

for solving electromagneti.c vector field problems in two and 

three dimensions (Akhtarzad and Johns 1975). The technique has 

also been used for solving the diffusion equation (Johns 1975). 

In its application to lumped networks (Bandler, Abdel­

Malek, Johns and Rizk 1976, Johns 1976), che TLM method has some 

advantages because it provides an exact solution to the 

transmission-line networks used to model the actual networks. 

This chapter demonstrates how the transmission-line models for 

lumped networks can be obtained and how to compensate for modeling 

errors in terms of additional network elements. 

Unlike the methods mentioned in Section 2.3 the TLM method 

provides exact sensitivities for the model w.r.t. design variables 

with some additional effort. No integration schemes are involved. 

A symmetrical LC lowpass filter has been optimized in the./ time 

domain using TLM analysis, the required gradients being obtained 
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from the sensitivities derived. 

Sensitivities with respect to the time step are also 

derived, from which an approximation to the time sensitivities is 

obtained. Using these formulas and the TLM results, we can 

extrapolate to the near exact impulse response. 

3.2 Transmission-line Modeling 

The time-domain response of a lumped network can be found 

using the TLM method, after choosing an appropriate transmission-

line model for the network. Induct.ors and capacitors are 

represented either by transmission lines or by stubs. 

3.2.1 Link Modeling 

First consider the modeling of a series inductor and a 

shunt capacitor, each by a transmission line. To simplify the 

analysis, certain assumptions must be made. We will let all the 

transmission-line models have the same length, and let the time 

taken by a pulse to travel along each transmission line be the 

same, namely, T. The lumped inductor· L shown in Fig. 3. 1 (a) can 

have the transmission-line model shown in Fig. 3 .1 (b) with an 

inductance per unit length Ld, where 

( 3. 1) 
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~ 
0 I 0 

L 
I 

T2 I 

-L-==t> -- error --,-
L 

0 0 

(a) (b) 

0 qyp 0 
T2 

C ==t> C error 

0 0 

(c) (d) 

Fig. 3.1 Lossless transmission-line models of a series 

inductor and a shunt capacitor. 
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The velocity of propagation on the transmission line may be 

expressed as 

1 R, 

,_,__ __ = T 

~'Ld Cd 
(3.2) 

and hence the distributed capacitance Cd is given by 

The basic parameter which determines how pulses are 

scattered throughout a transmission-line network is the 

characteristic impedance z0 , which for the model of inductor, is 

obtained from (3.1) and (3.3). Thus, 

(3.4) 

The error associated with the model of the inductor is due 

to the distributed capacitance given in (3.3). This may be 

approximated in the lumped circuit by a lumped shunt capacitor C 
e 

representing the error, which is given by 

(3.5) 
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This lumped capacitor is shown dotted in Fig. 3.1(b). 

The characteristic impedance for a transmission line 

modeling a lumped capacitor (Fig. 3.1(c)) may be derived in the 

same way, the result being 

(3.6) 

and the error this time will be represented by a series lumped 

inductor Le (Fig. 3.1(d)) of value 

(3.7) 

It is clear that if Tis small then for the model of the inductor 

z0 and Ld are large while the unwanted shunt distributed 

capacitance Cd is small. On the other hand, for the model of the 

capacitor z
0 

and the unwanted Ld will be small if Tis small. So, 

as T becomes smaller, the transmission-line model represents more 

closely the lumped element. 

Consider the lumped network shown in Fig. 3.2(a). It is 

composed of M simple resistive networks with scattering matrices 

~1, ~2 , ... , ~M' connected either by a simple pair of wires or a 

pair of wires containing a series inductor or a shunt capacitor or 

both. In the transmission-line model these connections are 
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s, 

(a} 

s, 

(b}' 

Fig~ 3.2 Lumped network and link transmission-line model. 
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replaced by transmission-line sections of propagation time T as 

shown in Fig . 3 . 2 ( b) . In this case the model is called a link 

transmission-line model (Johns 1976). 

The numerical method operates by considering a pulse to be 

injected into the input terminals.of the whole network. The pulse 

scatters on reaching the first subnetwork being partly reflected 

and partly transmitted. This scattering occurs at every 

subnetwork, pulses racing to and fro between subnetworks. The 

output impulse function is the stream of pulses at the output 

terminals. 

If the mth network has N ports with incident and reflected 

voltages given by (Johns 1976) 

vi 
m1 

vi vi 
= m2 

-m 

vi 
mN 

then the scattering equation is 

vr 
-m 

i = S kV, -m -m 

= 

vr 
m1 

vr 
m2 

,jr 
mN 

where the subscript k denotes the kth time step. 

(3.8) 

(3.9) 

If all the 

incident and reflected pulses are assembled into the partitioned 

vectors 
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vi 
-1 

vr 
-1 

vi 
vi vr 
-2 vr -2 (3.10) = = 

vi 
-M 

vr 
-M 

then the scattering equation for the entire network is 

r i 
k~ = s k~' (3.11) 

where Sin this case is a block diagonal partitioned matrix with 

~1, ~2 , ... , ~Mon the diagonal. 

The reflected pulses are the incident pulses at the next 

time step and they are related by 

vi= 
k+1-

r 
Ck~' (3.12) 

where C is the connecti.on matrix indicating the transmission of 

reflected pulses from one subnetwork to become incident pulses on 

a neighbouring subnetwork. The iteration equation is 

i 
=CS k~. (3.13) 

The method will be unconditionally stable for a passive RLC lumped 

network and, therefore, it will be useful for stiff networks 

(Johns 1976). 
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3.2.2 Stub Modeling 

A lumped network consisting of resistive, inductive and 

capacitive elements may also be modeled by stub 

transmission-lines. In this case, the time taken by a pulse to 

travel to the end of the stub and back again is T. Following the 

same procedure used in the link transmission-line models, an 

inductor is modeled by a short-circuit stub with characteristic 

impedance 

2L 

ZO - T 

and the modeling error is a capacitor given by 

(3.14) 

(3.15) 

A capacitor is modeled by an open-circuit stub with an impedance 

T 

ZO = 2C ' 

and the modeling error is an inductor given by 

T2 

Le= 4C . 

(3.16) 

(3.17) 
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The elements with these models are shown in Fig. 3.3. 

Consider the lumped network in Fig. 3.4(a), which is 

represented by a resistive network with N pairs of terminals to 

which all of the inductors and capacitors are connected as shown. 

A transmission-line model for the circuit is shown in Fig. 3.4(b) 

in which all of the inductors are replaced by short-circuit stubs 

and all the capacitors are replaced by open-circuit stubs. The 

reflected pulses 

(3.18) 

will be scattered instantaneously into the N stubs. These pulses 

will travel to the ends of the stubs and be reflected or reflected 

and inverted for capacitive or inductive stubs, respectively. The 

pulses then return to the resistive network and become incident 

pulses 

vi 
1 

vi vi 
(3.19) = 2 

vi 
N 

If the scattering matrix of the resistive network is . the N x N 

matrix S then, at the kth iteration, 
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... T/2 

0-----------

Fig. 3.3 Stub models of an inductor and a capacitor.. 



(a) (b) 

Fig. 3.4 Lumped network and transmission-line stub model. 

-:i 
CX) 
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i 
= s k~. (3.20) 

Reflection of the pulses at the end of the stubs gives the 

incident pulses at time k+ 1, obtained using the same formula as 

(3.12), where C, in this case, is an N x N diagonal matrix with an 

entry of 1 for a capacitiv~. stub and -1 for an inductive stub. 

The iteration routine is therefore exactly as (3.13). 

To enable the incident pulses Vi to converge simultaneously 

it is sufficient that the propagation time T be the same for all 

the stubs. This propagation time is therefore the same as the 

iteration time. This method is also unconditionally stable for a 

lumped network of positive resistors, inductors and capacitors. 

3.3 Discussion 

lt should be noted that the stub modeling leads to an 

implicit routine. The reason is that the scattering matrix S 

involves the entire resistive network. Thus, to calculate Sit is 

necessary to invert a set of simultaneous equations describing the 

network. If the network is nonlinear, then this inversion is 

required before every iteration. In link transmission-line 

modeling, however, the iteration routine is explicit, the 

complexity of equations being independent of the number of 

subnetworks or nodes. The scattering matrices of the networks are 

small enough to be calculated by simple formulas, for example, the 

scattering matrix of the subnetwork in Fig. 3.5(a) is given by 
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R 

(a) 

Fig. 3.5 Example of two simple subnetworks. 
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R(R+Z1+Z2)+2Z1(Z2-Z1) 

R + 2z 1 

R(R+Z1+z2)+2Z2(z 1-z2) 

R + 2z2 

(3.21) 

and the scattering matrix of the subnetwork in Fig. 3.5(b) is 

z 1z
3
-z1z2-z2z

3 
2z1z2 

2z1z
3 

z 1z2-z1z
3
-z

3
z2 

(3.22) 

In general, a network may be modeled by either one or both 

types of model. The LC lowpass filter in Fig. 3.6(a) can have the 

link model of Fig. 3.6(b) or the stub model of Fig. 3.6(c) or the 

mixed model of Fig. 3.6(d). 

3.4 Example 

The following example illustrates the TLM routine for link 

modeling. Consider the circuit of Fig. 3.6(a) (Bandler, Abdel-

Malek, Johns and Rizk 1976) and its link transmission-line model 

in Fig . 3 . 6 ( b ) . Let the time step T be O. 1 second and the 

component values L2 = L4 = 1, c
3 

= 2 and R1 = R5 = 1. The 

characteristic impedances z2 , z
3 

and z4 are 10, 0. 05 and 1 O, 

respectively. An incident pulse of value 0.5 is launched into the 



(a) 

(b) 

(c) 

ca) 
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Fig. 3.6 LC lowpass filter and different types of 

models (a) the filter, (b) link model, 

(c) stub model, (d) mixed model. 
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transmission line representing the source resistance and hits the 

first junction at time t = O. The pulse scatters producing 

reflected and transmitted pulses. The transmitted pulses travel 

towards the output, being scattered at the other junctions. The 

pulses propagate forward and backward between the junctions. 

Table 3.1 gives the incident and reflected pulses at the junctions 

of Fig. 3.6(b) at different times. 

3.5 Compensation of Errors 

Errors in the TLM method arise only from how well the 

transmission-line model represents the actual circuit. Errors do 

not arise from the numerical solution of the model. In certain 

cases the unwanted distributed elements are reduced when the step 

size T is reduced. A distributed capacitor in modeling an 

inductor is an example of such a case. We have to note that this 

capacitor is known before any calculation is started, since T has 

to be chosen. If the distributed error capacitor is taken to be 

two lumped capacitors placed at each end of the transmission line, 

each of these lumped capacitors will have a value of Cd i/2. The 

inductor and the two capacitors representing modeling errors are 

shown in Fig • 3 • 7 • To compensate for modeling error ( to some 

degree) we can subtract the error capacitor from the original 

neighbouring network components. As T increases the amount to be 

subtracted increases and it becomes obvious that there may be a 

limit to such compensation. 
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TABLE 3.1 

INCIDENT AND REFLECTED PULSES OF THE CIRCUIT IN FIG. 3.6(b) 

t 1vi 1vi 1vr 2vi 2vr 2vi 2vr 
(s) 1 2 2 1 1 2 2 

0.0 0.5 0.90909 

0. 1 0.90909 -0.90004 0.00904 

0.2 -0.90004 0.73639 

0.3 0.73639 -0.71125 0.00895 0.01619 

0.4 -0.71125 0.58193 

0.5 0.58193 -0.54452 0.01589 0.02151 

t 3vi 3 r 3 i 3 r 4 i 4 r 4vr 
(s) 1 v1 v2 v2 v1 v1 2 

0.0 

0. 1 

0.2 0.00904 0.00895 0.01800 

0.3 0.01800 -0.01472 0.00327 

0.4 0.01619 0.01589 -0.01472 0.04680 

0.5 0.04680 -0.03829 0.00851 
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L 
0 

I 
rnn 0 

I T2 T2 
2L T T 2L 

0 0 

Fig. 3.7 An inductor with two capacitors representing modeling 

error. 

The impulse response of the Chebyshev filter shown in Fig. 

3.8 (Matthaei, Young and Jones 1964) was found by Kutta-Simpson, 

Euler, TLM and TLM with compensation. The results are shown in 

Table 3.2. The advantage of compensation is clear from the table 

comparing the percentage error between the Kutta-Simpson 

integration method and other methods. The actual components and 

the new components after compensation are given in Table 3.3. 

3.6 Sensitivity Evaluation 

One of the features of the TLM method is that simple 

calculation of exact sensi ti vi ties w. r. t. design variables are 

possible. Sensitivities are calculated iteratively in the same 

iteration process for calculating the impulse response. 



t 
(s) 

1.1 

2. 1 

3. 1 

4. 1 

5. 1 

6. 1 

7. 1 

8. 1 

9. 1 
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TABLE 3.2 

COMPARISON BETWEEN DIFFERENT METHODS OF INTEGRATION 

AND TLM MODELING WITH AND WITHOUT COMPENSATION 

Percentage Error for T = 0.1 

Kutta 
Simpson Euler Link Modeling Link Modeling 

With Compensation 

0.003981 - 38 .5 - 8.3 - 6.9 

0.035665 - 12.8 - 2.3 - 1.4 

0.101499 0.0 - 0.9 0. 1 

0.160644 8.2 - 0.3 0.3 

0.161516 13.1 0.3 0.2 

0.094384 11. 1 1.3 - 0.3 

0.002772 520.3 48.9 -21.8 

-0.054462 57.9 - 1.2 0.5 

-0.051167 45.6 0.1 - 0.1 
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No Compen-
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With Com-
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Fig. 3.8 Chebyshev filter with 7 elements. 

TABLE 3.3 

COMPONENT VALUES OF THE FILTER SHOWN IN 

FIG. 3.8 BEFORE AND AFTER COMPENSATION 

Component Values :fo Ohms, Henries and Farads 

R1 L2 c3 L4 c5 L6 

1.0 1. 7058 1.2296 2.5408 1.2296 1. 7058 

1.0 1.7017 1.2247 2.5327 1. 2247 1.7017 

R7 

1. 0 

1. 0 
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3.6.1 First-order Sensitivities 

Equations (3.11) or (3.20) describe the relationship 

between appropriate incident and reflected voltages for the whole 

network and the derivatives w.r.t. the K parameters of the whole 

network can be written as 

vr 
k-

s 0 0 vi 
k-

a vr 
k- as a vi 

k-- s 0 a~, a~ 1 a~, 
= 

0 0 

a vr 
k- as a vi 

k-- 0 s a~ a~ a~ 
K K K 

The r.h.s. vector is obtained from an equation of the 

(3.12) after differentiating it w.r.t. the jth parameter, 

where C is constant. 

a vr 
= C -- k-1- , 

- a~. 
J 

(3.23) 

form of 

viz., 

(3.24) 

It is clear that the matrix in (3.23) is very sparse since, 

for example , as /a~. vanishes if S does not contain the jth 
-m J ~m 

parameter. Although this matrix is sparse, the two vectors on the 

left and right hand sides are full and all the information has to 

be transferred in each iteration. So in calculating the 
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sensitivities, we have to find the sensitivity of all the incident 

pulses w.r.t. all the parameters. The sensitivity of the impulse 

response will be the sensitivity of the stream of pulses at the 

output port w.r.t. the parameters. 

Consider a subnetwork which simply connects two 

transmission lines having z1 and z2 as their characteristic 

impedances. 

Let 

Then 

The scattering matrix S is given by _m 

z1 = <I> j, z2 = <I> • 1 . J+ 

as 2z2 [-1 :] -m 
= a<1> j 2 -1 (Z1+Z2) 

as 2z
1 [: -l -m 

= 2 a<1> • 1 J+ (Z1+Z2) -1 

The expressions (3.25)-(3.27) can be fitted into 

(3.23) for this subnetwork. 

(3.25) 

(3.26) 

(3.27) 

the scheme of 
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3.6.2 Second-order Sensitivities 

Differentiating (3.11) or (3.20) w.r.t. the jth parameter, 

we get 

r as a vi ak~ - vi 
k-

= + s--
a <t> j a<t,j k- - aq, . 

J 

(3.28) 

i where akv /aq,. is found from (3.24). 
- J 

If we differentiate (3.24) and (3.28) w.r.t. <t>R, we get, 

respectively, 

a2 vi 
k_ 

2 i 
a k-1~ 

---= c--­
aq,R,aq,j - aq,R.a<t>j 

(3.29) 

(3.30) 

Equation (3.30) holds for subnetworks when subscript mis applied 

to both sides but some of the derivatives of ~mare zero. 

3.7 Examples 

The symmetrical LC lowpass filter shown in Fig. 3.6(a) has 

been optimized in the time domain. Fig. 3. 9 shows a specified 

impulse response for L2 = L4 = 1.0, c
3 

= 2.0. Taking 100 sample 
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Fig. 3. 9 . Optimization using TLM. analysis. Starting point a: 1
2 

= 1
4 

= 0. 5, c
3 

= 1. 0. Starting 

point b: L2 = L4 = 0.8, -C 3 = 2.2. 
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points, using TLM analysis, least 4th approximation yielded the 

solution in 21 s (24 function evaluations) and 17 s (19 function 

evaluations) from starting points a and b, respectively, with a 

..;.7 
maximum error of about 3x10 c • The specifications of Fig. 3. 10 

were met with a minimax error of .00219992 after 37 s (46 function 

evaluations) using 33 sample points for optimization. The 

starting point was L2 = L4 = c
3 

= 1.0 and the optimum point 

reached was L2 = L4 = .76645547 and c
3 

= 2.3739403. The minimax 

solution was reached using third-order extrapolation, after a 

sequence of least pth optimizations where the values of p were 4, 

16, 64, 256 and 1024. FLOPT2, a program described in Bandler and 

Chu (1976), was used in these examples. The computer was a CDC 

6400. 

3.8 Sensitivities w.r.t. Time and T 

Differentiating (3.11) or (3.20) w.r.t. T we get 

+ 
s (3.31) 

Usually the scattering matrix S includes the parameters <I> which 

are functions of T as obtained from the modeling. 

The term as/aT can be obtained from 
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Fig. 3.10 Optimization using TLM analysis. Starting point L
2 

= L
4 

= c
3 

= 1.0. 

Solution L2 = L
4 

= 0.76646, c
3 

= 2.3739. 
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Suppose~- is the characteristic impedance of a line modeling an 
J 

inductor. If ~ . = L/T then a~ ./aT = -~ ./T. For the capacitive 
J J J 

case, a~ ./aT = ~ ./T. The second term on the r.h.s. of (3.31) is 
J J 

obtained from (3.12), where 

a vr 
= C -T k-1~ .. - a 

Note that the differentiation is at discrete time steps and the 

information is transferred iteratively with the original iteration 

scheme of the TLM method~ Thus the above derivatives can only be 

obtained at points corresponding to fixed numbers of iterations k, 

i.e., at t = kT, where tis time. Let f(t,T) be an interpolation 

to the approximation of the impulse response obtained at discrete 

times t 1, t 2 , t
3

, .•. by the TLM method, where 

where n is an integer . 

t. - t. 1 = n T, 
J J-

(3.34) 

The parameter T is chosen arbitrarily, 

although it is known that the smaller the T the more accurate is 

the modeling. 

Suppose that the analysis is done twice with two different 

time steps T1 and T2 , respectively. In the first analysis we will 
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get f ( t, T 1) at points, in general, time nT 1 apart, and in the 

second analysis f(t, T
2

) at points nT
2 

apart. 

illustrates the situation. 

A first-order change in f(t,T) is given by 

af af 

Fig. 3. 11 

of= at At+ aT AT, (3.35) 

where At and AT are changes int and T, respectively. Thus, 

of af At af 
----+-AT - at AT aT. 

From the relation t = kT we have 

At= k AT 

therefore, for a particular k, 

-~1 = 
AT AT+O - aT k 

of af af 
k-+­

at aT 

The term !flk is obtained from (3.31). 

(3.36) 

(3.37) 

(3.38) 

Table 3.4 shows, for the circuit of Fig. 3.6(a), where 

f. (T) 
J 



f ( t, T) 

fj_ 1(T) f(tj ,0) 

/ I I • ... t 
)~ , M 7 I 1tp0) 

(t T) · · · · · · · · · · (t. T) 3' J-1' (fJ'T) 

T 

Fig. 3.11 Representation of response with respect tot and T. 

\.0 
Q'\ 



t 
(s) 

0.5 

1. 1 

1.7 

2.3 

2.9 

3.5 

4. 1 

4.7 

5.3 

5.9 
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TABLE 3.4 

~ ;~ lk OBTAINED FROM THE TLM ROUTINE VERSUS 

:r BY CENTRAL DIFFERENCES WHERE T = 0.1 

0.13999 

0.13649 

0.05300 

-0.03086 

-0.08180 

-0.09538 

-0.08170 

-0.05493 

-0.02705 

-0.00535 

ll 
at 

(central differences) 

0. 14638 

0.13771 

0.05315 

-0.03101 

-0.08206 

-0.09569 

-0.08202 

-0.05521 

-0.02727 

-0.00549 

Difference 
(%) 

4.56 

0.89 

0.28 

0.48 

1.54 

0.32 

0.39 

0.51 

0.81 

2.62 
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1 ill versus af/at calculated by the central difference formula 
k aT k 

given in Appendix A. There is a difference between the numbers in 

the two columns which we can attribute to~!~ and the inexactness 

of calculating ar/at. However, it is clear that this difference 

is very small. 

Table 3.5 compares the results obtained for !ilk obtained 

from the TLM routine, and the ones obtained by perturbing T to 

0. 101 and O • 099 from its initial value O • 1 (i.e. , repeat the 

analysis with these new values of T), and using central 

differences. 

Two analyses were performed with two different time steps, 

namely, 0.1 and 0.07143, and af/aT at constant time was estimated 

by perturbation as Af/AT. This Af/AT was used to extrapolate to 

the exact response. The extrapolation formula 

f extrapolated = fTLM 
T Af 

2 AT. (3.39) 

Table 3.6 compares the exact response obtained by the 

inverse Laplace transform and the extrapolated response. Table 

3.7, on the other hand, compares the exact response and the 

extrapolated one, where a fl aT was calculated using ( 3. 38) for 

which af/at is calculated by the central difference formula given 

in Appendix A. 
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TABLE 3.5 

A COMPARISON BETWEEN af/aT FOR CONSTANT k OBTAINED 

BY TLM AND PERTURBATION 

f(t,T) arl af Difference 
T:0.101 T:0.099 aT k aT k 

(central 
differences) 

0.13581327 0.13281062 1.50132 1.50137 

0.04989793 0.05659663 -3.34935 -3.34976 

-0.01400295 -0.01576903 0.88304 0.88397 

0.00345630 0.00371329 -0 .12850 -0 .129911 

-0.00061299 -0.00057152 -0.02073 -0.02050 

TABLE 3.6 

USING ~f/~T TO PREDICT RESPONSE FOR T:O 

f(t,T) 

T:0.1 T:0.5/7 
f exact f extra. 

( %) 

0.006 

0.019 

0.105 

0.474 

1.109 

Diff. 
(%) 

0.5 0.04255324 0.04333199 -2.72562x10-2 0.044141 0.043916 0.510 

1.5 0.17926209 0.17938925 -4.21435x10-3 0.179524 0.179473 0.028 

2.5 0.19006031 0.18991132 4.51465x10-3 0.189777 0.189815 0.020 

3.5 0.10754101 0.10727105 9.44860x10-3 0.106988 0.107069 0.076 

4.5 0.02373052 0.02339983 1.15742x10-2 0.023053 0.023152 o.429 
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TABLE 3.7 

USING af/aT TO PREDICT RESPONSE FOR T:O 

t f exact f extrapolated Difference 
(s) (%) 

0.5 0.044141 0.044152 0.014 

1. 1 0.134981 0.134992 0.008 

1.7 0.193099 0.193111 0.006 

2.3 0.198260 0.198272 0.006 

2.9 0.162173 0.162183 0.006 

3.5 O. 106988 0.106994 0.006 

4. 1 0.052558 0.052561 0.006 

4.7 0.011055 0.011054 0.009 

5.3 -0.013432 -0.013435 0.022 

5.9 -0.022686 -0.022690 0.017 
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3.9 Conclusions 

The TLM method is a new approach to the analysis of lumped 

networks. The distinct advantage of the TLM method is that the 

numerical procedure used solves the transmission-line model 

exactly. Errors arise only from how well the transmission-line 

model represents the actual circuit. To a certain limit the 

compensation of these errors by additional elements can improve 

the results. 

Another advantage is that if the transmission-line network 

is physically stable, which is true in the case of passive linear 

networks, then the TLM solution will be stable. This means that 

stiff networks which give rise to instability in most methods do 

not cause instability in the TLM method. Different transmission­

line models can be obtained for the same network, some of the 

models can be viewed as implicit methods and some as explicit. 

The derived formulas permit sensitivity evaluation of the 

impulse response with respect to design parameters and makes the 

TLM method suitable for automated network design. Sensitivities 

with respect to time and time step can be easily obtained and it 

has been demonstrated how this information is used to improve 

accuracy. 

Possible developments in the method lie in improving the 

accuracy by using more complicated transmission-line elements and 

models and the investigation of limitations on modeling general 

sets of coupled ordinary differential equations. 
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CHAPTER 4 

EFFICIENT USE OF SIMULATION PROGRAMS IN THE 

ANALYSIS OF COMPLICATED NETWORKS 

4.1 Introduction 

Several general purpose simulators have been developed in 

the last decade. These simulators are designed to be as general 

as possible, i.e., to handle any circuit configuration, as many 

types of electrical elements as possible, to perform D. C. , A. C. 

and time-domain analyses. As a result, these simulators are 

large, requiring a huge memory and CPU time to perform the 

analysis of a circuit of a reasonable size. The inclusion of such 

simulators in an optimization program, where it will be called 

hundreds of times is an obsolete idea. Another handicap for these 

simulators is that most of them do not provide sensitivities which 

are needed for the optimization process. 

The trend in circuit design is increasingly towards 

consideration of production yield, design centering, optimal 

assignment of component tolerances and post-production tuning in 

an integrated fashion. The scope and size of the resulting design 

problems have expanded immensely as a result. The circuit 

designer confronting the design of a reasonably sized circuit 

which he has to accomplish in a limited time will be forced to 

avoid developing his own analysis program. 
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With the use of the multidimensional approximation approach 

developed by Bandler and Abdel-Malek (1978a) one can exploit 

general circuit simulators to perform the design without the 

explicit requirement of sensitivities. Knowing a nominal solution 

and the associated tolerances, one run of the simulator at 

(k+1)(k+2)/2 preselected sets of k parameter values lead to a set 

of quadratic models of the response w.r.t. the parameters. Those 

models are subsequently used to carry out the optimization 

processes. 

Problems also arise when the available simulator does not 

handle (or does not include) one, or more, of the elements in the 

circuit to be analyzed. This chapter is concerned with the 

efficient use of these general simulators in the modeling approach 

and how to overcome the problem of nonexisting elements in the 

simulator. Two examples are given, one is an active filter and 

the second is a current switch emitter follower. 

4.2 The Use of General Simulators 

Quadratic models ( Bandler and Abdel-Malek 1978a) of the 

circuit response w.r.t. the parameters at appropriate sample 

points in the frequency or time domains permit the use of general 

purpose simulators without explicit requirement of sensitivities. 

These models are subsequently used to carry out the optimization 

process. The models may be updated and the process repeated 

depending on the accuracy required and the conditioning of the 
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problem. 

To minimize computational effort, the simulator should 

provide responses at (k+1) (k+2)/2 base points, where k is the 

dimension of~, suitably arranged within an interpolation region 

described by Abdel-Malek (1977) 

(4.1) 

where $ is the center of the interpolation region and o defines 

the size. Figures 4.1(a) and 4.1(b) depict suitable arrangements 

of the base points for a two-dimensional and a three-dimensional 

case, respectively. 

The program SPICE2 (Nagel 1975), the available simulator, 

has been used to obtain circuit responses at the base points 

needed for the modeling and design of different networks (Bandler, 

Abdel-Malek, Dalsgaard, Elrazaz and Rizk 1978). The program can 

be run with different sets of parameter values. In order to 

reduce the overhead time, and assuming that the circuit is not 

very large, the . program can be used only once by supplying the 

data in. such a way that the circuit is repeated with different 

sets of nodes (where there is no interconnection between each set 

of nodes except the ground node) with different sets of parameter 

values. In the frequency-domain case the overall nodal admittance 

matrix is, consequently, a: block.-diagonal matrix with each block 
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Fig. 4.1 Arrangement of the base points w.r.t. the centers 

of interpolation regions in (a) two dimensions and 

(b) three dimensions. 
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representing a Y matrix of the circuit. Fig. 4 . 2 shows such an 

example. The reordering of the equations to reduce fill-ins, when 

these equations are solved by LU factorization, would not affect 

the validity of supplying the data in this way. We have to note 

here that this can also be done for circuits to be analyzed in the 

time domain if the companion network or the tableau approach is 

used for the analysis. 

4.3 Examples 

4.3.1 An Active Filter 

We consider here the analysis of an active filter (Fig. 

4. 3) to be designed in the worst-case sense everywhere in the 

range of a tunable parameter, namely, R4. The active filter is 

based on an active bandpass realization considered by Budak and 

Zeller ( 1972). The operational amplifiers employed are taken as 

nonideal, in particular, the one-pole roll-off model given by 

A(s) = 
s + w 

a 
(4.2) 

where sis the complex frequency variable, A0 = 2 x 105 is the 

D.C. gain and wa = 12~ rad/s the 3 dB radian bandwidth. A nonzero 

output resistance R is assumed for the operational amplifiers. 



Y1 Y2 Y3 

Fig. 4.2 A circuit supplied to SPICE2,which is the original circuit 

repeated (k+l) (k+2)/2 times with appropriate parameter 

values. 
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Replacing the operational amplifiers by their equivalent circuits 

we obtain the circuit of Fig. 4.4. Since the program ( SPICE2) 

does not handle a frequency dependent gain of the form of (4.2), 

the gain had to be represented by the transfer function of an 

additional small circuit. The transfer function of a series RL 

circuit driven by a voltage source of A0 wa can represent equation 

(4.2). This is achieved by choosing a value of 1 H for the 

inductance, (w -1)0 for the first resistor and a value of 1 O for 
a 

the output resistor. The voltage across the output resistor is 

the output voltage of the first operational amplifier. The AV 

term at the input to the second amplifier can be modeled by a 

current leaving a node connecting two voltage controlled current 

sources which are controlled by the voltages to be subtracted. 

Figure 4. 5 shows the equivalent circuit supplied to SPICE2 to 

perform the analysis. Fifteen circuits connected in cascade were 

actually supplied once to the program to obtain the response JV2 1 

at fifteen base points. The variables are R1, R4 , c1 and c2 , and 

R2 is equal to 26.5 kO. The center base point and the sizes of 

the interpolation region are given in Table 4.1. Figure 4.6 shows 

the response of the filter with R1 = 12.8214 kO, c2 = 0.74294 µF, 

c1 = O. 70106 µF and R4 = 188 o (a point in the interpolation 

region) obtained by SPICE2 and exactly similar to the response 

obtained by a specially written program. 



C2 

G2 

CD G1 ®I C I® I ® 
II 

1 + /lV 
+ I-' 

I-' 
0 

I 

G9 V9 ( f ) <Gg <G4 V4 A ... · --w (G3 V2 

Fig. 4.4 Equivalent circuit for nodal analysis of the circuit of Fig. 4.3. 
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Fig. 4.6 Response of the active filter at a point in 

the interpolation region. 
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TABLE 4.1 

THE CENTER BASE POINT AND THE SIZE OF THE INTERPOLATION REGION 
FOR THE QUADRATIC APPROXIMATION OF THE RESPONSE OF THE 

ACTIVE FILTER OF FIG. 4.3 

Center Base Point 

Size o 

10 

5 

200 

100 

4.3.2 A Current Switch Emitter Follower 

C1 
( µF) 

o. 75 

0.375 

0.75 

0.375 

The circuit shown in Fig. 4.7 was employed by Ho (1971) 

for time-domain sensitivity calculations, and for worst-case 

design and yield optimization by Abdel-Malek and Bandler (1978c). 

Here we will consider the analysis of this circuit by SPICE2. 

Figure 4. 8 shows the charge-control model to be used for each 

transistor. The charge-control diode model corresponds to that of 

the emitter-base junction. Table 4. 2 lists the values of the 

circuit parameters and model parameters, which were obtained from 

a worst-case design of this network (Abdel-Malek 1977). 

The program SPICE2 could not handle the nonlinear 

capacitance in the form of the one given in the transistor model 

of Fig. 4.8. In order to overcome this problem (assuming we want 

to analyze the network with the given transistor model exactly and 
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Fig. 4.8 The transistor model. 
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TABLE 4.2(a) 

CIRCUIT PARAMETER VALUES 

R1 281 .33 n 

R2 75.00 n 

R3 78.24 n 

R4 45.53 n 

E2 4.03 V 

E3 1.13 V 

E4 1.66 V 

co 1. 25 pF 

TABLE 4.2(b) 

DIODE MODEL PARAMETERS 

diode saturation current 

depletion layer capacitance 

transit time 

inverse of thermal potential 

ISD(exp(0VD)-1) 

dID 

CJD + TTD dV 
D 

0.6 x 10-gA 

0. 12 pF 

0.01 ns 

38.688 v- 1 
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TABLE 4.2(c) 

TRANSISTOR MODEL PARAMETERS 

saturation current 

common base current gain 

base resistance 

collector junction capacitance 

emitter junction depletion 
layer capacitance 

base transit time 

inverse of thermal potential 

0 6 10-9 A 
• X 

0.99 

50.0 n 

0.5 pF 

0. 12 pF 

0.01 ns 

38.668 v- 1 

RB and CC are assumed zero for transistor T3 

TABLE 4.2(d) 

TRANSMISSION-LINE PARAMETERS 

z0 characteristic impedance 92.004 n 

T delay time 0.25 ns 
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not with any other model) the current passing through the 

nonlinear part of the capacitance was represented by the current 

i 1 of a two-dimensional current controlled current source. The 

currents controlling this source are i
2 

and i
3 

in two small 

additional networks as shown in Fig. 4.9. The coefficients of the 

polynomial representing i
1 

are all zero except the coefficient of 

the cross terms which has the value one. In the circuit where i 2 

is passing P0 = P1r3 so as to let i 2 be equal to P1r3 exp( VBE). 

The current i
3 

will represent dVBE/dt. We have to note that the 

zero valued voltage sources in the additional network have to be 

introduced since the current controlled sources in SPICE2 can only 

be controlled by currents passing through independent voltage 

sources. The results were checked by the companion-network 

approach (Rizk 1978). 

The analysis was also performed by SPICE2 using the built­

in models. The parameters of these models were fed in the data to 

match the model as closely as possible to the given model (Fig. 

4.8). Responses obtained by the companion network, by SPICE2 and 

by the state equations (Abdel-Malek 1977) are shown in Fig. 4.10. 

Note that the two responses obtained by SPICE2 were almost 

identical. 

The running time of SPICE2, where we modeled the nonlinear 

capacitance, was 92 s, while using the built-in models the running 

time was only 7 s. This difference is mainly due to the 
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Fig. 4.9 Transistor model described to SPICE2. 
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additional elements we have introduced in modeling the nonlinear 

capacitance which resulted in having 12 additional nodes and node 

voltages. The data supplied to SPICE2 in the two cases is given 

in Appendix B. 

4.4 Conclusions 

The possible exploitation of general purpose simulators to 

perform the analysis of circuits (even if they can not handle the 

circuit directly) and obtain the multidimensional approximation 

models to carry out sophisticated optimal design problems (design 

centering, tolerance assignment, post-production tuning, worst­

case design and yield optimization) has been described. 
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CHAPTER 5 

ANALYSIS AND SENSITIVITY EVALUATION FOR 

CASCADED STRUCTURES 

5.1 Introduction 

This chapter presents a new and comprehensive treatment of 

computer-oriented cascaded network analysis. The analysis of 

cascaded networks plays a very important role in the design and 

optimization of microwave circuits, so that an attractive approach 

which facilitates efficient analytical and numerical 

investigations of response, first- and higher-order sensitivities 

of response, simultaneous and arbitrary large-change sensi ti vi ty 

evaluation is highly desirable. As is well-known, · first-order 

sensitivities, for example, are useful in network optimization by 

gradient methods. 

In tolerance assignment, the response and its first-order 

sensi ti vi ty at the vertices of the tolerance region are needed. 

This information is also very useful if a worst-case search 

algorithm has to identify the worst vertex. 

The approach we have developed permits efficient 

(a) exact analysis of cascaded networks in any direction, 

(b) exact evaluation of first-order response sensitivities at 
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any location, 

(c) exact evaluation of the effects of any number of 

simultaneous large changes in any elements, 

(d) the exploitation of network structure: 

1. tesponses at different loads in branched networks 

which may be connected in series or in parallel with 

the main cascade, can be obtained analytically in 

terms of the variable elements. Sensitivity and 

large-change effects w. r. t. these variables can be 

easily evaluated, 

2. §ymmetry can be taken into consideration to reduce 

computational effort (Bandler, Biernacki and Rizk 

1979), 

(e) evaluation of the exact effect due to simultaneously 

growing elements in appropriate locations. 

The conceptual advantages enjoyed by our approach and 

applicable to 2-port elements are 

(a) all calculations are applied directly to the given network: 

no auxiliary or adjoint network is defined, 

(b) all calculations involve at most the premultiplication of 

two by two matrices by row vectors or postmultiplications 

by column vectors: no explicit matrix inversion is ever 

required, 

( c) response functions, sensi ti vi ties or large-change effects 

are represented analytically in terms of the parameters to 
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be investigated: all parts of the network to be kept 

constant are reduced numerically to a few two-element 

vectors appearing as constants in the formulas, 

(d) calculations can be carried out easily by hand, if 

appropriate, or are readily programmed. 

The approach is not confined to 2-port elements. 

been generalized in ·this chapter to-2p-port elements. 

5.2 Theoretical Foundation 

It has 

Consider the two-port element depicted in Fig. 5. 1 . The 

basic iteration, also summarized by Table 5.1, is y = A y, where A 

is the_ transmission or chain matrix, y contains the output voltage 

and current and y the corresponding input quantities. 

A 

Fig. 5. 1 Notation for an element in the chain, indicating 

reference directions and voltage and current variables. 
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TABLE 5.1 

PRINCIPAL CONCEPTS INVOLVED IN THE ANALYSES 

Concept Definition 

Basic iteration y = A y 

Forward operation 

Reverse operation V = Av -

Voltage selector /J. [:] :1 

Current selector :2 ~ [:] 
Equivalent source l = [\:SIS] 

Equivalent load y = [YL:~-IJ -

Implication 

y ==> y 

T 
= ~ ! 

y = CV ==> y = CV -

: 1 = = > ~ 1 or ! 1 

:2 ==> ~2 or !2 

T 
VS-ZSIS' 

T 
:1! = :2! = 

! = VL:1+(YLVL-IL)~2 

IS 
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Forward analysis (see Fig. 5.2 and Table 5.1) consists of 

-T [ initializing au row vector as either 1 O], (0 1] or a suitable 

linear combination and successively premultiplying each constant 

chain matrix by the resulting row vector until an element of 

interest, a reference plane or a termination is reached . 

1forward~u T 
I 

J· 
I 
I 

. v+- reverse I 
I 

A 

A 

Fig. 5.2 Forward and reverse analyses of a cascaded network with 

source and load impedances assumed constant. 
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Reverse analysis, which is similar to conventional analysis 

of cascaded networks, proceeds by initializing av column vector 

as either [ 1 0] T or [ O 1 ] T or a suitable linear combination and 

successively postmultiplying each constant matrix by the resulting 

column vector, again until either an element of interest, a 

reference plane or a termination is reached. 

In summary, assuming a cascade of n two-ports we have 

( 5. 1) 

and, applying forward and reverse analysis up to Ai, this reduces 

to an expression of the form 

T -? d 
-1 -1 Ai i (5.2) = u y = C U V 

where 

Yn n (5.3) = C V 

and c and d relate selected output and input variables of interest 

explicitly with Ai. 

The typical formula will, therefore, contain factors of the 

form 

function evaluation: ;rA V ::) Q (5.4) 

first-order sensitivity: (5.5) 
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partial derivative: 
--Ta~ 
U - V ::) Q' 
- a<1> -

--T large-change sensitivity: u ~Av==> ~Q 

(5.6) 

(5.7) 

where the parameter <1> is contained in A. A full reverse analysis 

taking 

n n 
[: :J [y1 Y2J = 

yields 

i !!] Ai+1 Ai+2 An [
1 

:J [ ! 1 = 
- 0 

and a corresponding full forward analysis taking 

-1 -1 T 0 0 T 

[: :] [~1 ~2] = [~1 ~2] = 

yields 

[: :J A1 A2 Ai-1 --j_ ; T 
= [~1 ~2] . 

5.2.1 Reference Planes 

In considering more than one element in the cascade we 

divide the network into subnetworks by reference planes. These in 
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turn are chosen so that no more than one element is to be 

explicitly considered between any pair of reference planes. In 

Fig. 5.2 the element A is the only element whose effect is to be 

considered. 
k . . 

In Fig. 5.3 the elements A, A1 and AJ are considered 

in the kth, the ith and the jth subnetworks, respectively. Note 

that the superscripts of A here, and from now on, denote the 

subnetwork and not the element. Forward and reverse analyses are 

initiated at the reference planes. A forward iteration of the 

structure of Fig. 5.3 is illustrated in Fig. 5.4, where equivalent 

(Thevenin) sources are iteratively determined. Reverse iteration 

is shown in Fig. 5.5, where equivalent (Norton) sources are 

iteratively determined. 

k :' ·Ii. 

Fig. 5.3 Subnetwork i cascaded with subnetwork k (at source end) 

and j (at load end). 
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forward iteration V ~· ·.··. function of 
subnetwork i 

Fig. 5.4 Forward iteration for Fig. 5.3, transferring an 

equivalent source accounting for design variables 

from subnetwork k from one reference plane to the 

other. 

function of 
subnetwork i 

reverse iteration 

Fig. 5.5 Reverse iteration for Fig. 5.3, transferring an 

equivalent source accounting for design variables 

from subnetwork j from one reference plane to the 

other. 

r' L 
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5.3 Network Functions in Terms of Elements Under Consideration 

Performing forward analysis from the source of the i th 

subnetwork to the input of Ai and reverse analysis from the load 

to the output of Ai we have 

(5.8) 

and the current through the voltage source of the ith subnetwork 

From (5.8), letting rt 

Thevenin voltage 

vj 
s = vi 

L = 

= 0 and Yi = 
L 

vi 
s 

T - i- i 
(~1+ZS~2) ~ !1 

O, we have rj = s 

vi 
s 

= i i i 
Q11+ZSQ21 

(5.9) 

O and the 

(5.10) 

where the Q terms have been defined in (5.4). Letting vi= O and s 
Yt = O, we haver~= -rt and the output impedance 

vi - i- T i i i i 

zj 
L (~1+ZS~2) ~ ~2 Q12+ZSQ22 

= 
r~ 

= T = i i i (5.11) s - i- i Q .... +Z...,Q,,_., 
L (~1+ZS~2) ~ !1 I I .:, i::'. I 
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where, again, the Q terms of (5.4) are used to obtain a compact 

expression. These expressions for vJ and zJ permit equivalent 

Thevenin sources to be moved in a forward iteration. 

From (5.8) and (5.9), letting rf = O and Z~ 

= 0 and the input admittance 

= 

= 0 we have Ik 
L 

(5.12) 

Letting vi = O and zi 
s s = o, we have vk 

L = O and the Norton current 

Ik -Ii i r - T 
i i k i i = = -IL(YL~1 - ~2) ~ ~2 = -IL(YLQ12 Q22). (5.13) L s 

k k These expressions for IL and YL permit equivalent Norton sources 

to be moved (if desired) in a reverse iteration. 

The input current r! for rt= 0 is obtained via (5.12) as 

= (5.14) 
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Tables 5.2 and 5.3 summarize the procedures and the effort 

required in evaluating the different factors in the derived 

equations. 

Useful special cases of these formulas for IS and V L in 

Fig. 5.2 are, from (5.14) and (5.10), respectively, 

-T 
~2 ~~1 Q21 

IS = vs T = V - (5.15) 
S Q11 

~1 ~!1 

and 

(5.16) 

Table 5. 4 gives some useful formulas which can be obtained for 

variations in a particular element A. We note, for example, that, 

since A is arbitrary and at most only one full analysis yields all 

' Q11 , aQ 11 , Q11 and ~Q 11 , the corresponding VL' oVL' aVL/a~ and ~VL 

w. r. t. all possible parameters anywhere in the cascade can be 

evaluated exactly for one network analysis. This particular 

special case is equivalent to the results of previous researchers 

(Bandler and Seviora 1970, Therrien 1974). 
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TABLE 5.2 

NOTATION AND IMPLIED INITIAL CONDITIONS 

Initial Conditions 
Factor Identification Forward Reverse 

l (*) V ( t) 11 voltage voltage ~1 -1 

-'l' 
(*) V ( t) 12 voltage current ~1 -2 

--T 
(*) V (t)21 current voltage ~2 -1 

--T (*) V (t)22 current current ~2 -2 

(*) denotes either A, oA, aA/a$ or ~A - - -
(t) denotes Q, oQ, Q' or ~Q, as taken from (5.4), (5.5), (5.6) or 

(5.7), respectively 



Term 

T 
UV 

T 
!:11!' 

T 
:1 ! 1' 

--'l' 

T 
~2! 

T 
~ !2 

U • V 

--'l' --'l' 
~1 

• v, U • V 
-2 -

--'l' • --'l' • u ! 1' u !2 -
-T -T 
~1 • ! 1' ~1 • V 

-2 

-T -T 
~2 • ! 1' ~2 • V 

-2 
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TABLE 5.3 

ANALYSES .. REQUIRED BY CERTAIN TERMS 

Analysis Required 

Forward and reverse (conventional) cascade 
analysis to any corresponding reference plane, 
whichever is convenient 

Preferably one reverse analysis to source 
reference plane (avoiding calculation of u1 and 
~2) -

Preferably one forward analysis to load 
reference plane (avoiding calculation of ~1 and 
~2) 

One forward analysis to input of A and one 
reverse analysis to output of A 

One full forward analysis to input of A and one 
reverse analysis to output of A 

One full reverse analysis to output of A and 
one forward analysis to.input of A 

One full forward analysis to input of A and one 
full reverse analysis to output of A -
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TABLE 5.4 

FUNCTIONS ·OF INPUT CURRENT IS AND OUTPUT VOLTAGE VL FOR 

CHANGES IN A ONLY -

Variable Input Output 

A IS 
Q21 

VL 
- vs = V -

S Q11 - Q11 

vs0Q21-Is0Q11 v2 
oA oIS oVL 

_1. 
0Q11 = 

Q11 
= vs 

' ' 2 
aA aI_s = VSQ21-ISQ11 aVL = VL ' - - v Q11 a<1> a<1> Q11 a<1> s 

VSAQ21-ISAQ11 v2 
AA AIS AVL 

L 
= Q11 +AQ11 

-- VL +VS/AQ11 
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5.4 First- and Second-order Sensitivities 

The first-order sensitivity of VL w.r.t. a variable 

parameter~, is given using (5.16) by 

= 

aQ,1 
-V -­

S a~ 1 

2 
Q11 

Differentiating (5.17) w.r.t. ~2 we get 

(5.17) 

(5.18) 

The evaluation of aQ11 /a~ 1 and aQ 11 /a~ 2 is straightforward 

(see Table 5.4). 

assume that the variables are numbered consecutively from the 

source end to the load end so that this term is expressed, for 

example, by 

(5.19) 
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Note that~~ is a function of a certain chain matrix which 

contains the variable $ 1, ~ is the chain matrix containing $2 and 

~ 1 is evaluated at the reference plane following A. 

5.5 The Evaluation of VL and its Sensitivities w.r.t. Design 

Parameters at all Vertices of the Tolerance Region 

Algorithms concerned with finding worst vertices of the 

tolerance region need the value of the response at the vertices 

(Leung and Spence 1975) as well as the sensitivity of this reponse 

w. r. t. the design parameters (Bandler, Liu and Chen 1975, Tromp 

1978). 

Assume that we have partitioned the network by reference 

planes into subnetworks such that each subnetwork contains one 

chain matrix containing a variable parameter. Each reference 

plane is chosen to fall immediately after a variable element. 

The Thevenin voltage/impedance of the ith subnetwork is 

considered as the source voltage/impedance of the ( i+ 1) th 

subnetwork, given by (5.10) and (5.11), respectively, where j = 

i+1. i i i i We have to note here that the terms Q11 , Q21 , Q12 and Q22 

are as defined in (5.4) with ~1 and ~2 set and 

respectively, since the appropriate reference plane immediately 

follows the element Ai. 

zi+ 1 to be evaluated is s 

i+1 The number of pairs of terms VS and 

since each subnetwork contains one 

variable element with two extreme values (assuming that each Ai 

contains only one variable parameter). 
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Differentiating (5.10) w.r.t. $h, where $h does not belong 

i i i 
to ~ , but VS and ZS are functions of $h (i.e., $h is in a 

subnetwork h before the ith subnetwork) we get 

= 

and differentiating (5.11) w.r.t. $h, we get 

azi+1 
s 

= 

- -- --------

(5.20) 

(5.21) 

On the other hand, the derivatives w.r.t. $i which is 

contained in Ai (z! and v! are not functions of $i), are 

= (5.22) 



and 

Zi+1 
a s 

= 
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i i i i 
· · · a Q21 · a Q2 2 · · · a Q 11 · a Q21 

(Qi +zi Qi><-- +zi --) _ (Qi +zi Qi)(-- +zi --) 
11 s 21 a~i s a~i 12 s 22 a~i s a~i 

(5.23) 

i i i i 
aQ11 aQ21 aQ12 aQ22 

where~' a~. , ~and~ correspond to (5.6) and Table 5.2. 
1 1 1 1 

This sensitivity information is carried out through the analysis 

for each subnetwork. The number of variables for which 

sensitivities of v~+ 1 and z~+ 1 exist at the (i+1)th subnetwork is 

i so that 2i•i sensitivity calculations are performed. Having YL 

and IL as zeros, the expression relating VL and the last sets of 

k VS and Zs, is given by (5.10), so that 2 values for VL and its 

sensi ti vi ties can be obtained from appropriate values of VS, ZS 

and A. 

5.6 Branched Circuits 

Consider, as an example, the cascaded circuit shown in Fig. 

5. 6, which has two branches, one connected in series and one in 

parallel. In the series and parallel branches we highlight, for 

example, the elements B and C, respectively. The series branch 

can be thought of equivalently as an element consisting of a 

series impedance connected in cascade with the main circuit as 



Vs 
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+ VsL -

b-~-

+ VcL -

-r=1i.· --- -- C 

~ 

h k 
I I 
,-- -+e 
I I 

I 
,L] I y I 1 I • I I 
LrJ I 

I 

I I I I 
I I 1 I 

G1z Vlz u1Y V1Y 

Fig. 5.6 An example of a cascaded circuit with a branch 

connected in series and a branch connected irt· 

load 

parallel. Branches are represented in the cascade 

by their equivalents. Reference planes where 

different analyses are initiated are labelled. 

a 
I 
I 
I 

+ 
I 

I VL 
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shown in Fig. 5.6. This impedance Z may be taken as the inverse 

of the input admittance derived in (5.12) and is given by 

-T 
B ~1B !1B 

z = -T (5.24) 

~2B 
B 

~1B 

where the subscript B distinguishes terms associated with the 

branch from that of the cascaded main circuit. The forward 

analysis is initiated at reference plane d and the reverse 

analysis is initiated at reference plane b. (See Fig. 5.6.) 

Similarly, the parallel branch can be thought of 

equivalently as an admittance Y connected in shunt in the cascade. 

The admittance Y (as in (5.12)) is given by 

-T C 
~2C !1c 

y =~ 
~1c C !1c 

(5.25) 

where the forward analysis is initiated at reference plane e and 

the reverse analysis is initiated at reference plane c. 

Different formulas relating the load voltages of the 

branches to the variables can be derived. The load voltage of the 

series branch can be derived (Appendix C.1) as a function of Bas 



where 

where 
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z] , 
1 

~1Z 

(5.26) 

-T 
~ 1 Z is the re.sul t at reference plane f of a forward 

analysis initiated at the source, 

~ 12 is the result at reference plane g of a reverse 

analysis initiated at the load reference plane a. 

It can also be obtained (Appendix C.2) as a function of C 

as 

(5.27) 

-T 
~1Y is the result at reference plane h of a forward 

analysis, 

~ 1 y is the result at reference plane k of a reverse 

analysis, 

-T 
~

1
Yf is the result at reference plane h of a forward 

analysis initiated at reference plane f, 

-T u is the result at reference plane h of a forward _ 1Yg 

analysis initiated at reference plane g. 

The load voltage of the parallel branch can also be derived 
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(Appendix C.3) as a function of C as 

V CL ( ~) = [1 OJ ' 1 
CV ;r V 

~1C _ -1C -1Y y 1 -1Y 

(5.28) 

and (Appendix C.4) as a function of Bas 

V CL ( ~) = [1 ZJ . 1 Cv ;r v ~1c __ 1c _1z 
O 1 

_1z 

(5.29) 

5.7 Algorithms 

5.7.1 Two Algorithms for Evaluation of Large Changes 

The two following algorithms are used to obtain responses 

at the base points for the multidimensional quadratic 

interpolation (Bandler and Abdel-Malek 1979). The first is used 

when one parameter at a time is perturbed and the second is used 

when pairs of parameters are perturbed simultaneously. 

Algorithm 1 

Step 1 

Comment 

Multiple One-at-a-time Changes 

Initialize u and v. 

Seti+ 1, m + 1, j + n. 

n is the total number of elements in the cascade and 

mis a counter for the variable elements. 



Step 2 

Comment 

Step 3 

Step 4 

Step 5 

Comment 

Step 6 

Step 7 

Step 8 

Step 9 

Step 10 

Comment 

~~--~----~~ - - - - ~ - --- ----~ ~--~ 
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If i = t go to Step 5. 
m 

t is an element of L, an index set containing 
m 

superscripts of the k matrices containing the k 

variable parameters and ordered consecutively. It 

is assumed that each matrix contains only one 

variable. 

-T -T Ai u + u . 

i + i + 1. 

If i = t go to Step 5. 
m 

Go to Step 3. 

Let xm + u. 

If i = tk go to Step 7. 
1 2 k x , x , ... , x are working arrays to store the u 

vectors required in the evaluation of the large 

changes taking place. 

m + m + 1. Go to Step 3. 

If n = tk go to Step 10. 

V = Aj v. 

j + j - 1. 

If j = t go to Step 10. 
m 

Go to Step 8. 

Evaluate Q using the stored 

Aj. If j = t
1 

stop. 

m 
X ' v and the perturbed 

Positive and negative extremes of the variable in Aj 

are considered simultaneously. 



- 146 -

Step 11 m + m - 1. Go to Step 8. 

Algorithm 2 Multiple Pairwise Changes 

This algorithm is for evaluating the response at the 

k(k-1)/2 base points where two parameters are perturbed at a time. 

At the first k-1 points following those considered in Algorithm 1 

the parameters indicated by the subscripts 

1,2 1,3 1,k 

are changed; at the next k-2 points the parameters indicated by 

the subscripts 

2,3 2,4 2,k 

are changed, and so on, until the final point at which parameters 

k-1 and k are perturbed. Figure 5. 7 serves to illustrate the 

analyses involved. 

Step 1 

Comment 

-0 -0 -1 -1 Initialize ~1, ~2 , ~1 and ~2 . 

Seti+ 1, m + 1, q + O, r + 1 ands+ k - 1. 

1 1 0 
~1 and ~2 are vectors to be initialized as ~1 and 

u~, respectively. They have the same role as~~ and 

~~ in the forward analysis initiated at a reference 

plane immediately following the first variable 

element. 



stage 

1 

2 

3 

4 

5 

6 

7 

8 

- 147 .;.. 

/variable~ 

-- ---
1 

VS, Zs (2 sets) 

u~u1 

2 3 

VS , Zs (1 set) 

uo, u1~x2, u2~x3 

V 

V 

changes (1,3 ),(2,3) 

V 

change (1, 2) 

Fig. 5.7 Illustration for a cascade of 6 two-ports of the principal 

stages in the calculations involved in the multiple pairwise 

changes algorithm. Three variable elements are considered, 

hence three sets of simultaneous analyses are effectively 

performed. 



Step 2 

Comment 

Step 3 

Step 4 

Comment 

Step 5 

Step 6 

Step 7 

~--------------------- -- - - - - - -
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If i = 1 go to Step 4. 
m 

1 is an element of L, an index set containing 
m 

superscripts of the k matrices containing the k 

variable parameters as indicated in Algorithm 1. 

OT OT Ai 
~1 

+ ~1 - . 
OT OT Ai 

~2 + ~2 - . 

If m = 1 go to Step 5. 

1T 
~1 

1T 
~2 

. T uq 
-1 

qT 
~2 

1T Ai + u . 
-1 -

1T Ai + u . 
-2 -

+ 
qT 

~1 
Ai. 

qT Ai 
+ u . 

-2 -

This step is not performed until we reach a variable 

element, since the analyses involving the uj do not 

begin until the jth variable element has been 

considered. 

Set i + i + 1. 

If i = 1 go to Step 7. 
m 

Go to Step 3. 

If m = k go to Step 9. 

Calculate the Thevenin impedances and voltages 

ZS(m,1), ... , ZS(m,s), 

VS(m,1), ... , VS(m,s). 

s + s - 1. 



Comment 

Step 8 

Step 9 

Comment 

Step 10 

Comment 

Step 11 

Step 12 

Step 13 
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For the first variable element k-1 sets of Zs and VS 

have to be evaluated since changes in this element 

will be coupled one at a time with changes in the 

next k-1 variable elements. For the second variable 

element k-2 sets of ZS and VS are calculated and so 

on. See Fig. 5.7. 

If m = 1 go to Step 13. 

Set p + 1. 

pis an internal counter. 

If p = q go to Step 12. 

When the analysis has reached a reference plane 

immediately preceding an element containing a 

variable whose change is to be associated with any 

previously encountered variable a snapshot of the 

appropriate u vectors is taken and stored in the x 

arrays~ See Fig. 5.7. 

Set r + r + 1. 

p + p + 1. 

Go to Step 10. 

Set r + r + 1. 

If m = k go to Step 16. 

OT+ OT Ai 
~1 ~1 - • 

OT OT Ai u_
2 

+ u • 
-2 -



Step 14 

Comment 

Step 15 

Comment 

Step 16 

Comment 

Step 17 

Comment 
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If m = 1 go to Step 15. 

1T 1T Ai 
~1 + ~1 - • 

1T 1T Ai 
~2 + ~2 - . 

. T qT Ai. uq + ~1 -1 
qT qT Ai 

~2 + u . 
-2 -

In Step 7 we calculated sets of Zs and VS accounting 

for variations in Ai. In Steps 13 and 14, however, 

we carry forward the analyses for which Ai is 

considered fixed. 

Set i + i + 1. 

m+m+ 1. 

q +q+ 1. 

Initialize uiT and ~~T and go to Step 6. 

~iT and ~~T are initialized to start a forward 

analysis at a reference plane immediately following 

a variable element Ai. 

Set r + r - 1. 

m + m - 1. 

Initialize ~1 and ~2 . 

At this step we start the analysis from the load 

end. 

If n = tk go to Step 20. 

Set j + n. 

n is the total number of elements in the cascade. 



Step 18 

Step 19 

Step 20 

Step 21 

Comment 

Step 22 

Step 23 
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~1 
+ Aj 

~ 1. 

~2 
+ Aj 

~2· 

j + j - 1 . 

If j = 1 go to Step 20. 
m 

Go to Step 18. 

p + 1. 

Calculate Q using VS' Zs, Aj and v and the 

appropriate x. 

When we reach the kth variable element we calculate 

k-1 values of Q, and when the variable element k-1 

is reached we calculate k-2 values of Q and so on as 

illustrated in Fig. 5.7. 

If p = q go to Step 23. 

Set r + r - 1. 

p +p+ 1. 

Go to Step 21. 

If m = 1 Stop. 

Set q + q - 1. 

m+m- 1. 

Go to Step 18. 

5.7.2 First- and Second-order Sensitivities 

The following algorithm, which is similar to Algorithm 2 

can be used to obtain the first- and second-order sensitivities of 
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VL w. r. t. the design variables. Ffgure 5. 8 illustrates the main 

stages of the algorithm. 

Algorithm 3 

Step 1 

Comment 

Step 2 

Comment 

Step 3 

Comment 

Step 4 

Step 5 

Initialize u0 and v. -
Seti+ 1, m + 1, q + O, r + 1, j + n. 

n is the total number of elements in the cascade. 

If i = t go to Step 6. 
m 

t is an element of L, an index set containing 
m 

superscripts of the k matrices containing the k 

variable parameters and ordered consecutively. 

OT OT Ai u + u . 

If m = 1 go to Step 4. 

1T 1T Ai u + u . 

1 2 q u, u, ... , u are working arrays used to proceed 

0 with the evaluation of the gradients of u w.r.t. 

the q variables already passed by the forward 

analysis. 

Set i + i+ 1. 

If i = t go to Step 6. 
m 

Go to Step 3. 
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{variable~ 

stage 

1 -- u0 

2~---

3-------- uo, u1 

4 ----------+---
uo-x2. 

u1-w1 

5 -------------+-
u 1-w2 u2-w3 

t 

6----------+----+----+----+---

V 

VL 
7 

93 

513,S23 ,S33 

V 

8 ----------+----+---. 

9------------ V 

V 

10 -------

V 

Fig. 5.8 Illustration:of the principal stages in the calculation· 

of first~ and second-order sensitivities w.r.t. three 

variable elements. 

gi ~ aq11 ta~i, i =· 1,2,3, 

sij b. a
2
q 11 /a~ia~j , i,j = 1,2,3. 



Step 6 

Comment 

Step 7 

Step 8 

Comment 

Step 9 

Step 10 

Comment 
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m 0 
X + U • 

If m = 1 go to Step 10. 

Once a variable element is reached the u0 is stored 

in xm to be used in the calculation of the 

first-order sensitivity. 

Set p + 1. 

r + r+1. 

If p = q go to Step 10. 

The w arrays are used to store the appropriate 

gradients 0 of u , namely, 1 
u ' 

2 
u ' ... ' 

calculation of second-order sensitivities. 

Set p + p+1. 

Go to Step 8. 

If m=k go to Step 12. 

i 
mT OT aA 

u + u --a 4> 
OT OT im 

u + u A . 

1T 1T Ai u + u . 

for the 

At this step a new u is introduced which is equal to 

u0 multiplied by the derivative of Ai w.r.t. 4>m' 

where Ai is a function of 4> only. 
m 



Step 11 

Step 12 

Step 13 

Comment 

Step 14 

Step 15 

Comment 

Step 16 

Step 17 

Comment 

Step 18 

Set i + i+ 1. 

m + m+1. 

q + q+ 1. 

Go to Step 5. 

Set r + r-1. 
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If n = tk go to Step 15. 

V + Aj v. 

j + j-1. 

This step is concerned with the reverse analysis. 

If j = t go to Step 15. 
m 

Go to Step 13. 

2 2 Calculate aQ/a$ and a Q/a$ . 
m m 

At this point the first-order derivative of Q w.r.t. 

$m can be evaluated, since u0 and vat the reference 

planes before and after the element are known. 

a2Q/a$ 2 is evaluated using u0 , v and a2Aj/a$ 2 . m _ m 

If m = 1 stop. 

Sets+ m - 1. p + 1. 

Calculate a2Q/a$ a$ . s m 

If p:q go to Step 19. 

a2Q!a$ a$ is evaluated using the appropriate wr 
s m 

aAj/a$ and v, wheres= 1, ... , m-1. 
- m 

Set p + p + 1. 

r + r - 1. 

s + s - 1. 



Step 19 

Go to Step 17. 

Set q + q - 1. 

m+m- 1. 

r + r - 1. 

Go to Step 14. 
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5.7.3 Response Value and its Derivatives w.r.t. all Variable 

Parameters, at all Vertices of the Tolerance Region 

;Figur~ ~;9 shows an example of the stages involved in the 

following algorithm to obtain the response and its sensitivities 

at the vertices (3 variables ==> 8 vertices) of the tolerance 

region. 

Algorithm 4 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

Initialize ~1, ~2 and v. 

Seti+ 1, m + 1, j + n. 

If i = t go to Step 6. 
m 

---'l' ---'l' i 
~1 + ~1 ~. 

--1' --1' i u_
2 

+ u A • 
-2 -

Set i + i + 1. 

If i = t go to Step 5. 
m 

Go to Step 3. 

If m=k go to Step 7. 

Calculate Vs, Zs, 

avs 
... ' a cp ' m 
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~variable 

stage 
IE 

1 --u1 ,u2 

3---- 2 sets 

4 -----------

Vs,Zs 

5-------- 4sets iN8 /iJcf,piN8 /iJcf,2 

az s /iJcf,1 ,azsliJcf,2 

6---------------------v 

V 

IE denotes initialization of u 1 , u 2 

Fig. 5.9 Illustration of the principal stages of 

Algorithm 4. 



Step 7 

Step 8 

Step 9 

Step 10 
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m . 
2 sets all together. 

Set m + m + 1. 

i + i + 1. 

Initialize ~1 and ~2 and go to Step 4. 

If n = tk go to Step 10. 

v = Aj v. -
Set j + j-1. 

If j = tk go to Step 10. 

Go to Step 8. 

Calculate Q, aQ/a~ 1, 

Stop. 

... ' 

5.8 Numerical Example 

The cascaded seven-section bandpass filter shown in Fig. 

5.10 (Horton and Wenzel 1965, Bandler, Charalambous, Chen and Chu 

1976) serves as a numerical example. All sections are quarter-

wave at 2. 175 GHz . The normalized minimax characteristic 

impedances are (Bandler, Charalambous, Chen and Chu 1976) 

zO 
1 = zO 

7 = 0.606463 

zO 
2 = zo 

6 = 0.303051 

zo 
3 = zo 

5 = 0.722061 

zO 
4 = 0.235593 



23 25 

1 Z1 27 

/ 

Fig. 5.10 Seven-section filter containing unit elements and stubs. All sections 

are quarter-wave at 2.175 GHz. 

1 

I-' 
Vl 
\.0 
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The output voltage VL at a normalized frequency of 0.7 is 

0.49740790 - j3.9011594x1o-3, verified twice using (5.10): once 

associating Ai with z
3 

and once with z4. 

analysis yielded 

Furthermore, one 

0 VL(z4+0.03) = 0.49838950 - j 0.034901610 

0 VL(z4-0.03) = 0.49062912 + j 0.034959186 

The open-circuit voltage at the load end was calculated 

using ( 5 . 1 O) as 

v0c = 0.98624507 + j 0.092266904 

and the Thevenin impedance using (5.11) is 

ZTH = 0.98119253 + j 0.20103391 

which further verified VL. 

One analysis taking € 2 = 0.021, € 5 = 0.024 yielded 

= 0.49719716 + j 2.2191360x10-3 

= 0.49583538 - j 2.3636314x10-2 

0.49732462 + j 1.7909912x10-2 

0.49751427 - j 8.3726470x10-3 



\ 
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A multidimensional quadratic approximation was carried out 

for v
1 

following the approach of Bandler and Abdel-Malek (1978a). 

The variables for the approximation were the characteristic 

impedances as well as the normalized frequency. The circuit 

responses at 45 base points (which is equal to (k+1)(k+2)/2, where 

k is 8) were needed to evaluate the coefficients of the quadratic 

polynomial approximating the response function (Bandler and 

Abdel-Malek 1978a). A base point is a point where the 

approximation and the actual function coincide. The center base 

point, which is the center of the interpolation region in which 

the approximation is assumed to be valid, had the characteristic 

impedances given before and a normalized frequency of O. 7. 16 

base points were determined ( using Algorithm 1) by varying one 

parameter at a time by ±cS w. r. t. its value at the center of 

interpolation. For the characteristic impedances cS was chosen to 

be 0.03 and for the normalized frequency it was 0.01. At the 

remaining 28 base points only two parameters were perturbed at a 

time from their values at the center of interpolation by a 

percentage of their cS and Algorithm 2 was used to evaluate the 

response at these points. 

Note that when the normalized frequency was perturbed a 

whole new analysis had to be performed. 

The symmetry of the structure was taken into consideration 

in choosing these base points. Letting i be the center of the 

interpolation region, the base points can be expressed by (Abdel-
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Malek and Bandler 1978b) 

where 

N 

!k 

~k 

and 

B 

is 

2 
<I> -

equal to 45 in our case, 

is a k-dimensional identity matrix, 

is a zero vector of dimension k, 

0.03 

0.03 

D = 

0.03 

0.01 

is a k x [k(k-1)/2] matrix given by 

<I>] ' (5.30) -



B = 

.5 -.2 .9 -.2 .5 .3 .7 

.7 

.8 

-.5 

.8 

.1 

-.9 

.6 

.1 .5 .1 .9 .7 -.3 

.8 

.9 

.8 

-.2 

.5 

.4 

.7 -.4 .8 .8 .8 

-.9 

.8 

.7 

-.2 

.9 

-.9 .9 -.5 .8 

.7 

.5 

.9 

.4 

.8 .8 .8 I ~ 

.1 .1 -.3 

-.2 

.9 

.5 .1 

• 4 • 6 

l.,..) 
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Examining this B matrix we note that the entries for perturbing 

two parameters at a time are the same as for their corresponding 

symmetrical parameters. The choice of base points given by (5.30) 

preserves symmetry in the appropriate coefficients of the 

multidimensional polynomials. 

Taking the optimal minimax characteristic impedances 

(Bandler, Charalambous, Chen and Chu 1976): 

z1 = z7 = 0.606595 

z2 = z6 = 0.303547 

z3 = z5 = 0.722287 

Z4 = 0.235183 

and calculating the group delay using the derivative of VL w.r.t. 

w obtained from the quadratic approximation yielded 

TG = 0.893 ns, 

while the exact group delay is (Bandler, Rizk and Tromp 1976) 

TG = 0.895 ns. 
exact 

The sensitivity of the output voltage VL w.r.t. length 14 

of the fourth section and the sensitivity w.r.t. z4 are evaluated 

at a normalized frequency of 0.5 as 
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-0.2804064 + j0.5161026 

= -2.617364 + j4.817395 

Without any further effort (since the two parameters belong 

to the same element) we obtain 

Table 5.5 compares the results obtained by this method and the one 

obtained by the adjoint-network method (Rizk 1975). Taking two 

parameters in different elements, for example z4 and z
5

, we obtain 

the second-order term 

= -30.12383 - j7.516802. 

A tolerance of ±0. O 3 on Z 1 , Z 4 and z
5 

was chosen. 

Algorithm 4 was used to evaluate VL' aVL/aZ 1, aVL/az4 and aVL/az5 

at the eight vertices of the tolerance region (23 vertices where 3 

is the number of toleranced variables). The results are tabulated 

in Table 5. 6. They were checked individually by reanalyzing the 

circuit at each vertex. 
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TABLE 5.5 

COMPARISON OF SECOND-ORDER SENSITIVITIES WITH DIFFERENT APPROACHES 

Term Adjoint Network 

1st Order 
Sensitivity by 
Adjoint Network 
2nd Order 
Sensitivity by 
Perturbation 

The New Approach 

a2v 
--=L-- 11.71675+j5.415667 11.713232+j5.431066 11.71675+j5.415667 az4aR. 4 

5.9 Cascaded Networks of 2p-port Elements 

The approach we have developed can also be utilized in the 

analysis and design of cascaded networks consisting of 2p-port 

elements. Consider the 2p-port element shown in Fig. 5.11, 

possessing p input ports and p output ports. 

matrix is given by 

A ~ [~11 
~21 

~12l 
~22J 1 

Its transmission 

where ~11 , A12 , A21 and A22 are p x p matrices. 
- -· --

The input 

quantities in this case are 



TABLE 5.6 

THE RESPONSE VL AND ITS SENSITIVITIES AT THE VERTICES OF THE TOLERANCE REGION 
AT NORMALIZED FREQUENCY 0.7 

Sign of 
Vertex \ a\/az 1 a\/az4 a\/az5 

Tolerance 
Extreme 

0.49135+j0.02351 -0.02450+j0.05953 0.26004-j1.15934 0.02549+j0.32944 

2 0 .118819+j0. 02571 -0.07761+j0.01588 0.28346-j1.05326 0.00954+j0.34878 + 

3 0.49679-j0.04862 0.03751+j0.15916 -0.06631-j0.94430 0.04534+j0.29165 - + 

4 0.49677-j0.04046 -0.03384+j0.11417 -0.00426-j0.87724 0.03578+j0.31848 + + 

5 0.49209+j0.04341 -0.04367+j0.08072 0.29407-j1.19530 -0.00103+j0.33324 - - + 

6 0.48786+j0.04670 -0.09378+j0.03123 0.32067-j1.079~2 -0~02042+j0.35007 + - + ..... 
°' 7 0.49889-j0.03101 0.02608+j0.18868 -0.05742-j0.97346 0.02462+j0.29494 - + + --...J 

8 0.49818-j0.02127 -0.04526+j0.13735 0.01132-j0.90191 0.01113+j0.32057 + + + 
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Fig. 5. 11 A 2p-port element: a generalization of Fig.. 5 .1. 
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and the output quantities are 

Yp 

·,~ !· = y p+1 

yp+2 

where the.: elements with subscripts 1 to p denote voltages and from 

p+1 to 2p denote currents. 

For the forward and reverse analyses the matrices ~1, ~2 , 

! 1 and !2 are initialized such that 
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~ 1 = => ~ 1 or ~ 1 ' 

~2 ==> ~2 or ~2' 

where 

~l A [::] 

and 

~2 ~ ['.:]' 

and where 

1 is the unit matrix of order p, 
-P 
O is the null matrix of order p. 
-P 

We can now derive in an analogous manner to the derivation of 

(5.8) 

where 

(5.31) 

~1, ~2 , ! 1 and ! 2 are the matrices obtained from forward 

and reverse analyses, 

~Sis the vector containing the p source voltages, 

~Lis the vector of load voltages, 

:Lis the vector of current sources at the loads (if any), 
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:s is a diagonal matrix containing the impedances of the 

sources, 

:Lis a diagonal matrix containing the load admittances. 

To evaluate the unknowns ~L' having obtained numerical 

values for (5.31), a system of p linear equations is solved. When 

A is perturbed or when deri va ti ves are required, only 6p 3 

additional multiplications and the solution of a p-system of 

linear equations are needed and not a whole reanalysis of the 

entire cascaded circuit. 

To obtain the Thevenin voltages of the subnetwork on the 

l.h.s. of the element A, we let !L = 9 and !L = 0 in (5.31), which 

gives 

where 

and from (5.32) 

V 
-':f-H 

(5.32) 

(5.33) 

-T 
~21 = ~2 A ~ 1' (5.34) 

(5.35) 
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The output impedance matrix or the Thevenin impedance is obtained 

one column at a time by letting ~S = 9, :L =~and ~L = O except 

ILi (which is the current source at the load end for the ith port) 

which leads to 

0 

(5.36) 

0 

where 911 and ~21 are as defined in (5.33) and (5.34) 

respectively, and 

-T 
~12 = ~1 ~ ~2· (5.37) 

-T 
~22 = ~2 ~ ~2· (5.38) 

Equation (5.36) can be written as 

0 

(5.39) 

0 

where ~i is the ith column of the matrix (~12 + ~S ~22 ) · From 
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(5.39) we get 

z 
T.B1i 

ZTH 
"2i 

(5.40) 

which is the ith column of the p x p ~TH matrix.Figure 5.12 shows 

the ~'TH and ~ TH of the subnetwork preceeding the element A. 

Similar formulas can be derived (analogous to (5.12) and (5.13)) 

for the input admittance matrix and the Norton current equivalent 

matrix. 

5.10 Conclusions 

An important claim we make is that equations (5.8) - (5.14) 

can be used to generate in a straightforward manner, following 

differencing or differentiating (as appropriate), any desired 

exact formulas for multiple network analyses, sensitivity and 

tolerance analysis with simultaneous large changes. All 

calculations are carried forward simultaneously and redundant 

calculations are obviated as demonstrated by the examples and 

algorithms presented. 

The calculation of the first- and second-order 

sensitivities of a circuit reponse involves one additional 
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analysis of the adjoint network ( assuming the analysis of the 

original network has already been performed) and k(k+1)/2 analyses 

to find second-order sensitivities calculated by finite 

differences. A more efficient approach is to calculate these 

second-order sensitivities using the adjoint-network concept by 

performing only k analyses. Using the new approach for the 

analysis of cascaded structures, however, less thank analyses are 

performed and no additional memory is required. 

The algorithm for evaluating the response and its 

sensitivities at the vertices of the tolerance region proved to be 

very efficient. The seven-section filter example was run with 

tolerances on the characteristic impedances of the stubs and 

transmission lines (all seven). It took 0.269 s CPU time to 

evaluate only the response at the 128 (2 7) vertices. Using the 

conventional method of reanalyzing the circuit for different 

component values would take 0.074 x 128 = 9.472 s CPU, where one 

analysis is performed in approximately 0.074 s. For the case of 

evaluating the response and its sensi ti vi ties at vertices 

discussed in Section 5.5 (Algorithm 4), it took 0.118 s CPU time 

compared with 8 x 0.074 = 0.592 s for 8 analyses. The savings in 

computational effort is substantial. 

Symmetry of the networks analyzed can be exploited leading 

to saving of computational effort (Bandler, Biernacki and Rizk 

1979). Branched circuits can be handled readily. Formulas, 
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similar to (5.26)-(5.29), can be derived for other branched 

structures using the same concepts so as to render the sensitivity 

analysis and design of these circuits as simple as possible. The 

approach should prove to be very suitable for computer-aided 

design of cascaded microwave circuits and systems consisting of 

2-ports. It is also readily extendable to 2p-port networks. 
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CHAPTER 6 

CONCLUSIONS 

This thesis reflects the current state of the art in 

computer-aided design of electronic circuits. It clarifies the 

weaknesses, the disadvantages and advantages of the different 

methods of analysis, sensitivity evaluation, optimization and 

problem formulation. 

The TLM method proved to be suitable for automated network 

design in the time domain. This is due to its ability to obtain 

the response sensitivities w.r.t. the design variables very 

easily. It avoids the formulation of the state equations which 

can be rather difficult for large networks. Another advantage of 

the TLM method is that it is stable for stiff networks which cause 

instability in most of the numerical methods. The use of more 

complicated transmission-line elements and models can improve the 

method's accuracy. The extension of the method to handle 

nonlinear networks is possible. 

The multi dimensional polynomial approximation facilitates 

the design of circuits by exploiting large and general simulation 

programs to conduct the analyses. Saving in the circuit 

designer's time and effort is achieved by using this approach. 

The new approach for the analysis of cascaded structure, 

besides the substantial savings in computational effort, gives a 
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deep insight to the design problem. The design variables can be 

highlighted explicitly in different formulas from which we can 

extract the exact analysis, differential and large-change 

sensitivities. The approach permits the exploitation of network 

structure: symmetry, branches, etc. Different algorithms which 

employ this approach can be implemented easily on microcomputers 

since they are simple and compact. 

Promising directions for further research and improvements 

in existing methods and approaches have been revealed by this 

work. All the algorithms which have been referred to are 

sequential algorithms. Aside from the human mind, which 

apparently has been taught to think sequentially, the computers 

which we now use are substantially sequential. It will not be 

very long before parallel machines will be widely available. The 

parallel processors will be much faster than present machines. 

New optimization algorithms suitable for the new computing 

machines have to emerge or the existing ones have to be modified. 

In some of the ill-conditioned problems, for example, it is 

required to run the problem from different starting points, which 

might be considered as running different problems in parallel. 

The tolerance-tuning problem can also be formulated to fit a 

parallel algorithm because it is inherently a parallel problem. 

Automated optimal design of circuits where the topology is 

not fixed has often been suggested. Presently, the location and 

type of components to be added to the given network have to be 
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specified a priori. Fully automated design, where the topology 

can change arbitrarily, and criteria for augmenting or shrinking 

the circuit are not well established. This will need optimization 

methods where the number of variables can be automatically 

increased or decreased in an effective manner during the process. 

Other design aids would be 

(a) Algorithms which indicate and act upon the existence of 

symmetry. 

(b) Algorithms which stack the constraints in the order of 

complexity to avoid unnecessary calculations, starting with 

sets of crude but not necessarily linear approximations. 

(c) Algorithms which permit the flexibility of examining the 

effects of alternative objectives and weights without 

rerunning the whole problem each time a change is made. 

In centering, tolerancing, and tuning problems several 

concepts need further development. Efficient vertex selection 

schemes wili lead to an enormous reduction of the tolerance 

problem as well as the possibility of full automation of the whole 

process. This concept is related to determining active 

constraints. 

The reliability problem is an extension to the tolerance 

assignment problem. The main difference, we feel, is the 

redundancy which enhances system reliability and observation that 

not every component fails simultaneously. Parameter changes to be 

considered might be much larger than in tolerance assignment. 



- 180 -

APPENDIX A 

CENTRAL DIFFERENCE FORMULA APPROXIMATING 

FIRST-ORDER DERIVATIVE 

The formula used to obtain ar / at from the response is 

(Kelly 1967) 

' hf. 
J 

3 = (µ 0 - 6 µ 0 )fj' (A1) 

where 

1 h h 
µf(t) = 2 [f(t + 2 ) + f(t - 2 )] (A2) 

and 

h h 
of(t) = f(t + 2 ) - f(t - 2 ) . (A3) 

Equation (A1) can be rewritten as 

, 2 1 
fj = 3h [f(t+h) - f(t-h)] - 12h [f(t+2h) - f(t-2h)] (A4) 

In Tables 3.4-3.7 (Chapter 3) h was equal to 2T. 
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APPENDIX B 

DATA SUPPLIED TO SPICE2 FOR THE CSEF CIRCUIT 

B.1 With the Equivalent Circuit of the Emitter Junction 

CURRENT SWITCH EMITTER FOLLOWER 
-======== = -= ====~===-==== 
Rl 4 5 281.33 
R2 7 0 75. 
R3 2 0 78.24 
R4 10 1 45.533 
C 1 10 0 1. 24BE-12 
Tl 2 0 B 0 Z0=92.004 TD=.25NS 
VE2 0 5 DC 4.03 
VE,3 0 6 DC 1. 13 
VE4 0 . 1 DC 1 . 65 5 
VE,1 3 0 PWL< 0 - .. 776 . 05NS - • 776 ~-2NS -L 55· ,. ,; 45NS i-L5·5 • 6NS 
+-.776 .B5NS -.776 1.NS -1.55 L.25NS -1.5·5_ · L4NS -.776) 
D1 9 10 DMOD 
D2 13 4 DMOD 
D3 14 4 DMOD 
D4 15 9 DMOD 
CE, 1 11 4 0 . 12P 
CC 1 11 2 0.5P 
CE2 12 4 0.12P 
CC2 12 7 0.5P 
CE3 B 9 0.12P 
RBl 3 11 50. 
RB2 12 6 50. 
RTl 17 0 1. 
RT2 20 0 1. 
RT3 23 0 1. 
CTl 25 0 1.E-B 
CT2 26 0 1 . E-8 
CT3 27 0 1 . E-B 
VT 1 11 13 DC 0. 
VT2 12 14 DC 0. 
VT3 B 15 DC 0. 
VT4 16 17 DC 0. 
VT5 19 20 DC 0. 
VT6 22 . 23 DC 0. 
VT7 18 25 DC 0. 
VTB 21 26 DC 0. 
VT9 24 27 DC 0. 
El 18 0 13 4 1 
E2 21 0 14 4 1 
E3 24 0 15 9 1 
Fl 2 11 VT1 0.99 
F2 7 12 VT2 0.99 
F3 0 B VT3 0.99 
F4 0 16 VTl 2.3200E-d0 3.8668E-2 
F5 0 19 VT2 2.3200BE-l0. 3.866BE-2 
F6 0 22 VT3 2. 3200BE-10 3. B66BE-2 
F7 11 4 POLYC2) VT4· VT7 0 0 0 0 1 
FH 12 4 POLY(2) VT5, VTB 0 0 0 0 1 
F9 B •9 POLYC2) VT6 VT9 0 0 0 0 1 
.TRAN 0.0125NS 1.4NS 
. PRINT TRAN VC 10, 0) 
.PLOT TRAN VC10,0) 
.MODEL . DMODi D IS= .6E-9 
.END 
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B.2 With Built-in Transistor Models 

CURRENT SWITCH EMITTER FOLLOWER . 

Rl 4 5 281.33 
R2 7 0 75. 
R3 2 0 78.24 
R4 10 1 45.533 
Cl 10 0 1.248E-·12 
Tl 2 0 8 0 Z0=92.004 TD=-.25NS 
VE2 0 5 DC 4.03 
VE,3 0 6 DC 1.13 
VE4 0 1 DC 1.655 
VE, 1 3 0 PWL( 0 - • 776 • 05.NS - • 776: • 2NS - L 5·5 ··:~. 45NS J ~·t::/55 • 6NS 
+-.776 .85NS -.776 1.NS -1.55 l.25NS -1.5.5. 1.4NS ·-.776) 
Dl 9 10 DMOD 
QT! 2 3 4 QMOD 
Q.1'2 7 6 4 QMOD 
Q1'3 0 8 9 QMl 
.TRAN 0.0125NS 1.4:NS 
.PRINT TRAN VC10,0) 
.PLOT TRAN VC10,0) 
.MODEL DMOD D 1S=.6E~9 
.MODEL QMOD NPN BF=99. 1S=:.6E-9 RB=50. TF=.01'NS CJE=0~12PF 
+ CJC=0.5PF MC=0. ME=0 • 
. MODEL Q.Ml NPN BF=99. . IS=. 6E-9 TF=. 01NS CJE=0. l2PF :ME=0. 
+ MC=0 • 
• END 
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APPENDIX C 

FORMULAS RELATING THE LOAD VOLTAGES OF THE BRANCHES 

TO THE VARIABLE ELEMENTS 

C.1 To Obtain VBL as a Function of VS and~ 

The voltage across the impedance Z, representing the 

branched circuit, in terms of VBL is given by 

(C1) 

and it can be expressed in terms of voltages in the main cascaded 

circuit as 

(C2) 

-where ! 1z is the result of the reverse analysis at reference plane 

f. So (C2) can be written, substituting for the chain matrix of 

the element representing the branch, as 

(C3) 
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= [1 (C4) 

(C5) 

The load voltage of the main cascade VL can be expressed by 

(C6) 

·and (C1) can be rewritten as 

(C7) 

Substituting for Vz of (C5) we have 

T 
~2 ! 1 Z z VL 

-T 
~1B ~ !rn 

(C8) 

and substituting for VL from (C6) and Z from (5.24), we get 

= -'I' B -T I I 1 ZJ ' 
~1B - !1B ~1z !Lo 1 !1z 

(C9) 
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hence 

C.2 To Obtain v8L as a Function of VS and~ 

From (C7) and (C2) we can write VBL as 

T 
~1 [~1Z - ~1Z] VL 

-'!' 
~1B ~ ~1B 

~1Z 

The load voltage VL can be expressed (compare with (C6)) by 

We can write, using notation defined for (5.27), 

Similarly, 

(C10) 

(C11) 

(C 12) 

(C13) 
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Substituting these terms and VL of (C11) into (C10) we obtain 

-T -T 

[: :J ~1Y vs [~1Yf - u ] -1Yg 

VBL(~) = 
-T -T [1 :J ~1Y 
u B V u 
-1B - -1B -1Y y 

(C14) 

C.3 To Obtain VCL as a Function of VS and~ 

The voltage across Yin terms of VCL is given by 

(C15) 

and in terms of VL, as 

(C16) 

But VL is also given by 

[y1 OJ . 
1 ~1Y 

(C17) 

So, substituting this VL into (C16) and the resulting Vy into 

(C15) we get 
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OJ . 
1 

~1Y 

(C18) 

C.4 To Obtain VCL as a Function of v3 and~ 

From (C15), (C16) and (C6) we can write VCL as 

! [1 C v u 
- -1C -1Z O 

ZJ . 
1 ~ 1Z 

(C19) 
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