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ABSTRACT 
 

This thesis contributes to the development of novel methods and 

techniques for computer-aided electromagnetics (EM)-based modeling and design 

of microwave circuits exploiting space mapping (SM) technology. 

Novel aggressive space mapping (ASM) algorithms exploiting sensitivity 

information from the fine and the coarse models are developed.  The modified 

algorithm enhances the parameter extraction (PE) process by not only matching 

the responses of both fine and coarse models but also corresponding gradients.  

We also used the gradients to continuously update a suitable mapping between the 

fine and coarse spaces.  The coarse model combined with the established mapping 

is considered a “surrogate” of the fine model in the region of interest.  It can be 

used in statistical analysis and yield optimization. 

A comprehensive review of SM technology in engineering device 

modeling and optimization, with emphasis in Radio Frequency (RF) and 

microwave circuit optimization, is introduced in this thesis.  Significant practical 

applications are reviewed. 

We explore the SM methodology in the transmission-line modeling 

(TLM) simulation environment.  We design a CPU intensive fine-grid TLM 
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structure utilizing a coarse-grid TLM model with relaxed boundary conditions.  

Such a coarse model may not faithfully represent the fine-grid TLM model and it 

may not even satisfy the original design specifications.  Hence, SM techniques 

such as the aggressive SM will fail to reach a satisfactory solution.  To overcome 

the aforementioned difficulty, we combine the implicit SM (ISM) and output SM 

(OSM) approaches.  As a preliminary PE step, the coarse model’s dielectric 

constant is first calibrated.  If the response deviation between the two TLM 

models is still large, an output SM scheme absorbs this deviation to make the 

updated surrogate represent the fine model.  The subsequent surrogate 

optimization step is governed by a trust region strategy.  Because of the discrete 

nature of the TLM simulator, we employ an interpolation scheme to evaluate the 

responses, and possibly derivatives, at off-grid points with a dynamically updated 

database system to avoid repeatedly invoking the simulator. 
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CHAPTER 1  
 

INTRODUCTION 
 

The development of computer-aided design (CAD) for RF, microwave and 

millimeter-wave circuits originated in the 1960s––roughly corresponding to the 

era of computer growth.  For nearly half a century, CAD of electronic circuits 

have evolved from special-purpose to highly flexible and interactive general-

purpose software systems with strong capabilities of automation and 

visualization. 

Many of the important early developments in microwave engineering were 

made possible when the electromagnetic (EM) environment was represented in 

terms of circuit equivalents, lumped elements and transmission lines.  Thus, 

capturing the relevant, usually complex, physical behavior of a microwave 

structure became available in a form that could lend itself to linear solution [1]. 

Four particular developments exemplify the modeling procedure of 

transforming a distributed structure into a lumped circuit [1].  The first is the 

modeling work by Marcuvitz showing how waveguide discontinuities can be 

modeled by lumped-element equivalents [2].  Barrett [3] documented a similar 

treatment for planar transmission-line circuits.  The second development that had 
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a tremendous effect on a generation of microwave engineers was Collin’s 

Foundation of Microwave Engineering, which presented a formalism for treating 

distributed structures as circuit elements [4].  The third significant development 

was the work of Eisenhart and Khan [5] that presented an approach to modeling 

waveguide-based structures as circuit elements.  The final development in linear 

circuit modeling technology is the segmentation approach most recently reviewed 

by Gupta [6].  In this segmentation (or diakoptic) approach, a structure is 

partitioned into smaller parts and each part is characterized electromagnetically.  

These characterizations are then combined using network theory to yield the 

overall response of the circuit. 

Engineers have been using optimization techniques for device, component 

and system modeling and CAD for decades.  The target of component design is to 

determine a set of physical parameters to satisfy certain design specifications.  

Traditional optimization techniques [7], [8] directly utilize the simulated 

responses and possibly available derivatives to force the responses to satisfy the 

design specifications. 

Bearing in mind the aforementioned RF and microwave circuits modeling 

developments, advances in the direction of automated design of high-frequency 

structures were made in the late 1960’s and early 1970’s.  The classic paper by 

Temes and Calahan in 1967 [9] advocates the use of iterative optimization in 

circuit design.  Since then, optimization techniques have evolved and have been 

applied to design and modeling in several major directions.  Areas of application 
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include filter design [10], [11], linear array design [12], worst-case design [13], 

[14], design centering [15], [16], [17], and yield optimization [18], [19].  

Comprehensive surveys by Calahan [20], Bandler and Rizk [21], Brayton et al. 

[22], and Bandler and Chen [7] are relevant to microwave circuit designers. 

While developments in circuit modeling and design automation were 

taking place, numerical electromagnetic techniques were also emerging.  The 

finite-difference time-domain (FDTD) approach is traceable to Yee [23].  The 

finite-element method (FEM) is traced back to Silvester [24].  Wexler, known for 

his novel mode-matching (MM) contribution [25], makes the case for numerical 

solutions of field equations and reviews solution techniques based on finite 

differences [26].  Foundations of the method of moments (MoM) for EM can be 

attributed to Harrington [27] and, for implementation in planar simulators, to 

Rautio and Harrington [28].  An overview of the transmission-line modeling 

(TLM) method, pioneered in the microwave arena by Johns in the 1970s, is 

presented by Hoefer [29]. 

Electromagnetic (EM) simulators, that emerged in the late 1980s, are 

considered effective tools in an automated design environment.  The EM field 

solvers can simulate EM structures of arbitrary geometrical shapes and are 

accurate up to millimeter wave frequencies.  Particularly, they offer excellent 

accuracy if critical areas are meshed with a sufficiently small grid.  Jain and Onno 

[30] divided the EM simulators into two main categories: the so-called two-and-

one-half dimensional (2.5D) and three-dimensional (3D) field solvers.  The 2.5D 
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EM solver analyzes planar structures based on the MoM [27] analysis.  Examples 

of commercial 2.5D simulators include Sonnet’s em [31] and Agilent Momentum 

[32].  The 3D EM solvers use volume meshing based on the FEM [24], the FDTD 

[23] or the TLM [29] analysis.  Examples of 3D commercial software include the 

FEM High Frequency Structure Simulator (HFSS) from Ansoft [33] and HP 

Agilent [34], FDTD XFDTD from Remcom [35] and TLM MEFiSTo from 

Faustus [36]. 

Circuit-theory based simulation and CAD tools using empirical device 

models are fast.  Analytical solutions or available exact derivatives cut down 

optimization time.  They are simple and efficient but may lack the necessary 

accuracy or have limited validity region.  Examples of commercial circuit 

simulators with optimization capabilities include OSA90/hope [37] and Agilent 

ADS [38].  On the other hand, EM simulators, long used for design verification, 

can be exploited in the optimization process.  However, the higher the fidelity 

(accuracy) of the simulation the more expensive direct optimization is expected to 

be.  For complex problems, this cost may be prohibitive. 

In the 1990s, advances in microwave CAD technology have been made as 

a result of the availability of powerful PCs, workstations and massively parallel 

systems.  This suggested the feasibility of interfacing EM simulations into 

optimization systems or CAD frameworks for direct application of powerful 

optimizers.  Bandler et al. [39], [40] introduced the geometry capture concept 

which made automated EM optimization realizable.  This concept was 
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implemented in Empipe and Empipe3D [41] to perform 2.5D and 3D EM 

optimization, respectively [42], [43], [44]. 

Alternative design schemes combining the speed and maturity of circuit 

simulators with the accuracy of EM solvers are desirable.  The recent exploitation 

of iteratively refined surrogates of fine, accurate or high-fidelity models, and the 

implementation of space mapping (SM) methodologies address this issue.  

Through the construction of a space mapping, a suitable surrogate is obtained.  

This surrogate is faster than the “fine” model and at least as accurate as the 

underlying “coarse” model.  The SM approach updates the surrogate to better 

approximate the corresponding fine model.  The SM concept was coined by 

Bandler in 1993 and the first SM algorithms were introduced in [45], [46]. 

The objective of this thesis is to introduce some new trends and 

developments in CAD and modeling of RF and microwave circuits exploiting SM 

technology.  This includes the contribution to the recent comprehensive review of 

the SM concept and applications [47], [48], [49].  It also includes the 

development of a family of robust techniques exploiting sensitivities, [50], [51], 

[52], [53] and TLM-based modeling and design exploiting the implicit and the 

output SM with a trust region methodology [54]–[55]. 

Chapter 2 reviews the SM technique and the SM-based surrogate 

(modeling) concept and their applications in engineering design optimization 

[47]–[49].  The aim of SM is to achieve a satisfactory solution with a minimal 

number of computationally expensive “fine” model evaluations.  SM procedures 
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iteratively update and optimize surrogates based on a fast physically-based 

“coarse” model.  Proposed approaches to SM-based optimization include the 

original algorithm, the Broyden-based aggressive space mapping algorithm, 

various trust region approaches, neural space mapping and implicit space 

mapping.  We discuss also a mathematical formulation of the SM with respect to 

classical optimization techniques and convergence issues of SM algorithms.  

Significant practical applications are reviewed. 

In Chapter 3, we present a family of robust techniques for exploiting 

sensitivities in EM-based circuit optimization through SM [50]–[53].  We utilize 

derivative information for parameter extractions and mapping updates.  We 

exploit a partial SM (PSM) concept, where a reduced set of parameters is 

sufficient for the parameter extraction (PE) step.  This reflects the idea of tuning 

and results in reducing the execution time.  Upfront gradients of both EM (fine) 

model and coarse surrogates initialize possible mapping approximations.  We also 

introduce several effective approaches for updating the mapping during the 

optimization iterations.  Examples include the classical Rosenbrock function, 

modified to illustrate the approach, a two-section transmission-line 10:1 

impedance transformer and a microstrip bandstop filter with open stubs. 

In Chapter 4, we study the use of SM techniques within the TLM method 

environment [54]–[55].  Previous work on SM relies on an “idealized” coarse 

model in the design process of a computationally expensive fine model.  For the 

first time, we examine the case when the coarse model is not capable of providing 
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an ideal optimal response.  We exploit a coarse-grid TLM solver with relaxed 

boundary conditions.  Such a coarse model may be incapable of satisfying design 

specifications and traditional SM may fail.  Our approach, which exploits implicit 

SM (ISM) and the novel output SM (OSM), overcomes this failure.  Dielectric 

constant, an expedient preassigned parameter, is first calibrated to roughly align 

the coarse and fine TLM models.  Our OSM scheme absorbs the remaining 

deviation between the “implicitly” mapped coarse-grid and fine-grid TLM 

responses.  Because the TLM simulations are on a fixed grid, response 

interpolation is crucial.  We also create a database system to avoid repeating 

simulations unnecessarily.  Our optimization routine employs a trust region 

methodology.  The TLM-based design of an inductive post, a single-resonator 

filter and a six-section H-plane waveguide filter illustrate our approach.  In a few 

iterations, our coarse-grid TLM surrogate, with approximate boundary conditions, 

achieves a good design of the fine-grid TLM model in spite of poor initial 

responses.  Our results are verified with MEFiSTo simulations. 

The thesis is concluded in Chapter 5, providing suggestions for further 

research.  For convenience, a bibliography is given at the end of the thesis 

collecting all the references used. 

The author’s original contributions presented in this thesis are: 

(1) Development of a CAD algorithm exploiting response sensitivities. 

(2) Development of an algorithm employing sensitivities for improving 

the parameter extraction process. 
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(3) Development and implementation of the partial SM concept. 

(4) Introducing effective approaches for updating the mapping function 

along optimization iterates. 

(5) Contribution to the comprehensive review of space mapping 

technology: theory and applications. 

(6) Development and implementation of a CAD algorithm utilizing the 

implicit and output SM concepts along with the trust regions 

methodologies. 

(7) Implementation of an algorithm for obtaining response interpolations 

and a dynamically-updated database to avoid repeating unnecessary 

simulations. 
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CHAPTER 2  
 

RECENT TRENDS IN SPACE  

MAPPING TECHNOLOGY 
 

2.1 INTRODUCTION 

CAD procedures for RF and microwave circuits such as statistical analysis 

and yield optimization demand elegant optimization techniques and accurate, fast 

models so that the design solutions can be achieved feasibly and reliably [1].  

Traditional optimization techniques for engineering design [2]–[3] exploit 

simulated responses and possible derivatives with respect to design parameters.  

Circuit-theory CAD tools using empirical device models are fast but less accurate.  

Electromagnetic (EM) simulators need to be exploited in the optimization 

process.  However, the higher the fidelity (accuracy) of the simulation the more 

expensive direct optimization will be. 

The space mapping (SM) approach, conceived by Bandler in 1993, 

involves a calibration of a physically-based “coarse” surrogate by a “fine” model 

to accelerate design optimization.  This simple CAD methodology embodies the 
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learning process of a designer.  It makes effective use of the surrogate’s fast 

evaluation to sparingly manipulate the iterations of the fine model. 

In this chapter, a review of the state of the art of SM is presented.  Bandler 

et al. [4]–[5] demonstrated how SM intelligently links companion “coarse” 

(simplified, fast or low-fidelity) and “fine” (accurate, practical or high-fidelity) 

models of different complexities.  For example, an EM simulator could serve as a 

fine model.  A low fidelity EM simulator or an empirical circuit model could be a 

coarse model (see Fig. 2.1 [6]). 
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Fig. 2.1 Linking companion coarse (empirical) and fine (EM) models 
through a mapping [6]. 
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The first algorithm was introduced in 1994 [4].  A linear mapping between 

the coarse and fine parameter spaces is evaluated by a least squares solution of the 

equations resulting from associating points (data) in the two spaces.  The 

corresponding surrogate is a piecewise linearly mapped coarse model. 

The aggressive SM (ASM) approach [5] exploits each fine model iterate 

immediately.  This iterate, determined by a quasi-Newton step, in effect optimizes 

the corresponding surrogate model. 

Parameter extraction (PE) is key to establishing mappings and updating 

surrogates.  PE attempts to locally align a surrogate with a given fine model, but 

nonuniqueness may cause breakdown of the algorithm [7].  Multi-point PE [7], 

[8], a statistical PE [8], a penalty PE [9], aggressive PE [10] and a gradient PE 

approach [11] attempt to improve uniqueness (see Chapter 3 for details). 

The trust region aggressive SM algorithm [12] exploits trust region (TR) 

strategies [13] to stabilize optimization iterations.  The hybrid aggressive SM 

algorithm [14] alternates between optimization of a surrogate and direct response 

matching.  The surrogate model based SM [15] algorithm combines a mapped 

coarse model with a linearized fine model and defaults to direct optimization of 

the fine model. 

Neural space mapping approaches [16], [17], [18] utilize artificial neural 

networks (ANN) for EM-based modeling and design of microwave devices.  A 

full review of ANN applications in microwave circuit design including the SM 

technology is found in [19]. 
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The SMX [20] system was a first attempt to automate SM optimization 

through linking different simulators.  A recent comprehensive microwave SM 

design framework and possible software implementations are given in [21]. 

Several SM-based model enhancement approaches have been proposed: 

the SM tableau approach [22], space derivative mapping [23], and SM-based 

neuromodeling [16].  Enhanced surrogate models for statistical analysis and yield-

driven design exploiting SM technology are proposed in [24].  SM-based 

surrogate methodology for RF and microwave CAD library model creation is 

presented in [25]. 

Comprehensive reviews of SM techniques for modeling and design are 

presented in [6], [26]. 

In implicit SM (ISM) [27], an auxiliary set of preassigned parameters, 

e.g., dielectric constants or substrate heights, is extracted to match the surrogate 

with the fine model.  The resulting calibrated coarse model is then reoptimized to 

predict the next fine model.  ISM is effective for microwave circuit modeling and 

design using EM simulators and is more easily implemented than the expanded 

SM EM-based design framework described in [28]. 

Output SM (OSM) [29] was originally proposed to tune the residual 

response misalignment between the fine model and its surrogate.  A highly 

accurate SM-based interpolating surrogate (SMIS) model is used in gradient-

based optimization [30].  The SMIS surrogate is forced to match both the 

responses and derivatives of the fine model within a local region of interest. 
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SM technology has been recognized as a contribution to engineering 

design [31]–[37], especially in microwave and RF arena.  Zhang and Gupta [31] 

have considered the integration of the SM concept into neural network modeling 

for RF and microwave design.  Hong and Lancaster [32] describe the aggressive 

SM algorithm as an elegant approach to microstrip filter design.  Conn, Gould and 

Toint [33] have stated that TR methods have been effective in the SM framework, 

especially in circuit design.  Bakr [34] introduces advances in SM algorithms, 

Rayas-Sánchez [35] employs ANN, Ismail [36] studies SM-based model 

enhancement and Cheng [37] introduces advances in implicit and output SM. 

In 2002, a workshop on microwave component design using SM 

methodologies was held [38].  This workshop brought together the foremost 

practitioners in microwave and RF arena including microwave component 

designers, software developers and academic innovators.  They addressed 

designers’ needs for effective tools for optimal designs, including yield 

optimization, exploiting accurate physically based device and component models. 

Mathematicians are addressing mathematical interpretations of the 

formulation and convergence issues of SM algorithms [39]–[45].  Søndergaard 

gives a new definition of the original SM [39], combines the SM technique with 

the classical optimization methods [40] and places the SM in the context of the 

surrogate modeling and optimization techniques [41].  Pedersen [42] investigates 

how the transition from the SM technique to the classical methods could be done.  

Madsen and Søndergaard investigate convergence properties of SM algorithms 
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[43].  Vicente studies convergence properties of SM for design using the least 

squares formulation [44], and Hintermüller and Vicente introduce SM to solve 

optimal control problems [45].  Koziel et al. propose a rigorous formulation of 

the SM technique and discuss the convergence conditions for the OSM-based 

algorithm [46]. 

A workshop on surrogate modeling and SM was held in 2000 [47].  The 

focus was on techniques and practical applications suited to physically-based 

design optimization of computationally expensive engineering devices and 

systems through fast, inexpensive surrogate models and SM technology.  Two 

minisymposia on SM methodologies were held in Sweden in May 2005 [48].  The 

event brought together mathematicians and engineers to present advances in 

algorithm convergence and new engineering implementations, including RF, 

wireless and microwave circuit design, integrating EM simulations (8 papers were 

presented). 

Section 2.2 presents a formulation of the SM concept.  Section 2.3 

addresses the original SM optimization algorithm.  The aggressive SM algorithm 

is described in Section 2.4.  TR algorithms are discussed in Section 2.5, the 

hybrid and the surrogate model based optimization algorithms in Section 2.6, the 

implicit SM approach in Section 2.7, device model enhancement (quasi-global 

modeling) in Section 2.8, neural approaches in Section 2.9 and output SM 

techniques in Section 2.10.  A mathematical motivation and convergence analysis 

for SM are presented in Section 2.11, a comparison between “the surrogate 
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management” approach with the SM technique in Section 2.12 and a review of 

various applications in Section 2.13.  Conclusions are drawn in Section 2.14. 

2.2 THE SPACE MAPPING CONCEPT  

As depicted in Fig. 2.2, we denote the coarse and fine model design 

parameters c cX∈x  and f fX∈x , respectively where, .  For 

simplicity, we assume that 

, n
c fX X ⊆

cX X f= .  The corresponding response vectors are 

denoted by cR  and , respectively, where : m
f fXR R  is a vector of m 

responses of the model, e.g., the magnitude of the microwave scattering parameter 

|S11| at m selected frequency points. 

2.2.1 Original Design Problem 

The design optimization problem to be solved is given by  

* arg min ( ( ))f f
f

Ux Rx x  (2.1)

where U is a suitable objective function.  For example, U could be the minimax 

objective function with upper and lower specifications.  *
fx  is the optimal 

solution to be determined. 

2.2.2 The Space Mapping Concept 

We obtain a mapping P relating the fine and coarse model parameters as 

( )c f=x P x  (2.2)
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such that 

( ( )) ( )c f f f≈R P x R x  (2.3)

in a region of interest. 

Then we can avoid using direct optimization, i.e., solving (2.1) to find *
fx .  

Instead, we declare fx , given by 

1 *( )f c
−x P x  (2.4)

as a good estimate of *
fx , where  is the result of coarse model optimization. *

cx

fx

( )f fR x
fine

model
coarse
modelcx

( )c cR x

such that
( )c f=x P x

( ( )) ( )c f f f≈R P x R x

fx cx

 

Fig. 2.2 Illustration of the fundamental notation of space mapping [6]. 
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2.2.3 Jacobian Relationships 

Using (2.2), the Jacobian of P is given by 

( )( )
T T

T T
c

P P f
f f

⎛ ⎞ ⎛∂ ∂
= =⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

P xJ J x
x x

⎞
⎟⎟
⎠

)

 (2.5)

An approximation to the mapping Jacobian is designated by the matrix , 

i.e., 

n n×∈B

(P f≈B J x .  Using (2.3) we obtain [14] 

f c≈J J B  (2.6)

where fJ  and  are the Jacobians of the fine and coarse models, respectively.  

This relation can be used to estimate the fine model Jacobian if the mapping is 

already established. 

cJ

An expression for B which satisfies (2.6) can be derived as [14] 

1( )T T
c c c f

−=B J J J J  (2.7)

If the coarse and fine model Jacobians are available, the mapping can be 

established through (2.7), provided that  has full rank and m ≥ n. cJ

2.2.4 Interpretation of Space Mapping Optimization 

SM algorithms initially optimize the coarse model to obtain the optimal 

design *
cx , for instance in the minimax sense.  Subsequently, a mapped solution is 

found through the PE process such that 2

2
g  is minimized, where g is defined by 

*( ) ( ) ( )f f f c c= −g g x R x R x  (2.8)
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Correspondingly, according to [40], ( )( )c fR P x  is optimized in the effort 

of finding a solution to (2.1).  Here, ( )( )c fR P x  is an expression of an 

“enhanced” coarse model or “surrogate.”  Thus, the problem formulation can be 

rewritten as 

arg min ( ( ( ))f c
f

U=x R Px fx  (2.9)

where fx  may be close to *
fx  if cR  is close enough to fR .  If  is unique then 

the solution of 

*
cx

(2.9) is equivalent to driving the following residual vector f  to 

zero 

*( ) ( )f f c= −f f x P x x  (2.10)

2.3 THE ORIGINAL SPACE MAPPING TECHNIQUE 

In this technique [4], an initial approximation of the mapping, PP

(0) is 

obtained by performing fine model analyses at a pre-selected set of at least m  

base points, m  ≥ n+1.  One base point may be taken as the optimal coarse model 

solution, thus 

0

0

(1) *
f c=x x .  The remaining m – 1 base points are chosen by 

perturbation.  A corresponding set of coarse model points is then constructed 

through the parameter extraction (PE) process 

0 

( ) ( )arg min ( ) ( )j j
c f f c

c
−x R x Rx cx  (2.11)
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The additional m0 – 1 points apart from (1)
fx  are required to establish full-

rank conditions leading to the first mapping approximation PP

(0).  Bandler et al. [ ] 

assumed a linear mapping between the two spaces. 

4

This algorithm is simple but has pitfalls.  First, m0 upfront high-cost fine 

model analyses are needed.  Second, a linear mapping may not be valid for 

significantly misaligned models.  Third, nonuniqueness in the PE process may 

lead to an erroneous mapping estimation and algorithm breakdown. 

2.4 THE AGGRESSIVE SPACE MAPPING TECHNIQUE 

2.4.1 Theory  

The aggressive SM technique iteratively solves the nonlinear system 

( )f =f x 0  (2.12)

for fx .  Note, from (2.10), that at the jth iteration, the error vector ( )jf  requires 

an evaluation of (( ) ( ) )j j
fP x .  This is executed indirectly through the PE 

(evaluation of ( )j
cx ).  Coarse model optimization produces . *

cx

The quasi-Newton step in the fine space is given by 

( ) ( ) ( )j j j= −B h f  (2.13)

where , the approximation of the mapping Jacobian J( )jB p defined in (2.5), is 

updated using Broyden’s rank one update [49].  Solving for ( )jh  vides the next 

iterate ( 1)j
f
+x

pro
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( 1) ( ) ( )j j
f f
+ = +x x h j  (2.14)

The algorithm terminates if ( )jf  becomes sufficiently small.  The output of the 

algorithm is 1 *( )f c
−=x P x and the mapping matrix B.  The matrix B can be 

obtained in several ways (see Chapter 3, for more details). 

2.4.2 A Five-pole Interdigital Filter [9] 

Interdigital filters [50]–[51] have the advantage of compact size and 

adaptability to narrow- and wide-band applications.  A five-pole interdigital filter 

is shown in Fig. 2.3.  It consists of five quarter-wavelength resonators as well as 

input and output microstrip T-junctions within a shielded box.  Each resonator is 

formed by one quarter-wavelength microstrip line section, shorted by a via at one 

end and opened at the other end.  The arrows in Fig. 2.3 indicate the input and 

output reference planes, and the triangles symbolize the grounded vias. 

Decomposition is used to construct a coarse model.  As shown in Fig. 2.4, 

the coarse filter has a 12-port center piece, the vias, the microstrip line sections 

and the open ends.  The vias are analyzed by Sonnet’s em [52] with a fine grid.  

All the other parts are analyzed using coarse grid em or empirical models in 

OSA90/hope [53].  The results are then connected through circuit theory to obtain 

the responses of the overall filter. 
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The alumina substrate height is 15 mil (0.381 mm) with εr = 9.8.  The 

width of each microstrip is chosen as 10 mil (0.254 mm).  The optimization 

variables are chosen to be x1, x2, …, x6 as shown in Fig. 2.4. 

The interdigital filter design specifications are 

Passband ripple ≤ 0.1 dB for 4.9 GHz ≤ ω ≤ 5.3 GHz 

Isolation: 30 dB, 

Isolation bandwidth: 0.95 GHz 

Sonnet’s em [52] driven by Empipe [54] is employed as the fine model, 

using a high-resolution grid with a 1.0 mil ×1.0 mil (0.0254 mm × 0.0254 mm) 

cell size.  With this grid size, the EM simulation time is about 1.5 CPU hour per 

frequency point on a Sun SPARCstation 10.  The coarse model simulation takes 

less than 1.5 CPU min per frequency point on a Sun SPARCstation 10.  The 

overall CPU time required for optimizing the coarse model is about 2 hours, 

which is the same order of magnitude as the fine-model EM simulation at a single 

frequency point. 

The aggressive SM technique terminates in 2 iterations.  The coarse and 

fine model responses at the optimal coarse model solution are shown in Fig. 2.5.  

The optimal coarse model response and the final fine model response are shown 

in Fig. 2.6.  The final fine model response using a fine frequency sweep is shown 

in Fig. 2.7.  The passband return loss is better than 18.5 dB and the insertion loss 

ripples are less than 0.1 dB. 
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Fig. 2.3 A five-pole interdigital filter [9] 
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Fig. 2.4 A coarse model of the five-pole interdigital filter using 
decomposition [9]. 
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Fig. 2.5 Optimal coarse model target response (— |S11| and |S21|) and the 
fine model response at the starting point (• |S11| and o |S21|) for the 
five-pole interdigital filter [9]. 

 

Fig. 2.6 Optimal coarse model target response (— |S11| and |S21|) and the 
fine model response at the final design (• |S11| and o |S21|) for the 
five-pole interdigital filter [9]. 

29 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 

 

Fig. 2.7 The fine model response at the final design (— |S11| and |S21|) using 
a fine frequency sweep for the five-pole interdigital filter [9]. 

2.5 TRUST REGIONS AND AGGRESSIVE SPACE  

MAPPING 

A goal of modern nonlinear programming is robust global behavior of the 

algorithms.  By robust global behavior we mean the mathematical assurance that 

the iterates produced by an optimization algorithm, started at an arbitrary initial 

iterate, will converge to a stationary point or local minimizer for the problem [13].  

TR strategies can be used to achieve this property. 

2.5.1 Trust Region Methods [33] 

The idea of TR methods is to adjust the length of the step taken at each 

iteration based on how well an approximate linear or quadratic model predicts the 

objective function.  The approximate model is trusted to represent the objective 
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function only within a region of specific radius around the current iteration.  The 

local model minimum inside the TR is found by solving a TR subproblem.  If the 

model minimum achieves sufficient actual reduction in the objective function, the 

TR size is increased.  If insufficient reduction is achieved the TR is reduced.  

Otherwise the TR is kept unchanged. 

Assume that the objective function is a scalar function ( )f x .  At the jth 

iterate ( )jx , a local approximate model  is used to approximate ( ) ( )jL x ( )f x .  It 

is crucial that  is interpolating  f at ( ) ( )jL x ( )jx , i.e., it has the property 

( ) ( ) ( ) ( ) ( )( ) ( ) 0 asj j j j jL f+ − → →x h x h 0  (2.15)

The step ( )jh  to the next tentative iterate is found by solving the TR 

subproblem 

( ) ( ) ( ) ( )( )minimize ( , ),j j jj

j

jδ≤x h hL
h( )

 (2.16)

where ( )jδ  is the TR size.  A quality measure of the next tentative step  is the 

ratio 

( )jh

( )jρ : 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) (

j j j
j

)j j j j j

f f
L L

ρ − +
=

− +
x x h
x x h

 (2.17)

where the numerator represents the actual reduction and the denominator is the 

reduction predicted by the local approximation.  The TR size is adjusted at the 

end of each iteration based on ( )jρ .  The next iteration is accepted only if an 
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actual reduction is achieved in the objective function.  A good survey of methods 

for updating the TR size is given in [55]. 

2.5.2 Trust Region and Aggressive SM [12] 

The trust region aggressive SM algorithm integrates a TR methodology 

with the aggressive SM technique.  Instead of using a quasi-Newton step in the 

aggressive SM to drive f  to zero, a TR subproblem is solved within a certain TR 

to minimize 
2( 1)

2

j+f .  Consider the linearized function 

( )( ) ( ) ( )( ) ( )( , ) jj jj j+fx h hL B j  (2.18)

The next step is obtained by solving the TR subproblem 

2( ) ( ) ( )( )
22

arg min ( , ) ,j j jj δ=h hxL
h

≤h  (2.19)

Thus the step taken is constrained by a suitable TR ( )jδ .  Solving (2.19) is 

equivalent to solving 

( )( ) ( )( ) ( ) )( j jT jj jλ+ = −I T fB hB B  (2.20)

where ( )jB  is an approximation to the Jacobian of the mapping P at the jth 

iteration.  The parameter λ can be selected such that the step is identical to that of 

(2.19).  As in aggressive SM,  is updated by Broyden’s formula [( )jB 49]. 

The trust region aggressive SM algorithm also uses recursive multipoint 

PE (see Chapter 3).  Through the set of points used in the multi-point parameter 

extraction (MPE), the algorithm estimates the Jacobian of the fine model. 
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2.6 HYBRID AGGRESSIVE SM AND SURROGATE MODEL 

BASED OPTIMIZATION 

2.6.1 Hybrid Aggressive SM Algorithm [14] 

Hybrid aggressive SM starts with an SM optimization phase and defaults 

to a response matching phase when SM fails.  The algorithm exploits (2.6) and 

(2.7) to enable switching between the two phases. 

In the SM phase, trust region aggressive SM optimization is carried out 

using the objective function 2

2
f  for f defined by (2.10).  While in the response 

matching phase, the objective function is 2

2
g  where g is defined by (2.8). 

At the jth iteration ( 1)j
f
+x  is evaluated.  If an actual reduction is achieved 

in 2

2
f  and 2

2
g , then the SM iteration is accepted, the matrix B is updated and 

the SM optimization phase continues.  Whenever no reduction is achieved in 

2

2
g , the point  is rejected, the Jacobian of the fine model response ( 1)j

f
+x ( )j

fJ  is 

evaluated at the point ( )j
fx  using (2.6) and response matching starts. 

If  achieves reduction in ( 1)j
f
+x 2

2
g  but does not achieve any reduction in 

2

2
f , mainly because of PE nonuniqueness, the point ( 1)j

f
+x  is accepted and 

recursive MPE is used to find another vector ( 1) j+f .  If the new ( 1) j+f  still does 
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not achieve improvement in 2

2
f , ( 1)j

f
+J  is approximated using the n+1 MPE fine 

model points, then  and ( 1)j
f
+x ( 1)j

f
+J are supplied to the response matching phase. 

2.6.2 Surrogate Model-Based SM Algorithm [15]  

Surrogate model-based SM optimization exploits a surrogate in the form 

of a convex combination of a mapped coarse model and a linearized fine model.  

The algorithm employs the TR method in which the surrogate replaces the formal 

approximation to a linear or quadratic model. 

At the jth iteration, the surrogate model response ( )j m
s ∈R  is given by 

( ) ( ) ( )( )( ) ( )( ) ( ) (1 )( ( ) Δ )j j jjj j
m ff f ffs fλλ + − +x xRx xR R J  (2.21)

where ( )( )j
m fxR  is the mapped coarse model response, ( ) ( )j j

f f f+ ΔR J x  is the 

linearized fine model response and ( )jλ  is a parameter to determine how each 

model is favored.  If ( ) 1jλ = , the surrogate becomes a mapped coarse model.  If 

( ) 0jλ = , then the surrogate becomes a linearized fine model.  Initially, .  

Its update at each iteration depends on the predicted errors produced by the 

mapped coarse model and the linearized fine model with respect to the fine model 

[

(0) 1λ =

15]. 

The step suggested is given by 

( )( ) ( )( )arg min  ( ( )),jj jj
s fU δ= + h hh xR

h
≤  (2.22)
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where ( )jδ is the TR size at the jth iteration.  The mapped coarse model utilizes a 

frequency-sensitive mapping. 

Two approaches based on (2.21) are described in [40] and [42].  In [40], 

the value of ( )jλ  is monotonically decreased from 1 to 0 during the iterations.  In 

[15], the value of ( )jλ  is only decreased if unsuccessful steps are produced.  In 

[42], ( ) 1jλ =  until at least n linearly independent steps have been tried.  

Thereafter, ( )jλ  remains 1 until an unsuccessful step is produced, then ( )jλ  is set 

to 0 for the remaining iterations. 

2.7 IMPLICIT SPACE MAPPING 

Implicit SM (ISM) [27] is a recent development.  Selected preassigned 

parameters are extracted to match the coarse and fine models.  Examples of 

preassigned parameters are dielectric constant and substrate height.  With these 

parameters fixed, the calibrated coarse model (the surrogate) is reoptimized.  The 

optimized parameters are assigned to the fine model.  This process repeats until 

the fine model response is sufficiently close to the target response. 

The idea of using preassigned parameters was introduced in [28] within an 

expanded SM design framework.  This method selects certain key preassigned 

parameters based on sensitivity analysis of the coarse model.  These parameters 

are extracted to match corresponding coarse and fine models.  A mapping from 

optimization parameters to preassigned parameters is then established. 
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As indicated in Fig. 2.8, ISM aims at establishing an implicit mapping Q 

between the spaces fx ,  and cx x  

( , , )f c =Q x x x 0  (2.23)

where x is a set of auxiliary parameters, e.g., preassigned, to be varied in the 

coarse model only.  Thus, the corresponding calibrated coarse model (surrogate) 

response is ( , )c cR x x . 

ISM optimization obtains a space-mapped design fx  whose response 

approximates an optimized target response.  It is a solution of the nonlinear 

system (2.23), obtained through a PE with respect to x and (re)optimization of the 

surrogate with respect to  to give cx *( )f c=x x x , the prediction of the fine model.  

The corresponding response is denoted by *
cR . 

Implicit SM is effective for microwave circuit modeling and design using 

full-wave EM simulators.  Since explicit mapping is not involved, this “space 

mapping” technique is more easily implemented than the expanded SM algorithm 

described in [28].  The HTS filter design is entirely done by Agilent ADS [56] 

and Momentum [57] or Sonnet’s em [52], with no matrices to keep track of [27]. 
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fx

( )f fR x
fine

model
        coarse
        model

cx ( , )c cR x x

x

mapping

such that
( , , )f c =Q x x x 0

( , ) ( )c c f f≈R x x R x

fx ,cx x

 

Fig. 2.8 Illustration of the implicit space mapping (ISM) concept [27]. 

2.8 SPACE MAPPING-BASED MODEL ENHANCEMENT 

The development of fast, accurate models for components that can be 

utilized for CAD over wide ranges of the parameter space is crucial [16], [22], 

[23], [58].  Consider 

( , ) ( ( , ))f f c fω ω≈R x R P x  (2.24)

This formulation offers the possibility of enhancing a pre-existing coarse 

model through a mapping.  Approaches to SM-based model enhancement differ in 

the way in which the mapping is established, the nature of the mapping and the 

region of validity.  The generalized SM tableau approach, the space derivative 

mapping approach and the SM-based neuromodeling have been proposed. 
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2.8.1 Generalized Space Mapping (GSM) Tableau [22] 

This engineering device modeling framework exploits the SM [4], the 

frequency SM [5] and multiple SM [59] concepts. 

The frequency-SM super model (Fig. 2.9) maps both the designable 

device parameters and the frequency.  The SM super model is a special case 

where it maps only designable device parameters and keeps the frequency 

unchanged.  In multiple SM, either the device responses or the frequency intervals 

are divided into a number of subsets and a separate mapping is established for 

each. 

frequency-
space mapping

fine model
ω )( ff xR

coarse
model

cx

fc RR ≈

cω

fx

 

Fig. 2.9 The frequency-SM super model concept [22]. 

 

The mapping relating fine model parameters and frequency to coarse 

model parameters and frequency is given by 

( , ) ( , )c c fω ω=x P x  (2.25)

or, in matrix form, assuming a linear mapping, 
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1 1

fc
T

c δ σω ω− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

xx c B s
t

 (2.26)

The inverse of the frequency variable (proportional to wavelength) used in 

(2.26) shows good results [22]. 

The parameters { ,  can be evaluated by solving the 

optimization problem 

, }, δ, , σc B s t

1 2min
, , ,

[ ]T T T T
N

δ σc,B,s t  
e e e  (2.27)

where N is the number of base points and the kth error vector is given by ke

,( , ) ( , ); 1,...,k f f k c c cω ω k N= − =e R x R x  (2.28)

The total number of fine model simulations is N m× , where m is the number of 

frequency points per frequency sweep. 

2.8.2 Space Derivative Mapping [23] 

This algorithm develops a locally valid approximation of the fine model in 

the vicinity of a particular point fx .  We denote by fJ  the Jacobian of the fine 

model responses at fx .  The first step obtains the point  corresponding to cx fx  

through the single point PE problem (2.11).  The Jacobian  at  may be 

estimated by finite differences.  Both 

cJ cx

(2.11) and the evaluation of  should add 

no significant overhead.  The mapping matrix B is then calculated by applying 

cJ

(2.7) as 
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1( )T T
c c c f

−=B J J J J  (2.29)

Once B is available the linear mapping is given by 

( ) (c f c f= + )f−x P x x B x x  (2.30)

The space derivative mapping model is given by (2.24) with P given by (2.30). 

The space derivative mapping technique was applied to statistical analysis 

of a two-section waveguide impedance transformer and a six-section H-plane 

waveguide filter [23].  For these examples, the design parameters are assumed to 

be uniformly distributed with a given relative tolerance. 

2.8.3 SM-Based Neuromodeling [16] 

Using artificial neural networks (ANN), a mapping P from the fine to the 

coarse input space is constructed.  The implicit “expert” knowledge in the coarse 

model permits a reduced number of learning points and reduces complexity of the 

ANN. 

Here, the optimization problem 

1 2min [ ]T T T T
N

w
e e e  (2.31)

is solved, where the vector w contains the internal parameters of the ANN 

(weights, bias, etc.), N is the total number of learning base points, and ek is the 

error vector given by 

, ,

,

( ) ( , ) ( ( , , )),

( , , ) ( , ), 1,...,
k f f k c f k

f k c c k N

ω ω

ω ω

−

= =

e w R x R P x w

P x w x
 (2.32)
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A “star set” for the base learning points is considered.  A Huber norm is used in 

(2.31), exploiting its robust characteristics for data fitting [60].  Frequency-

sensitive mappings from the fine to the coarse spaces can be realized by making 

frequency an additional input variable of the ANN that implements the mapping 

[17]. 

2.9 NEURAL SM-BASED OPTIMIZATION TECHNIQUES  

ANNs are suitable for modeling high-dimensional and highly nonlinear 

devices due to their ability to learn and generalize from data, their nonlinear 

processing nature and their massively parallel structure [31].  Rayas-Sánchez 

reviews the state of the art in EM-based design and optimization of microwave 

circuits using ANNs [19]. 

2.9.1 Neural Space Mapping (NSM) [17] 

A strategy is proposed to exploit the SM-based neuromodeling techniques 

[16] in an optimization algorithm, including frequency mapping.  A coarse model 

is used to select the initial learning base points through sensitivity analysis.  The 

proposed procedure does not require PE to predict the next point.  Huber 

optimization is used to train the SM-based neuromodels at each iteration.  These 

neuromodels are developed without using testing points: their generalization 

performance is controlled by gradually increasing their complexity starting with a 

2-layer perceptron.  Five neuromapping variations have been presented [17]. 
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The SM-based neuromodels, obtained through modeling [16] or 

optimization [17] processes, have been used in statistical simulation and yield 

optimization [61].  This technique has increased the yield of an HTS filter from 

14% to 69%.  In addition, excellent agreement is achieved between the SM-based 

neuromodel and the EM responses at the optimal yield solution [61]. 

2.9.2 Neural Inverse Space Mapping (NISM) [18] 

Neural inverse SM (NISM) follows the aggressive approach [5] by not 

requiring a number of up-front fine model evaluations to start building the 

mapping.  A statistical procedure for PE is used to overcome poor local minima.  

At each iteration a neural network whose generalization performance is controlled 

through a network growing strategy approximates the inverse of the mapping.  

The NISM step simply evaluates the current neural network at the optimal coarse 

solution.  This step is equivalent to a quasi-Newton step while the inverse 

mapping remains essentially linear. 

2.10 OUTPUT SPACE MAPPING 

The output SM-based approach addresses the deviation between the 

coarse and fine models in the response space [21], [29]–[30].  A sequence of 

surrogates  of the fine model is generated iteratively, through the 

PE process. 

( ) ; 1, 2,...j
s j =R
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2.10.1 Implicitly Mapped Coarse Model with an Output Mapping 

The implicitly mapped surrogate that involves an output or response 

residual is defined as [21], [29]  

{ }1 2( , ) diag , ,...,s c c mλ λ λ+ ΔR R x x R  (2.33)

where, ΔR  is the residual between the implicitly mapped coarse model response 

after PE and the fine model response at each sample point.  The output mapping 

(O) is characterized by a diagonal matrix 1 2{ , ,..., }mdiag λ λ λΛ . 

In [29] only the implicitly mapped coarse model ( , )c cR x x  is utilized in 

the PE step while the output-mapped surrogate defined in (2.33) is employed in 

the surrogate optimization with 0.5; 1,2,....,i i m= ∀ =λ . 

In a more comprehensive approach, the output-mapped surrogate (2.33) 

could be utilized in both PE and surrogate optimization in an iterative way.  In 

this approach a full residual step is employed, i.e., 1; 1,2,....,i i m= ∀ =λ .  

Moreover, the frequency transformation parameters are employed as preassigned 

parameters [ ]Tσ δ=x . 

The response residual SM (RRSM) [21] employs a hybrid approach.  

Initially, an implicit SM iteration is executed to obtain a near-optimum design.  

Then, an implicit SM and RRSM iteration, using the output-mapped surrogate 

(2.33), are employed with 0.5; 1,2,....,i i m= ∀ =λ  followed by iterations with a 

full residual added. 
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2.10.2 The Output SM-Based Interpolating Surrogate (SMIS) 

A recently explored surrogate that involves an output SM (O) and an 

explicit parameter mapping P is defined to satisfy interpolating conditions 

(response match, response Jacobian match at the current point and global match at 

a set of points) [30].  Here, the jth surrogate of the ith response is given by 

( ) ( )( )
( ) ( ) ( )
, ,

( ) ( ) ( ) ( ) ( ) ( )
, , ,

( ) ( ) ( )

( ) ( )

( ) ; 1, 2,...,

j j j
s i i c i

j j j j j j
s i i c i i f c i i f i

j j j
i f i f i

R O R

R R R

i m

α

=

− +

= + =

P x P x

P x B x c

R  (2.34)

where ( )j n n
i

×∈B  and ( )j n
i ∈c  are the input mapping parameters of the ith 

response and  is the corresponding ith output mapping parameter.  It is 

suggested in [

( )j
i ∈α

30] to use  initially, and to set  for j 

> 0.  The surrogate is built iteratively around the current point 

(0) (0)
, (i c i fR R= x ) )( ) ( )

, (j j
i f i fR R= x

( )j
fx .  The SMIS 

algorithm delivers the accuracy expected from classical direct optimization using 

sequential linear programming [30]. 

2.11 SPACE MAPPING: MATHEMATICAL MOTIVATION 

AND CONVERGENCE ANALYSIS 

The space mapping technique is appealing to the mathematical community 

for its applicability in different fields.  Therefore, mathematicians have started to 

study the formulation and convergence issues of SM algorithms. 
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2.11.1 Mathematical Motivation of the SM Technique 

In [6], [40], a mathematical motivation of SM in the context of classical 

optimization based on local Taylor approximations is presented.  If the 

nonlinearity of the fine model is reflected by the coarse model then the space 

mapping is expected to involve less curvature (less nonlinearity) than the two 

physical models.  The SM model is then expected to yield a good approximation 

over a large region, i.e., it generates large descent iteration steps.  Close to the 

solution, however, only small steps are needed, in which case the classical 

optimization strategy based on local Taylor models is better.  A combination of 

the two strategies gives the highest solution accuracy and fast convergence. 

Fig. 2.10 depicts model effectiveness plots for a two-section capacitively 

loaded impedance transformer [40], at the final iterate ( )j
fx , approximately [74.23  

79.27]T.  Centered at h = 0, the light grid shows ( ) ( )( ) ( (j j
f f c p f+ − + ))R x h R L x h .  

This represents the deviation of the mapped coarse model (using the Taylor 

approximation to the mapping, i.e., a linearized mapping ) from the 

fine model.  The dark grid shows 

: n
pL n

( ) ( )( ) (j j
f f f f+ − +R x h L x h)

m

.  This is the 

deviation of the fine model from its classical first-order Taylor approximation 

.  It is seen that the Taylor approximation is most accurate close to : n
fL

( )j
fx  whereas the mapped coarse model is best over a large region. 
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xf1 xf2 
 

Fig. 2.10 Error plot for a two-section capacitively loaded impedance 
transformer [40], comparing the quasi-global effectiveness of SM 
(light grid) versus a classical Taylor approximation (dark grid). 

2.11.2 Convergence Analysis of SM Algorithms 

Convergence studies of SM algorithms originally considered hybrid 

algorithms where the surrogate model is a convex combination of the mapped 

coarse model and the linearized fine model [15], [40].  Those algorithms employ 

minimization subject to a trust region [43]–[44].  For example, Vicente [44] has 

shown convergence of a hybrid algorithm assuming the objective function to be 

the square of l2 norm and Madsen et al. in [43] have dealt with the case of non-

differentiable objective functions.  In [43]–[44], the authors utilized the general 

methodology of trust regions, made possible by their formulation of the response 

vector as a convex combination of the mapped coarse model and fine model 

response vectors.  However, the convergence theories in these papers heavily rely 
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on the combination with a classical Taylor based method.  Therefore, classical 

principles of convergence proofs are feasible.  Unfortunately, it is not possible to 

prove convergence of true SM algorithms in this way because in these algorithms 

we do not necessarily have local model interpolation at the current iterate.  

Furthermore, tentative iterates may be accepted regardless of the improvement of 

the objective function of the fine model. 

A Convergence theory for true SM algorithms is being developed.  

Convergence properties of the output SM algorithm are discussed in [46].  

Convergence proofs for the original SM and output SM have been proposed in 

[62] and [63], respectively.  In these studies, convergence is demonstrated under 

conditions concerning SM and the engineering optimization problem itself (i.e., 

the fidelity of the coarse model with respect to the fine model).  It follows that the 

SM algorithms may or may not be convergent depending on the quality of the 

match between the coarse and fine models.  The convergence rate is also subject 

to the same considerations. 

2.12 SURROGATE MODELING AND SPACE MAPPING 

Dennis et al. in 1999 [64] developed a rigorous optimization framework 

using “surrogates” to apply to engineering design problems in which the original 

objective function is so expensive that traditional optimization techniques become 

impractical.  This research is driven by the design of a low-vibration helicopter 
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rotor blade from Boeing [64].  The evaluation of the objective function requires 

running expensive analysis code(s). 

Dennis defines the surrogate as a relatively inexpensive approximation of 

the expensive function f [65].  Dennis uses the SM terminology “coarse” and 

“fine” to denote the inexpensive and the expensive models, respectively.  Dennis 

observes that the coarse model might act as a surrogate, but it may also be a step 

in building a surrogate.  Dennis proposes the straw man surrogate (SMS) 

approach within the surrogate management framework (SMF) for solving the 

original design problem.  The SMS involves three steps [66]. 

1. Choose the surrogate based on either a simplified physical model of f or 

approximation of f obtained by evaluating f at selected design sites and 

interpolating the function values. 

2. Solve the surrogate optimization problem to obtain tentative designs.   

3. Compute f at the tentative new designs to determine if any improvement 

has been made over the pervious design sites. 

Dennis suggests the following strategy to construct the surrogate [65]. 

1. Choose the fine model data sites by using: statistical approaches based on 

the underlying functional forms and domain of interest, by judiciously 

scattering the points to fill the space or by enforcing poisedness conditions 

on the geometry of the points. 

2. Surfaces that directly approximate the fine model and act as an 

autonomous surrogate could be either: some polynomial models and 
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response surfaces using experimental designs, kriging, ANN, least degree 

polynomial using space filling design, or Hermite surfaces using data on 

the fine model and its gradient. 

3. Surfaces that are designed to correct the coarse model and combined with 

the coarse model to act as a surrogate. 

• The “difference” between the fine and coarse surfaces (responses) is 

“added” to the coarse model to construct the surrogate (output SM). 

• The “quotient” of the fine and coarse surfaces is “multiplied” to the 

coarse model to construct a surrogate. 

• SM surface from the fine model parameters to the coarse model 

parameters.  The surrogate is defined by the coarse model applied to 

the image of the fine model parameters under the SM surface (the 

regular input-based SM approach). 

2.13 IMPLEMENTATION AND APPLICATIONS 

2.13.1 RF and Microwave Implementation 

The required interaction between coarse model, fine model and 

optimization tools makes SM difficult to automate within existing simulators.  A 

set of design or preassigned parameters and frequencies have to be sent to the 

different simulators and corresponding responses retrieved.  Software packages 

such as OSA90 or Matlab can provide coarse model analyses as well as 
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optimization tools.  Empipe [54] and Momentum driver [36] have been designed 

to drive and communicate with Sonnet’s em [52] and Agilent Momentum [57] as 

fine models, respectively.  Aggressive SM optimization of 3D structures [7] has 

been automated using a two-level Datapipe [53] architecture of OSA90.  The 

Datapipe technique allows the algorithm to carry out nested optimization loops in 

two separate processes while maintaining a functional link between their results 

(e.g., the next increment to xf is a function of the result of parameter extraction). 

Agilent ADS circuit models can be used as coarse models.  ADS has a 

suite of built-in optimization tools.  The ADS component S-parameter file enables 

S-parameters to be imported in Touchstone file format from different EM 

simulators (fine model) such as Sonnet’s em and Agilent Momentum.  Imported 

S-parameters can be matched with the ADS circuit model (coarse model) 

responses.  This PE procedure can be done simply by proper setup of the ADS 

optimization components (optimization algorithm and goals).  These major steps 

of SM are friendly for engineers to apply. 

2.13.2 Major Recent Contributions to Space Mapping 

Leary et al. apply the SM technique in civil engineering structural design 

[67].  Jansson et al. [68] and Redhe et al. [69] apply the SM technique and 

surrogate models together with response surfaces in structural optimization and 

vehicle crashworthiness problems.  Devabhaktuni et al. [70] propose a technique 

for generating microwave neural models of high accuracy using less accurate 
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data.  The proposed Knowledge-based Automatic Model Generation (KAMG) 

technique integrates automatic model generation, knowledge neural networks and 

SM.  Swanson and Wenzel [71] introduce a design approach based on the SM 

concept and commercial FEM solvers to Combline-type microwave filters which 

have found extensive applications as a result of their compact size, low cost, wide 

tuning range and high performance.  Harscher et al. [72] propose a technique 

combines EM simulations with a minimum prototype filter network (surrogate).  

They execute optimization in the surrogate model space with n+1 EM simulations 

(in the best case), where n is the number of geometrical parameters.  Draxler [73] 

introduces a methodology for CAD of integrated passive elements on Printed 

Circuit Board (PCB) incorporating Surface Mount Technology (SMT).  The 

proposed methodology uses the SM concept to exploit the benefits of both 

domains.  Ye and Mansour [74] apply SM steps to reduce the simulation 

overhead required in microstrip filter design.  They use a coarse model of 

cascaded microstrip circuit sections simulated individually by their EM simulator.  

Snel [75] proposed the SM technique in RF filter design for power amplifier 

circuits.  He suggests building a library of fast, space-mapped RF filter 

components used in the design of ceramic multilayer filters.  Pavio et al. [76] 

apply typical SM techniques (with unity mapping, B = I) in optimization of high-

density multilayer LTCC RF and microwave circuits.  Lobeek [77] demonstrates 

the design of a DCS/PCS output match of a cellular power amplifier using SM.  

Lobeek also applies the SM model to monitor the statistical behavior of the 
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design with respect to parameter values.  Safavi-Naeini et al. [78] consider a 3-

level design methodology for complex RF/microwave structure using an SM 

concept.  Pelz [79] applies SM in realization of narrowband coupled resonator 

filter structures.  A realization of such a filter involves the determination of 

dimensions of the apertures between the resonators.  Wu et al. [80], [81] apply 

the aggressive SM approach to LTCC RF passive circuit design.  Steyn et al. [82] 

consider the design of irises in multi-mode coupled cavity filters.  They combine 

a reduced generalized scattering matrix with aggressive SM.  Soto et al. [83], 

[84] apply the aggressive SM procedure to build a fully automated design of 

inductively coupled rectangular waveguide filters.  The magnetic equivalent 

circuit (MEC) method and the FEM have been widely used for simulation of EM 

systems.  Choi et al. [85] utilize SM to design magnetic systems.  Ismail et. al 

[86] exploit SM-optimization in the design of dielectric-resonator filters and 

multiplexers.  Ismail et al. also [87] exploit the multiple SM for RF T-switch 

design.  Zhang et al. [88] introduce a new Neuro-SM approach for nonlinear 

device modeling and large signal circuit simulation.  Feng et al. [89] employ the 

ASM technique for the design of antireflection coatings for photonic devices, 

such as the semiconductor optical amplifiers.  Feng et al. also [90] utilize a 

generalized SM for modeling of photonic devices such as an optical waveguide 

facet.  Gentili et al. [91] utilize SM for the design of microwave comb filters.  

Rayas-Sánchez et al. [92] introduce an inverse SM optimization algorithm for 
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linear and non-linear microwave circuit design in the frequency and/or transient-

time domains.   

2.14 CONCLUDING REMARKS 

The SM technique and the SM-oriented surrogate (modeling) concept and 

their applications in engineering design optimization are reviewed.  Proposed 

approaches to SM-based optimization include the original SM algorithm, the 

Broyden-based aggressive space mapping, trust region aggressive space mapping, 

hybrid aggressive space mapping, neural space mapping and implicit space 

mapping.  Parameter extraction is an essential subproblem of any SM 

optimization algorithm.  It is used to align the surrogate with the fine model at 

each iteration.  A mathematical motivation and convergence analysis for the SM 

algorithms are briefly discussed.  Interesting SM and surrogate applications are 

reviewed.  They indicate that exploitation of properly managed “space mapped” 

surrogates promises significant efficiency in all branches of engineering design. 
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CHAPTER 3  
 

EM-BASED OPTIMIZATION 

EXPLOITING PARTIAL SPACE 

MAPPING AND EXACT 

SENSITIVITIES 
 

3.1 INTRODUCTION 

Using an EM simulator (“fine” model) inside an optimization loop for the 

design process of microwave circuits can be prohibitive.  Designers can overcome 

this problem by simplifying the circuit through circuit theory or by using the EM 

simulator with a coarser mesh.  The SM approach [1]–[2] involves a suitable 

calibration of a physically–based “coarse” surrogate by a fine model.  The fine 

model may be time intensive, field theoretic and accurate, while the surrogate is a 

faster, circuit based but less accurate representation.  SM introduces an efficient 

way to describe the relationship between the fine model and its surrogate.  It 

makes effective use of the fast computation ability of the surrogate on the one 

hand and the accuracy of the fine model on the other. 
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SM optimization involves the following steps.  The “surrogate” is 

optimized to satisfy design specifications [3], thus providing the target response.  

A mapping is proposed between the parameter spaces of the fine model and its 

surrogate using a Parameter Extraction (PE) process.  Then, an inverse mapping 

estimates the fine model parameters corresponding to the (target) optimal 

surrogate parameters. 

We present new techniques to exploit exact sensitivities in EM–based 

circuit design in the context of SM technology [4].  If the EM simulator is capable 

of providing gradient information, these gradients can be exploited to enhance a 

coarse surrogate.  New approaches for utilizing derivatives in the parameter 

extraction process and mapping update are presented [4]. 

We introduce also a new SM approach exploiting the concept of partial 

SM (PSM) [4].  Partial mappings were previously suggested in the context of 

neural SM [5].  Here, an efficient procedure exploiting a PSM concept is 

proposed.  Several approaches for utilizing response sensitivities and PSM are 

suggested. 

Exact sensitivity formulations have been developed for nonlinear, 

harmonic balance analyses [6] as well as implementable approximations such as 

the feasible adjoint sensitivity technique (FAST) [7].  In the 90s Alessandri et al. 

spurred the application of the adjoint network method using a mode matching 

orientation [8].  Feasible adjoint-based sensitivity implementations are proposed 

with the method of moments (MoM) in [9].  These techniques can be used for 
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efficient gradient-based optimization.  Our proposed CAD approach for full-wave 

EM-based optimization complements these efforts of gradient estimation using 

EM simulations.  An excellent review of adjoint techniques for sensitivity 

analysis in RF and microwave circuits CAD is introduced in [10]. 

3.2 BASIC CONCEPTS 

In this section, we review different parameter extraction approaches 

suggested in the SM literature [11].  We also discuss the traditional aggressive 

SM technique [4]. 

3.2.1 Parameter Extraction (PE) 

PE is a crucial step in any SM algorithm.  In the PE, an optimization step 

is performed to extract a coarse model point cx  corresponding to the fine model 

point fx  that yields the best match between the fine model and its surrogate.  The 

information stored in the design responses may not be sufficient to describe the 

system under consideration properly.  Thus, using only the design response in the 

PE may lead to nonuniqueness problems.  Therefore, we need to obtain more 

information about the system and exploit it to extract the “best” coarse point and 

avoid nonuniqueness.  For example, we may use responses such as real and 

imaginary parts of S–parameters in the PE even though we need only the 

magnitude of S11 to satisfy a certain design criterion. 
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3.2.1.1 Single Point PE (SPE) [1] 

The traditional SPE is described by the optimization problem given in 

(2.11), it is repeated here for convenience.  It is simple and works in many cases. 

)()(minarg )()(
cc

j
ff

c

j
c xRxRxx −=  (3.1)

3.2.1.2 Multipoint PE (MPE) [12]–[13]  

The MPE approach simultaneously matches the responses at a number of 

corresponding points in the coarse and fine model spaces.  A set 

{ } { }( 1) ( 1) ( ) 1, 2,...,j j i
f f f pV i N+ += ∪ + Δ =x x x  of fine model points is constructed by 

selecting Np perturbations around ( 1)j
f
+x .  The corresponding ( 1)j

c
+x  is found by 

solving 

( 1)
0 1arg min [ ]

p

T T T Tj
c N

c

+ = e e ex x  (3.2)

where  

( 1)
0 ( ) ( )j

c c f f
+= −e R x R x  (3.3)

and  

( ) ( 1) ( )( ) ( ),  1, 2,...,i j i
i c c c f f f pi N+
= + Δ − + Δ =e R x x R x x  (3.4)

The perturbations ( )Δ i
cx  in (3.4) are related to ( )Δ i

fx .  The basic MPE [12] 

assumes the relation is given by 

( ) ( ) ,  1, 2,...,i i
c f pi NΔ = Δ =x x  (3.5)
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This MPE approach does not provide guidelines on the selection of fine model 

points. 

A more reliable algorithm [14] considers the relation between the 

perturbations to be determined through the mapping matrix B.  Such a relation is 

given by 

( ) ( ) ,  1, 2,...,i i
c f pi NΔ = Δ =x B x  (3.6)

The algorithm proposed in [14] also automates the selection of the set of 

fine model points by recursively augmenting the set V until a unique parameter 

extraction is achieved. 

Another improvement in the selection of V is suggested by the aggressive 

PE algorithm [15], which aims at minimizing the number of points used in MPE.  

It exploits the gradients and Hessians of the coarse model responses at the 

extracted point ( 1)j
c
+x  to construct new points to be added to V.  A perturbation 

Δ new
cx  is found by solving the eigenvalue problem 

( )( 1) ( 1)( ) ( )j T j new new
c c c c c cλ+ + + Δ = ΔJ x J x I x x  (3.7)

The corresponding perturbation Δ new
fx  is found consistent with (3.6) and 

the set V is augmented by 

( 1)new j new
f f f

+= + Δx x x  (3.8)

 

 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 

70 

3.2.1.3 Statistical PE [13] 

Bandler et al. [13] suggest a statistical approach to PE.  The SPE process 

is initiated from several starting points and is declared unique if consistent 

extracted parameters are obtained.  Otherwise, the best solution is selected. 

A set of Ns starting points are randomly selected in a region nD ⊂  

where the solution ( 1)j
c
+x  is expected.  For the jth iteration, D is implied by 

( ) ( )* *
, ,, 2 , 2 ,  1, 2,...,j j

c i c ic i i ix i nf fx x⎡ ⎤∈ − + =⎣ ⎦  (3.9)

where ,c ix  is the ith component of cx  and if  the ith component of *
c c= −f x x . 

3.2.1.4 Penalized PE [16] 

Another approach is suggested in [16].  Here, the point ( 1)j
c
+x  is obtained 

by solving the penalized SPE process 

( 1) *( 1) arg min ( ) ( )jj
c c c f f c c

c
w++ = − + −R x R x x xx x  (3.10)

where w is a user-assigned weighting factor.  If the PE problem is not unique 

(3.10) is favored over (3.1) as the solution is biased towards *
cx .  The process is 

designed to push the error vector *
c c= −f x x  to zero.  If w is too large the 

matching between the responses is poor.  On the other hand, too small a value of 

w makes the penalty term ineffective, in which case, the uniqueness of the 

extraction step may not be enhanced. 
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3.2.1.5 PE Involving Frequency Mapping 

Alignment of the models might be achieved by simulating the coarse 

model at a transformed set of frequencies [17].  For example, an electromagnetic 

model of a microwave structure usually exhibits a frequency shift with respect to 

an idealized representation.  Also, available quasi-static empirical models exhibit 

good accuracy over a limited range of frequencies, which can be alleviated by 

frequency transformation. 

The PE optimization process (3.1), which extracts cx  to correspond to a 

given fx , may fail if the responses fR  and cR  are disjoint.  But, the responses 

might be aligned if a frequency transformation ( )c Pωω ω=  is applied, relating 

frequency ω  to the coarse model frequency ωc.  Frequency mapping introduces 

new degrees of freedom [18]. 

A suitable mapping can be as frequency shift and scaling given by [2] 

( )c Pωω ω σω δ= +  (3.11)

where σ represents a scaling factor and δ is an offset (shift). 

The approach can be divided into two phases [2].  In Phase 1, we 

determine σ0 and δ0 that align fR  and cR  in the frequency domain.  This is done 

by finding 

0 0

0 0
         ,

( , )) ( ) ,  1, 2,...,arg min c c i f f i kσ ω δ
σ δ

+ − =R x R x  (3.12)
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In Phase 2, the coarse model point cx  is extracted to match cR  with fR , 

starting with σ = σ0 and δ = δ0.  Three algorithms [2] can implement this phase: a 

sequential algorithm and two exact-penalty function algorithms, one using the l1 

norm and the other is suitable for minimax optimization [2]. 

3.2.1.6 Other Considerations  

We can broaden the scope of parameters that are varied in an effort to 

match the coarse (surrogate) and fine models.  We already discussed the scaling 

factor and shift parameters in the frequency mapping.  We can also consider 

neural weights in neural SM [5], preassigned parameters in implicit SM [19], 

mapping coefficients B, etc., as in the generalized SM tableau approach [20] and 

surrogate model-based SM [18]. 

3.2.2 Aggressive Space Mapping Approach 

The aggressive SM (ASM) was presented in Chapter 2 in the context of 

reviewing the SM techniques.  Here we consider another approach to obtain the 

same result, which should add insight to the method.  Aggressive SM solves the 

nonlinear system 

*

*

( )f c

c c

−

= −
=

f P x x

x x
0

 (3.13)
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for fx , where P is a mapping defined between the two model spaces and cx  is 

the corresponding point in the coarse space, ( )c f=x P x .  First-order Taylor 

approximations are given by 

))(()()( )()()( j
ff

j
fP

j
ff xxxJxPxP −+≈  (3.14)

This can be described as 

 PEThrough

)()()( ))(( j
ff

j
fP

j
cc xxxJxx −+≈  (3.15)

where the Jacobian of P at the jth iteration is expressed by 

T

j
ff

f

T
j

fP
)(

)( )(
xxx

PxJ
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=  (3.16)

Equation (3.15) illustrates the nonlinearity of the mapping, where ( )j
cx  is related 

to ( )j
fx  through the PE process which is a nonlinear optimization problem.  

Recalling (3.14) and (3.15) we state a useful definition of the mapping Jacobian at 

the jth iteration 

( )
( )

PE

( )
T

j T
j c

P
f

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

xJ
x

 (3.17)

We designate an approximation to this Jacobian by the square matrix n n×∈B , 

i.e., ( )P f≈B J x . 

From (3.13) and (3.15) we can formulate the system 

0=−+− + )()( )()1()(*)( j
f

j
f

j
c

j
c xxBxx  (3.18)
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which can be simplified in the useful form given in (2.13), and rewritten here for 

relevance, 

( ) ( ) ( )j j j= −B h f  (3.19)

Solving (3.19) for ( )jh , the quasi-Newton step in the fine space, provides the next 

tentative iterate ( 1)j
f
+x  given in (2.14) 

3.3 SENSITIVITY-BASED APPROACH 

Here, an approach exploiting response sensitivities is presented to enhance 

the PE performance.  We also introduce the partial SM concept where a reduced 

set is utilized in the PE process.  Mapping schemes existing in the SM literature 

are also discussed. 

3.3.1 PE Exploiting Sensitivity 

We exploit the availability of the gradients of the fine model and surrogate 

responses to enhance the PE process.  The Jacobian of the fine model responses 

fJ  at fx  and the corresponding Jacobian of the surrogate responses cJ  at cx  can 

be obtained.  Adjoint sensitivity analysis could be used to provide the exact 

derivatives, while finite differences are employed to estimate the derivatives if the 

exact derivatives are not available.  Here, we present a new technique to 

formulate the PE to take into account not only the responses of the fine and its 

surrogate, but the corresponding gradients as well. 
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Through the traditional PE process as in (3.1) we can obtain the point cx  

that corresponds to fx  such that 

f c≈R R  (3.20)

Differentiating both sides of (3.20) with respect to fx , we obtain [4] 

T

f
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c
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c

T
c
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∂
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R

x
R

  (3.21)

Using (3.17) the relation (3.21) can be simplified to [21] 

BJJ cf ≈  (3.22)

where fJ  and m n
c

×∈J .  Relation (3.22) assumes that cJ  is full rank and m ≥ n, 

where m is the dimensionality of both fR  and cR .  Solving (3.22) for B yields a 

least squares solution [21] 

f
T
cc

T
c JJJJB 1)( −=  (3.23)

At the jth iteration we obtain ( )j
cx  through a Gradient Parameter 

Extraction (GPE) process [4].  In GPE, we match not only the responses but also 

the derivatives of both models through the optimization problem 

0  , ][minarg 10
)( ≥= λλλ TT

n
TTj

c
c

eeexx  (3.24)

where λ is a weighting factor, E = [e1 e2 … en] and 

BxJxJE

xRxRe
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ff

cc
j

ff
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 (3.25)
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The nonuniqueness in the PE step in (3.1) may lead to divergence or 

oscillatory behavior.  Exploiting available gradient information enhances the 

uniqueness of the PE process.  GPE reflects the idea of Multi-Point Extraction 

(MPE) [12]–[14] but, permits the use of exact and implementable sensitivity 

techniques [6]–[10].  Finite differences can be employed to estimate derivatives if 

exact ones are unavailable. 

3.3.2 Partial Space Mapping (PSM) 

Utilizing a reduced set of the physical parameters of the coarse space 

might be sufficient to obtain an adequate surrogate for the fine model.  A selected 

set of the design parameters are mapped onto the coarse space and the rest of 

them, s
f f⊂x x , are directly passed.  The mapped coarse parameters are denoted 

by PSM k
c ∈x , k n≤ , where n is the number of design parameters.  PSM is 

illustrated in Fig. 3.1.  It can be represented in the matrix form by [4] 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= s

f

fPSM
s
f

PSM
c

c x
xP

x
x

x
)(

 (3.26)

In this context (3.22) becomes 

PSMPSM
cf BJJ ≈  (3.27)

where PSM k n×∈B  and PSM m k
c

×∈J  is the Jacobian of the coarse model at PSM
cx .  

Solving (3.27) for PSMB  yields the least squares solution at the jth iteration [4] 

)()(1)()()( )( j
f

TjPSM
c

jPSM
c

TjPSM
c

jPSM JJJJB −=  (3.28)
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Fig. 3.1 Partial Space Mapping (PSM). 

Relation (3.19) becomes underdetermined since PSMB  is a fat rectangular matrix, 

i.e., the number of columns is greater than the number of rows.  The minimum 

norm solution for ( )jh  is given by 

)()( )(1)()()()(
norm min

jTjPSMjPSMTjPSMj fBBBh −= −  (3.29)

The coarse model parameters PSM
cx  used in the PE can be determined by 

the sensitivity analysis proposed by Bandler et al. [22].  It chooses the parameters 

that the coarse model response is more sensitive to. 

3.3.3 Mapping Considerations 

Different mapping approaches existed in the SM literature are discussed 

[11].  Here, we review these updating techniques which include: unit mapping, 

Broyden-based updates, Jacobian-based updates [4] and constrained update.   
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3.3.3.1 Unit Mapping  

A “steepest-descent” approach may succeed if the mapping between the 

two spaces is essentially represented by a shift.  In this case Broyden’s updating 

formula [23] is not utilized.  We can solve (3.19) keeping the matrix ( )jB  fixed at 

( )j =B I .  Bila et al. [24] and Pavio [25] utilized this special case. 

3.3.3.2 Broyden-like Updates  

An initial approximation to B can be taken as B(0) = I, the identity matrix.  

( )jB  can be updated using Broyden’s rank one formula [23] 

( +1) ( ) ( ) ( )
( 1) ( ) ( )

( ) ( )

j j j j
j j j T

j T j= ++ − −f f B hB B h
h h

 (3.30)

When h(j) is the quasi-Newton step, (3.30) can be simplified using (3.19) 

to 

( +1)
( 1) ( ) ( )

( ) ( )

j
j j j T

j T j= ++ fB B h
h h

 (3.31)

A comparison between the BFGS rank-2 updating formula versus the 

Broyden rank-1 formula for ASM techniques is given in Appendix A. 

3.3.3.3 Jacobian Based Updates [4] 

If we have exact Jacobians with respect to fx  and cx  at corresponding 

points we can use them to obtain B at each iteration through a least squares 

solution [4], [21] as given in (3.23).  We can also use (3.28) to update PSMB . 
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Note that B can be fed back into the PE process and iteratively refined 

before making a step in the fine model space. 

Hybrid schemes can be developed following the integrated gradient 

approximation approach to optimization [26]. One approach incorporates finite 

difference approximations and the Broyden formula [23].  Finite difference 

approximations could provide initial estimates of fJ  and cJ .  These are then 

used to obtain a good approximation to B(0).  The Broyden formula is 

subsequently used to update B.  The same approach can be used for PSMB . 

3.3.3.4 Constrained Update [27] 

On the assumption that the fine and coarse models share the same physical 

background, Bakr et al. [27] suggested that B could be better conditioned in the 

PE process if it is constrained to be close to the identity matrix I by letting 

2

1 1 2
arg min [ ]T T T T T

n nη η= Δ Δ
B

B e e b b  (3.32)

where η is a user-assigned weighting factor, ei and Δbi are the ith columns of E 

and ΔB, respectively, defined as 

 f c= −

Δ = −

E J J B

B B I
 (3.33)

The analytical solution of (3.32) is given by 

2 1 2( ) ( )T T
c c c fη η−= + +B J J I J J I  (3.34)

A mathematical proof for (3.34) is given in Appendix B.   
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3.3.4 Proposed Algorithms 

Algorithm 1 Full Mapping/GPE/Jacobian update 

Step   1 Set j = 0.  Initialize B = I for the PE process.  Obtain the optimal 

coarse model design xc
* and use it as the initial fine model point 

(0) * arg min ( ( ))f c c c

c

U= =x x R x
x

 (3.35)

Comment Minimax optimization is used to obtain the optimal coarse 

solution. 

Step   2 Execute a preliminary GPE step as in (3.24). 

Comment Match the responses and the corresponding gradients.  

Step   3 Refine the mapping matrix B using Jacobians (3.23). 

Comment A least squares solution is used to refine a square matrix B using 

Jacobians. 

Step   4 Stop if 

( ) ( ) *
1 2 or j j

f cε ε≤ − ≤f R R  (3.36)

Comment Loop until the stopping conditions are satisfied. 

Step   5 Solve (3.19) for ( )jh . 

Step   6 Find the next ( 1)j
f
+x  using ( 1) ( ) ( )j j j

f f
+ = +x x h . 

Step   7 Perform GPE as in (3.24). 

Step   8 Update ( )jB  using (3.23). 
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Comment A least squares solution is used to update B at each iteration 

exploiting Jacobians. 

Step   9  Set j = j + 1 and go to Step 4. 

Algorithm 2 Partial SM/GPE/Jacobian update 

Step   1 Set j = 0.  Initialize PSM PSM⎡ ⎤= ⎣ ⎦B I 0  for the PE process. Obtain 

the optimal coarse model design *
cx  and use it as the initial fine 

model point as in (3.35). 

Step   2  Execute a preliminary GPE step as in (3.24). 

Step   3  Refine the mapping matrix PSMB  using (3.28). 

Comment A least squares solution is used to refine a rectangular matrix 

PSMB  using Jacobians. 

Step   4  Stop if (3.36) holds. 

Comment Loop until the stopping conditions are satisfied. 

Step   5  Evaluate ( )jh  using (3.29). 

Comment A minimum norm solution for a quasi-Newton step ( )jh  in the fine 

space is used. 

Step   6  Find the next ( 1)j
f
+x  using ( 1) ( ) ( )j j j

f f
+ = +x x h . 

Step   7  Perform GPE as in (3.24). 

Step   8  Use (3.28) to update ( )PSM jB . 

Comment A least squares solution is used to update PSMB  at each iteration. 

Step   9  Set j = j + 1 and go to Step 4. 
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Algorithm 3 Partial SM/PE/Hybrid approach for mapping update 

Step   1 Set j = 0.  Initialize PSM PSM⎡ ⎤= ⎣ ⎦B I 0  for the PE process. Obtain 

the optimal coarse model design *
cx  and use it as the initial fine 

model point as in (3.35). 

Step   2  Execute a preliminary traditional PE step as in (3.1). 

Step   3  Refine the mapping matrix PSMB  using (3.28). 

Comment A least squares solution is used to refine a rectangular matrix 

PSMB  using Jacobians. 

Step   4  Stop if (3.36) holds. 

Comment Loop until the stopping conditions are satisfied. 

Step   5  Evaluate ( )jh  using (3.29). 

Step   6  Find the next ( 1)j
f
+x  using ( 1) ( ) ( )j j j

f f
+ = +x x h . 

Step   7  Perform traditional PE as in (3.1). 

Step   8  Update ( )PSM jB  using a Broyden formula. 

Comment A hybrid approach is used to update PSMB . 

Step   9  Set j = j + 1 and go to Step 4. 

The output of the algorithms is the fine space mapped optimal design 

fx and the mapping matrix B (Algorithm 1) or PSMB  (Algorithms 2 and 3). 
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3.4 EXAMPLES  

3.4.1 Rosenbrock Banana Problem [21], [28] 

Test problems based on the classical Rosenbrock banana function are first 

studied.  We let the original Rosenbrock function 

2
1

22
12 )1()(100 xxxRc −+−=  (3.37)

be a “coarse” model.  The optimal solution is [ ]* 1.0 1.0 T
c =x .  A contour plot is 

shown in Fig. 3.2. 
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Fig. 3.2 Contour plot of the “coarse” original Rosenbrock banana function. 
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3.4.1.1 Shifted Rosenbrock Problem 

We propose a “fine” model as a shifted Rosenbrock function 

( ) ( )211
22

1122 )(1)()(100 ααα +−++−+= xxxRf  (3.38)

where 

⎥
⎦

⎤
⎢
⎣

⎡−
=⎥

⎦

⎤
⎢
⎣

⎡
=

2.0
2.0

2

1

α
α

α  (3.39)

The optimal fine model solution is [ ]* * 1.2 0.8 T
f c α= − =x x .  See Fig. 3.3 for a 

contour plot. 

We apply Algorithm 1.  Exact “Jacobians” fJ  and cJ  are used in the GPE 

process and in mapping update.  The algorithm converges in one iteration to the 

exact solution.  See Table 3.1. 
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Fig. 3.3 Contour plot of the “fine” shifted Rosenbrock banana function. 

 
TABLE 3.1 

 
“SHIFTED” ROSENBROCK BANANA PROBLEM 

 

j )( j
cx  )( jf  )( jB  )( jh  )( j

fx  )( j
fR  

0 ⎥
⎦

⎤
⎢
⎣

⎡
0.1
0.1

 ----- ------ ------ ⎥
⎦

⎤
⎢
⎣

⎡
0.1
0.1

 31.4 

1 ⎥
⎦

⎤
⎢
⎣

⎡
2.1
8.0

 ⎥
⎦

⎤
⎢
⎣

⎡−
2.0
2.0

 ⎥
⎦

⎤
⎢
⎣

⎡
0.10.0
0.00.1

 ⎥
⎦

⎤
⎢
⎣

⎡
− 2.0

2.0
 ⎥

⎦

⎤
⎢
⎣

⎡
8.0
2.1

 0 

 ⎥
⎦

⎤
⎢
⎣

⎡
0.1
0.1

 ⎥
⎦

⎤
⎢
⎣

⎡
0
0
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3.4.1.2 Transformed Rosenbrock Problem 

A “fine” model is described by the transformed Rosenbrock function 

2
1

22
12 )1()(100 uuuRf −+−=  (3.40)

Where 

⎥
⎦

⎤
⎢
⎣

⎡−
+⎥

⎦

⎤
⎢
⎣

⎡ −
=

3.0
3.0

9.02.0
2.01.1

xu  (3.41)

The exact solution evaluated by the inverse transformation is 

[ ]* 1.2718447 0.4951456 T
f =x  to seven decimals.  A contour plot is shown in 

Fig. 3.4. 

A simple SPE process involving only function values produces a 

nonunique solution (Fig. 3.5).  The enhanced PE process such as GPE or MPE 

leads to improved results.  The first and last GPE iterations are shown in Fig. 3.6 

and Fig. 3.7, respectively. 

Applying Algorithm 1, we get a solution, to a very high accuracy, in six 

iterations.  The corresponding function value is 299 10−× .  At the final GPE step, 

the contour plot is similar to that of the coarse model (See Fig. 3.7).  The SM 

optimization results for fR  and f  are shown in Fig. 3.8 and Fig. 3.9, 

respectively.  See Table 3.2 for details. 
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Fig. 3.4 Contour plot of the “fine” transformed Rosenbrock banana 
function. 
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Fig. 3.5 Nonuniqueness occurs when single-point PE is used to match the 
models in the “transformed” Rosenbrock problem. 
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Fig. 3.6 A unique solution is obtained when gradient PE is used in the 
“transformed” Rosenbrock problem in the 1st iteration. 
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Fig. 3.7 The 6th (last) gradient PE iteration of the “transformed” 
Rosenbrock problem. 
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Fig. 3.8 Reduction of Rf versus iteration count of the “transformed” 
Rosenbrock problem. 
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Fig. 3.9 Reduction of || f || versus iteration count of the “transformed” 
Rosenbrock problem. 
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TABLE 3.2 
 

“TRANSFORMED” ROSENBROCK BANANA PROBLEM 
 
 

j )( j
cx  )( jf  )( jB  )( jh  )( j

fx  )( j
fR  

0 ⎥
⎦

⎤
⎢
⎣

⎡
0.1
0.1

 ------ ---------- ------ ⎥
⎦

⎤
⎢
⎣

⎡
0.1
0.1

 108.3 

1 ⎥
⎦

⎤
⎢
⎣

⎡
384.1
526.0

 ⎥
⎦

⎤
⎢
⎣

⎡−
384.0
474.0

 ⎥
⎦

⎤
⎢
⎣

⎡ −
01.101.0
05.001.1

 ⎥
⎦

⎤
⎢
⎣

⎡
− 385.0

447.0
 ⎥

⎦

⎤
⎢
⎣

⎡
615.0
447.1

 5.119 

2 ⎥
⎦

⎤
⎢
⎣

⎡
178.1
185.1

 ⎥
⎦

⎤
⎢
⎣

⎡
178.0
185.0

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
06.1096.0
13.096.0

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

187.0
218.0

 ⎥
⎦

⎤
⎢
⎣

⎡
427.0
23.1

 4e–3 

3 ⎥
⎦

⎤
⎢
⎣

⎡
929.0
967.0

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

071.0
033.0

 ⎥
⎦

⎤
⎢
⎣

⎡ −
92.0168.0
19.009.1

 ⎥
⎦

⎤
⎢
⎣

⎡
0697.0
0429.0

 ⎥
⎦

⎤
⎢
⎣

⎡
497.0
273.1

 1e–6 

4 ⎥
⎦

⎤
⎢
⎣

⎡
001.1
001.1

 ⎥
⎦

⎤
⎢
⎣

⎡
001.0
001.0

 ⎥
⎦

⎤
⎢
⎣

⎡ −
9001.01999.0
1999.010001.1

⎥
⎦

⎤
⎢
⎣

⎡
−
−

002.0
001.0

 ⎥
⎦

⎤
⎢
⎣

⎡
4952.0
2719.1

 5e–10 

5 ⎥
⎦

⎤
⎢
⎣

⎡
00004.1
00002.1

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

4E4.0
4E2.0

 ⎥
⎦

⎤
⎢
⎣

⎡ −
9.02.0
2.01.1

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

4E5.0
4E3.0

⎥
⎦

⎤
⎢
⎣

⎡
4951.0
2718.1

 3e–17 

6 ⎥
⎦

⎤
⎢
⎣

⎡
0.1
0.1

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

8E3.0
8E1.0

 ⎥
⎦

⎤
⎢
⎣

⎡ −
9.02.0
2.01.1

 ⎥
⎦

⎤
⎢
⎣

⎡
−
−

8E3.0
8E2.0 *

fx  9e–29 
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3.4.2 Capacitively Loaded 10:1 Impedance Transformer [18] 

We apply Algorithm 2 to a two–section transmission–line 10:1 impedance 

transformer.  We consider a “coarse” model as an ideal two–section transmission 

line (TL), where the “fine” model is a capacitively loaded TL with capacitors C1 = 

C2 = C3 = 10 pF.  The fine and coarse models are shown in Fig. 3.10 and Fig. 3.11, 

respectively.  Design parameters are normalized lengths L1 and L2, with respect to 

the quarter–wave length Lq at the center frequency 1 GHz, and characteristic 

impedances Z1 and Z2.  Normalization makes the problem well posed. Thus, 

[ ]1 2 1 2
T

f L L Z Z=x .  Design specifications are 

GHz 5.1GHz 5.0for ,5.011 ≤≤≤ ωS  

with eleven points per frequency sweep.  We utilize the real and imaginary parts 

of S11 in the GPE (3.24).  The fine and surrogate responses can be easily 

computed as a function of the design parameters using circuit theory [29].  We 

solve (3.24) using the Levenberg-Marquardt algorithm for nonlinear least squares 

optimization available in the Matlab Optimization Toolbox [30]. 
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Fig. 3.10 Two-section impedance transformer: “fine” model [18]. 
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Fig. 3.11 Two-section impedance transformer: “coarse” model [18]. 

 

TABLE 3.3 
 

NORMALIZED COARSE MODEL SENSITIVITIES WITH RESPECT  
TO THE DESIGN PARAMETERS  

FOR THE CAPACITIVELY LOADED IMPEDANCE TRANSFORMER 
 

Parameter iŜ  

L1 0.98 

L2 1.00 

Z1 0.048 

Z2 0.048 
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3.4.2.1 Case 1: [L1 L2] 

Based on a normalized sensitivity analysis, proposed in [22], for the 

design parameters of the coarse model shown in Table 3.3, we note that the 

normalized lengths [L1 L2] are the key parameters.  Thus, we consider 

[ ]1 2
TPSM

c L L=x  while [ ]1 2
Ts

f Z Z=x  are kept fixed at the optimal values, i.e., 

Z1 = 2.23615 Ω and Z2 = 4.47230 Ω.  We employ adjoint sensitivity analysis 

techniques [31] to obtain the exact Jacobians of the fine and coarse models.  We 

initialize PSMB  by using the Jacobian information of both models at the starting 

point as in (3.28).  The algorithm converges in a single iteration (2 fine model 

evaluations).  The corresponding responses are illustrated in Fig. 3.12 and Fig. 

3.13, respectively.  The final mapping is 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
0.006080.01.139049.0
0.002006.0087.0075.1PSMB  

This result confirms the sensitivity analysis presented in Table 3.3.  It 

supports our decision of taking into account only [L1 L2], represented by the first 

and the second columns in PSMB , as design parameters.  As is well–known, the 

effect of the capacitance in the fine model can only be substantially compensated 

by a change of the length of a TL.  Therefore, changes of [ ]1 2
TZ Z  hardly affect 

the final response.  The reduction of *

2c c−x x  versus iteration is shown in Fig. 

3.14.  The reduction of the objective function U in Fig. 3.15 also illustrates 

convergence (two iterations). 
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Fig. 3.12 Optimal coarse model target response (—) and the fine model 
response at the starting point (•) for the capacitively loaded 10:1 
transformer with L1 and L2 as the PSM coarse model parameters. 
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Fig. 3.13 Optimal coarse model target response (—) and the fine model 
response at the final design (•) for the capacitively loaded 10:1 
transformer with L1 and L2 as the PSM coarse model parameters. 
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Fig. 3.14 *

2c c−x x  versus iteration for the capacitively loaded 10:1 

transformer with L1 and L2 as the PSM coarse model parameters. 
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Fig. 3.15 U versus iteration for the capacitively loaded 10:1 transformer 
with L1 and L2 as the PSM coarse model parameters. 
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3.4.2.2 Case 2: [L1 ] 

We apply Algorithm 2 for [ ]1
PSM
c L=x .  The result is similar to Fig. 3.13.  

Convergence is in a single iteration (2 fine model evaluations).  The final 

mapping is 

[ ]0055.00033.0909.0371.1=PSMB   

As we see changes in [L1], represented by the first element in BPSM, are 

significant.  However, the second parameter [L2] is affected also.  This arises from 

the fact that [L1 L2] have the same physical effect, namely, that of length in a TL. 

3.4.2.3 Case 3: [L2] 

We apply Algorithm 2 for [ ]2
PSM
c L=x .  The result is similar to Fig. 3.13 

and it converges in a single iteration (2 fine model evaluations).  The final 

mapping is 

[ ]0087.00043.0186.18989.0 −=PSMB   

As in case 2, changes in one parameter, [L2] in this case, have the 

dominant role.  This affects [L1], the parameter which shares the same physical 

nature. 

The initial and final designs for all three cases are shown in Table 3.4.  We 

realize that the algorithm aims to rescale the TL lengths to match the responses in 

the PE process (see Fig. 3.12).  In all cases both [L1 L2] are reduced by similar 

overall amounts, as expected. 
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By carefully choosing a reduced set of design parameters we can affect 

other “redundant” parameters and the overall circuit response as well, which 

implies the idea of tuning.  Nevertheless, the use of the entire set of design 

parameters should give the best result. 

 

TABLE 3.4 
 

INITIAL AND FINAL DESIGNS FOR  
THE CAPACITIVELY LOADED IMPEDANCE TRANSFORMER 

 

Parameter (0)
fx  

(1)
fx  

(L1 and L2) 

(1)
fx  

(L1) 

(1)
fx  

(L2) 

L1 1.0 0.8995 0.8631 0.8521 

L2 1.0 0.8228 0.9126 0.8259 

Z1 2.23615 2.2369 2.2352 2.2365 

Z2 4.47230 4.4708 4.4716 4.4707 

L1 and L2 are normalized lengths 

Z1 and Z2 are in ohm 
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3.4.3 Bandstop Microstrip Filter with Open Stubs [5] 

Algorithm 3 is applied to a symmetrical bandstop microstrip filter with 

three open stubs.  The open stub lengths are L1, L2, L1 and W1, W2, W1 are the 

corresponding stub widths.  An alumina substrate with thickness H = 25 mil, 

width W0 = 25 mil, dielectric constant εr = 9.4 and loss tangent = 0.001 is used for 

a 50 Ω feeding line.  The design parameters are [ ]1 2 0 1 2
T

f W W L L L=x .  

The design specifications are 

GHz 8 and GHz 12for   9.0

and,  GHz 7.10GHz 3.9for 05.0

21

21

≤≤≥

≤≤≤

ωω

ω

S

S
 

Sonnet’s em [32] driven by Empipe [33] is employed as the fine model, 

using a high-resolution grid with a 1.0 mil × 1.0 mil cell size.  As a coarse model 

we use simple transmission lines for modeling each microstrip section and 

classical formulas [29] to calculate the characteristic impedance and the effective 

dielectric constant of each transmission line.  It is seen that 

2 2 0 1 1 02, 2c cL L W L L W= + = +  and 0 0 1 22 2cL L W W= + + .  We use 

OSA90/hope [33] built-in transmission line elements TRL.  The fine model and 

its surrogate coarse model are illustrated in Fig. 3.16 and Fig. 3.17, respectively. 
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Fig. 3.16 Bandstop microstrip filter with open stubs: “fine” model [5]. 
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Fig. 3.17 Bandstop microstrip filter with open stubs: “coarse” model [5]. 
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TABLE 3.5 
 

NORMALIZED COARSE MODEL SENSITIVITIES WITH RESPECT  
TO DESIGN PARAMETERS  

FOR THE BANDSTOP MICROSTRIP FILTER 
 

Parameter iŜ  

W1 0.065 

W2 0.077 

L0 0.677 

L1 1.000 

L2 0.873 

 
 
 

Using OSA90/hope we can get the optimal coarse solution at 10 GHz as 

[ ]* 4.560  9.351  107.80  111.03  108.75 T
c =x  (in mils).  We use 21 points per 

frequency sweep.  The coarse and fine model responses at the optimal coarse 

solution are shown in Fig. 3.18 (fine sweep is used only for illustration).  We 

utilize the real and imaginary parts of S11 and S21 in the traditional PE.  

Normalized sensitivity analysis [22] for the coarse model is given in Table 3.5.  

During the PE we consider [ ]1 2
TPSM

c L L=x  while [ ]1 2 0
Ts

f W W L=x  are held 

fixed at the optimal coarse solution.  Finite differences estimate the fine and 

coarse Jacobians used to initialize BPSM as in (3.28).  A hybrid approach is used to 

update BPSM at each iteration. 
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Algorithm 3 converges in 5 iterations.  The PE execution time for the 

whole process is 59 min on an IBM-IntelliStation (AMD Athlon 400MHz) 

machine.  The optimal coarse model response and the final design fine response 

are depicted in Fig. 3.19.  The convergence of the algorithm is depicted in Fig. 

3.20, where the reduction of *

2c c−x x  versus iteration is illustrated.  The initial 

and final design values are shown in Table 3.6.  The final mapping is given by 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
470.0024.0126.0154.0029.0
214.0911.0209.0168.0570.0PSMB  

 

We notice that [L1 L2], represented by the last two columns, are dominant 

parameters. 
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Fig. 3.18 Optimal OSA90/hope coarse target response (—) and em fine 
model response at the starting point (•) for the bandstop microstrip 
filter using a fine frequency sweep (51 points) with L1 and L2 as 
the PSM coarse model parameters. 
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Fig. 3.19 Optimal OSA90/hope coarse target response (—) and em fine 
model response at the final design (•) for the bandstop microstrip 
filter using a fine frequency sweep (51 points) with L1 and L2 as 
the PSM coarse model parameters. 

 

 

 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 

104 

 

0 1 2 3 4 5 10 –4 

10 –3 

10 –2 

10 –1 

10 0 

10 1 

iteration

||x
c –

 x
c* || 2

 

 

Fig. 3.20 *

2c c−x x  versus iteration for the bandstop microstrip filter using 

L1 and L2 as the PSM coarse model parameters. 

TABLE 3.6 
 

INITIAL AND FINAL DESIGNS FOR 
THE BANDSTOP MICROSTRIP FILTER USING L1 AND L2 

 

Parameter (0)
fx  (5)

fx  

W1 4.560 7.329 

W2 9.351 10.672 

L0 107.80 109.24 

L1 111.03 115.53 

L2 108.75 111.28 

all values are in mils 
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We run Algorithm 3 using all design parameters in the PE and in 

calculating the quasi–Newton step in the fine space, i.e., we use a full mapping.  

The algorithm converges in 5 iterations, however, the PE process takes 75 min on 

an IBM-IntelliStation (AMD Athlon 400MHz) machine.  The initial and final 

designs are given in Table 3.7.  The final mapping is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−

−−
−−

=

958.0052.0045.0003.0213.0
008.0963.0022.0001.0169.0
011.0073.0024.1251.0415.0
026.0032.0022.0543.0051.0
006.0017.0026.0037.0532.0

B  

 

The reduction of *

2c c−x x  versus iteration is shown in Fig. 3.21. 

The notion of tuning is evident in this example also, where the various 

lengths and widths which constitute the designable parameters (see Fig. 3.16) 

have obvious physical interrelations. 
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Fig. 3.21 *

2c c−x x  versus iteration for the bandstop microstrip filter using a 

full mapping. 

TABLE 3.7 
 

INITIAL AND FINAL DESIGNS FOR 
THE BANDSTOP MICROSTRIP FILTER USING A FULL MAPPING 

 

Parameter (0)
fx  (5)

fx  

W1 4.560 8.7464 

W2 9.351 19.623 

L0 107.80 97.206 

L1 111.03 116.13 

L2 108.75 113.99 

all values are in mils 
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3.4.4 Comparison with Previous Approaches 

All SM-based algorithms, by their very nature, are expected to produce 

acceptable designs in a small number of fine model evaluations, typically 3 to 10.  

Hence, a basis for comparison must be simplicity, ease of programming, 

robustness on many examples and, in particular, avoidance of designer 

intervention.  Our extensive convergence results (Tables 3.1 and 3.2, Figs. 3.14, 

3.15, 3.20 and 3.21) of our gradient-based proposal demonstrate that we averted 

false parameter extractions, do not require sophisticated programming, and do not 

rely on designer intervention. 

3.5 CONCLUDING REMARKS 

We present a family of robust techniques for exploiting sensitivities in 

EM–based circuit optimization through SM.  We exploit a Partial Space Mapping 

(PSM) concept where a reduced set of parameters is sufficient in the Parameter 

Extraction (PE) process.  Available gradients can initialize mapping 

approximations.  Exact or approximate Jacobians of responses can be utilized.  

For flexibility, we propose different possible “mapping matrices” for the PE 

processes and SM iterations.  Finite differences may be used to initialize the 

mapping.  A hybrid approach incorporating the Broyden formula can be used for 

mapping updates.  Our approaches have been tested on several examples.  They 

demonstrate simplicity of implementation, robustness, and do not rely on designer 

intervention. 
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Final mappings are useful in statistical analysis and yield optimization.  

Furthermore, the notion of exploiting reduced sets of physical parameters reflects 

the important idea of postproduction tuning. 
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CHAPTER 4  
 

TLM-BASED MODELING AND 

DESIGN EXPLOITING  

SPACE MAPPING  
 

4.1 INTRODUCTION 

In previous implementations of SM technology [1], utilizing either an 

explicit input mapping [2]–[3], implicit [4] or output mappings [5]–[6], an 

“idealized” coarse model is assumed to be available.  This coarse model, usually 

empirically based, provides a target optimal response with respect to the 

predefined design specifications while SM algorithms try to achieve a satisfactory 

“space-mapped” design fx . 

In this chapter, we explore the SM methodology in the TLM [7] 

simulation environment.  We design a CPU intensive fine-grid TLM structure 

utilizing a coarse-grid TLM model with relaxed boundary conditions [8].  Such a 

coarse model may not faithfully represent the fine-grid TLM model.  

Furthermore, it may not even satisfy the original design specifications.  Hence, 
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SM techniques such as the aggressive SM [3] will fail to reach a satisfactory 

solution. 

To overcome the aforementioned difficulty, we combine the implicit SM 

(ISM) [4] and output SM (OSM) [5]–[6] approaches.  Parameter extraction (PE), 

equivalently called surrogate calibration, is responsible for constructing a 

surrogate of the fine model.  As a preliminary PE step, the coarse model’s 

dielectric constant, a convenient preassigned parameter, is first calibrated.  If the 

response deviation between the two TLM models is still large, an output SM 

scheme absorbs this deviation to make the updated surrogate represent the fine 

model.  The subsequent surrogate optimization step is governed by a trust region 

(TR) strategy. 

The TLM simulator used in the design process is a Matlab [9] 

implementation.  A set of design parameter values represents a point in the TLM 

simulation space.  Because of the discrete nature of the TLM simulator, we 

employ an interpolation scheme to evaluate the responses, and possibly 

derivatives, at off-grid points [10]–[11] (see Appendix C).  A database system is 

also created to avoid repeatedly invoking the simulator, to calculate the responses 

and derivatives, for a previously visited point.  The database system is responsible 

for storage, retrieval and management of all previously performed simulations 

[11]. 

Our proposed approach is illustrated through an inductive post, a single-

resonator filter and a six-section H-plane waveguide filter [8].  We can achieve 
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practical designs in a handful of iterations in spite of poor initial surrogate model 

responses.  The results are verified using the commercial time domain TLM 

simulator MEFiSTo [12]. 

In Section 4.2 we review the basic concepts of TLM, implicit SM, output 

SM and TR methodology.  The theory of our proposed approach is presented in 

Section 4.3, explaining the surrogate calibration and surrogate optimization steps.  

We propose an algorithm in Section 4.4.  Examples are illustrated in Section 4.5, 

including the design of a six-section H-plane waveguide filter with MEFiSTo 

verification.  Conclusions and suggested future developments are drawn in 

Section 4.6. 

4.2 BASIC CONCEPTS 

4.2.1 Transmission-Line Matrix (TLM) Method 

The TLM method is a time and space discrete method for modeling EM 

phenomena [13].  A mesh of interconnected transmission lines models the 

propagation space [7].  The TLM method carries out a sequence of scattering and 

connection steps [13].  For the ith non-metalized node, the scattering relation is 

given by 

,
1 ( )R i i i i

k r k+ = ⋅V S Vε  (4.1)

where i
kV  is the vector of incident impulses on the ith node at the kth time step, 

,
1

R i
k+V  is the vector of reflected impulses of the ith node at the (k+1)th time step and 
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( )i i
rS ε  is the scattering matrix at the ith node which is a function of the local 

dielectric constant i
rε . 

The reflected impulses become incident on neighboring nodes.  For a non-

dispersive TLM boundary, a single time step is given by 

1
s

k k k+ = ⋅ ⋅ +V C S V V  (4.2)

where kV  is the vector of incident impulses for all nodes at the kth time step.  The 

matrix S is a block diagonal matrix whose ith diagonal block is ( )i i
rS ε , C is the 

connection matrix and the vector s
kV  is the source excitation vector at the kth time 

step. 

4.2.2 Design Problem 

Our design problem is given by (2.1), where in a TLM-based environment 

: m
f fX →R  is a function of kV  for all time steps k. 

4.2.3 Implicit Space Mapping (ISM) 

In the ISM approach, selected preassigned parameters denoted by 

pX∈ ⊆x  are extracted in an attempt to match the coarse model to the fine 

model [4], [14].  With these parameters fixed in the fine model, the calibrated 

(implicitly mapped) coarse model denoted by : m
c fX X× →R , at the jth 

iteration, is optimized with respect to the design parameters fx  as 
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( )( )( ) ( )arg min ,j j
f c f

f
Ux R x xx  (4.3)

Refer to Section 2.7, for further discussion. 

4.2.4 Output Space Mapping (OSM) 

Although the fine and coarse models usually share the same physical 

background, they are still two different models and a deviation between them in 

the response space (i.e., the range) always exists.  This deviation cannot be 

compensated by only manipulating the parameters (i.e., the domain) through the 

regular SM.  Output SM : m m→O  is originally proposed to fine-tune the 

residual response deviation [5]–[6] between the fine model and its surrogate, in 

the final stages.  In this case, the surrogate incorporates a faithful coarse model 

and could be given by the composite function 

s c=R O R  (4.4)

4.2.5 Trust Region (TR) Methods [15] 

TR strategies are employed to assure convergence of an optimization 

algorithm and to stabilize the iterative process [16].  The TR approach was first 

introduced in the context of SM with the aggressive SM technique in [17].  See 

Section 2.5 for more details. 
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4.3 THEORY 

In this study, we propose an approach to create a surrogate of the fine 

model that exploits an input implicit mapping (model domain) and also 

encompasses the response deviation between the fine model and its surrogate 

(model range) through an output mapping.  The proposed output SM scheme 

absorbs possible response misalignments through a response linear transformation 

(shift and scale).  Fig. 4.1 describes a conceptual scheme for combining an input 

parameter mapping (implicit in our case) along with an output response mapping. 

At the jth iteration, a surrogate of the fine model is given by [8] 

( )( 1) ( 1) ( 1) ( 1) ( 1) ( 1)( , , , ) ,j j j j j j
s f c f

+ + + + + ++R x x α β α R x x β  (4.5)

Here, ( 1)j+x  is the preassigned parameter vector whose value is determined by the 

implicit mapping at ( )j
fx .  The scaling diagonal matrix ( 1)j m m+ ×∈α  and the 

shifting vector ( 1)j m+ ∈β  are the output mapping parameters.  The preassigned 

parameters and the output mapping parameters are evaluated through a surrogate 

calibration, i.e., the parameter extraction process [8]. 
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Fig. 4.1 The implicit and output space mapping concepts.  We calibrate the 
surrogate against the fine model utilizing the preassigned 
parameters x, e.g., dielectric constant, and the output response 
mapping parameters: the scaling matrix α and the shifting vector β. 

4.3.1 Parameter Extraction (Surrogate Calibration) 

The PE optimization process is performed here to align the surrogate (4.5) 

with the fine model by calibrating the mapping(s) parameters. 

The deviation between the fine model and the surrogate responses at the 

current fine model point ( )j
fx  is given by  

( ) ( ) ( )( ) ( ) ( ), , , , , ,j j j
f s f f f= −e x x α β R x x α β R x  (4.6)

At the jth iteration, ( 1)j+x  is first extracted keeping the output mapping 

parameters { }( ) ( ),j jα β  fixed as follows 
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( ) ( )

( 1)

0 1 1

( ) ( ) ( ) ( ) ( ) ( )

arg min ,   

... ,

, , ,      

j

j
r

T
T T T

r N

l j j l l j
l s f f f f V

+

−

⎡ ⎤⎣ ⎦

⎡ ⎤= ⎣ ⎦

= − ∀ ∈

x
x E

E e e e

e R x x α β R x x

 (4.7)

Here, a multipoint PE (MPE) scheme [18], [19] is employed.  We calibrate 

the surrogate model against the fine model at a set of points ( ) ( )l j
f V∈x  with 

( )j
jV N= , where jN  is the number of fine model points utilized at the jth PE 

iteration.  At each PE iteration, we initially set { }( ) ( )j j
fV = x .  Then, some of the 

fine model points of the previous successful iterates are included into the set ( )jV  

and hence more information about the fine model could be utilized. 

Then, we calibrate the surrogate by manipulating { }( ) ( ),j jα β  at ( )j
fx  and 

( 1)j+x  to absorb the response deviation [8] 

[ ]

( ) ( )
[ ]

( 1) ( 1)
1 2

,

( ) ( 1) ( )

, arg min ( ) ,

, , , ;   

1 1 ... 1

TTj j T T

j j j
s f f f

T

w w+ +

+

⎡ ⎤⎡ ⎤ −⎣ ⎦ ⎣ ⎦

= −

=

α β
α β e α I u β

e R x x α β R x

u

 (4.8)

α  and β  are ideally I and 0, respectively.  The PE (4.8) is penalized such that α  

and β  remain close to their ideal values.  w1 and w2 are user-defined weighting 

factors.  A suitable norm, denoted by , is utilized in (4.7) and (4.8), e.g., the l2 

norm. 
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4.3.2 Surrogate Optimization (Prediction) 

We optimize a suitable objective function of the surrogate (4.5) in effort to 

obtain a solution of (2.1).  We utilize the TR methodology to find the step in the 

fine space at the jth iteration [14], [16] 

( ) ( ) ( 1) ( 1) ( 1)

( )

arg min ( ( , , , )),j j j j j
s f

j

U + + +

∞

+

≤
h

h R x h x α β

h δ
 (4.9)

where ( )jδ  is the TR size at the jth iteration.  The tentative step ( )jh  is accepted as 

a successful step in the fine model parameter space if there is a reduction of the 

fine model objective function, otherwise the step is rejected. 

( ) ( ) ( ) ( ) ( )
( 1)

( )

, if ( ( )) ( ( ))
, otherwise

j j j j j
f f f f fj

f j
f

U U+ ⎧ + + <⎪= ⎨
⎪⎩

x h R x h R x
x

x
 (4.10)

The TR radius is updated according to [16]. 

4.3.3 Stopping Criteria 

The algorithm stops when one of the following stopping criteria satisfied: 

• A predefined maximum number of iterations maxj  is reached. 

• The step length taken by the algorithm is sufficiently small [20] 

( )( ) ( )1j j
f≤ +h xη  (4.11)

where η  is a user-defined small number. 

• The TR radius ( )jδ  reaches the minimum allowed value minδ   

( )
min

j ≤δ δ  (4.12)
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4.4 ALGORITHM [8] 

Given (0) (0)
min max, ,  ,  ,  j xδ δ η . 

Comment The initial TR radius is (0)δ  and the nominal preassigned 

parameter value is (0)x . 

Step   1  Initialize j = 0 and (0) (0),= =α I β 0 . 

Step   2  Solve (4.3) to find the initial surrogate optimizer. 

Comment The initial surrogate is the coarse model. 

Step   3  Evaluate the fine model response (0)( )f fR x . 

Step   4 Find surrogate parameters { }( 1) ( 1) ( 1), ,j j j+ + +x α β  through PE (4.7) 

and (4.8). 

Step   5  Obtain ( )jh  by solving (4.9). 

Step   6  Evaluate ( ) ( )( )j j
f f +R x h . 

Step   7  Set ( 1)j
f
+x  according to (4.10). 

Step   8  Update ( 1)j+δ  according to the criterion in [16]. 

Step   9  If the stopping criterion is satisfied (Section 4.3.3.), terminate. 

Step   10 If the TR step is successful, increment j and go to Step 4, else go to 

Step 5. 
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4.5 EXAMPLES 

A Matlab implementation of a 2D-TLM simulator, developed by Bakr 

[21], is utilized.  We employ the dielectric constant εr as a scalar preassigned 

parameter (i.e., r=x ε ) for the whole region in all the coming examples. 

4.5.1 An Inductive Obstacle in a Parallel-Plate Waveguide 

Fig. 4.2 shows an inductive post centered in a parallel-plate waveguide 

with fixed dimensions.  Thickness D and width W of the inductive obstacle are 

design parameters.  We are exciting the dominant TEM mode of propagation.  

Due to symmetry, only half the structure is simulated. 

We use the fine model with a square cell Δx = Δy = 1.0 mm, while the 

coarse model utilizes a square cell Δx = Δy = 5.0 mm.  We utilized 21 frequency 

points in the frequency range 0.1GHz ≤ ω ≤ 2.5 GHz.  The objective function is 

defined to match the real and imaginary parts of S11 and S21 of a given target 

response. 
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Fig. 4.2 An inductive post in a parallel-plate waveguide: (a) 3D plot, and 
(b) cross section with magnetic side walls [13]. 
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An interpolation scheme is used [10] in optimizing the surrogate 

(calibration and prediction steps).  The least-squares Levenberg-Marquardt 

algorithm available in Matlab [9] is utilized to solve both the PE problem and the 

TR subproblem in each iteration.  The PE is designed to match the fine model 

with the surrogate at the current point in both (4.7) and (4.8), i.e. 

{ }( ) ( )   ,j j
fV j= ∀x .  The weighting factors w1 and w2 are set to zero (unconstrained 

problem). 

The algorithm converges in 7 iterations.  The progression of the 

optimization iterates on the fine modeling grid is shown in Fig. 4.3.  The target, 

fine model and surrogate responses at the initial and the final iterations for |S21| 

and |S11| are shown in Fig. 4.4 and Fig. 4.5.  Fig. 4.6 illustrates the reduction of 

the fine model and the corresponding surrogate objective functions along 

iterations.  The optimization results are summarized in Table 4.1. 

Our proposed approach, without the database system, takes 34 min versus 

68 min for direct optimization.  Utilizing the database system reduces the 

execution time to 4 min. 

A statistical analysis of the surrogate at the final design is carried out with 

100 samples.  The relative tolerance used is 2%.  The results show good 

agreement between the fine model (75 min for 100 outcomes) and its surrogate (7 

min for 100 outcomes).  The real and imaginary parts of S21 for both the fine 

model and its surrogate at the final design are shown in Fig. 4.7 and Fig. 4.8. 
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Fig. 4.3 The progression of the optimization iterates for the inductive post 
on the fine modeling grid (D and W are in mm). 
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TABLE 4.1 
 

OPTIMIZATION RESULTS FOR THE INDUCTIVE POST 
 

Iteration fx  (mm) rε  sU  fU  

0 
20.55
10.82
⎡ ⎤
⎢ ⎥
⎣ ⎦  

1.0000 3.15e–4 2.5e–2 

1 
20.39
9.78

⎡ ⎤
⎢ ⎥
⎣ ⎦  

0.9663 2.45e–5 3.06e–4 

2 
20.18
9.90

⎡ ⎤
⎢ ⎥
⎣ ⎦  

0.9683 6.57e–5 5.49e–5 

3 
20.14
9.95

⎡ ⎤
⎢ ⎥
⎣ ⎦  

0.9692 1.04e–5 9.10e–6 

4 
20.08
9.97

⎡ ⎤
⎢ ⎥
⎣ ⎦  

0.9695 3.90e–6 2.74e–6 

5 
20.06
9.982
⎡ ⎤
⎢ ⎥
⎣ ⎦  

0.9697 1.60e–6 1.12e–6 

6 
20.04
9.987
⎡ ⎤
⎢ ⎥
⎣ ⎦  

0.9698 6.0e–7 5.30e–7 
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(b) 

Fig. 4.4 Optimal target response (—), the fine model response (•) and the 
surrogate response (--) for the inductive post (|S21|): (a) at the initial 
design, and (b) at the final design. 
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(b) 

Fig. 4.5 Optimal target response (—), the fine model response (•) and the 
surrogate response (--) for the inductive post (|S11|): (a) at the initial 
design, and (b) at the final design. 
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Fig. 4.6 The reduction of the objective function (U) for the fine model (––) 
and the surrogate (--) for the inductive post. 
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(b) 

Fig. 4.7 Statistical analysis for the real and imaginary of S21 of the 
inductive post with 2% relative tolerances: (a) using the fine 
model, and (b) using the surrogate at the final iteration of the 
optimization.  100 outcomes are used. 
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(b) 

Fig. 4.8 Statistical analysis for the real and imaginary of S11 of the 
inductive post with 2% relative tolerances: (a) using the fine 
model, and (b) using the surrogate at the final iteration of the 
optimization.  100 outcomes are used. 
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4.5.2 Single-Resonator Filter 

A single-resonator filter is shown in Fig. 4.9.  The design parameters are 

the width W and the resonator length d.  The rectangular waveguide width and 

length are fixed as shown.  The propagating mode is TE10 with cutoff frequency 

2.5 GHz.   

We use the fine model with a square cell Δx = Δy = 1.0 mm.  The coarse 

model utilizes a square cell Δx = Δy = 5.0 mm.  We utilize 21 frequency points 

uniformly distributed in the range [ ]3.0,5.0ω∈ GHz. 

 

W da =
 60

 m
m

L = 150 mm

x
yz

 
 

Fig. 4.9 Topology of the single-resonator filter [13]. 
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The fine model employs a Johns matrix boundary [22], [23], [24] as an 

absorbing boundary condition while the coarse model utilizes a single impulse 

reflection coefficient calculated at the center frequency (4.0 GHz).  Hence, we do 

not need to calculate the Johns matrix for the coarse model each time we change 

εr.  This introduces another source of inaccuracy in the coarse model. 

A minimax objective function is used in the design process with upper and 

lower design specifications 

The Matlab [9] least-squares Levenberg-Marquardt algorithm solves the 

PE problem.  The TR subproblem (4.9) is solved by the minimax routine by Hald 

and Madsen [25], [26] described in [27].  An interpolation scheme with database 

system is used [10].  The surrogate is calibrated to match the fine model at the last 

two points in (4.7) and the current point in (4.8).  The weighting factors are set to 

w1 = 1 and w2 = 0. 

The algorithm converges in 5 iterations to an optimal fine model response 

although the coarse model initially exhibits a very poor response (see Fig. 

4.10(a)).  Fig. 4.10(b) depicts the fine-grid TLM response along with its surrogate 

response at the final design.  The reduction of the objective function of the fine 

model and the surrogate versus iteration and the progression of the optimization 

iterates are shown in Fig. 4.11 and Fig. 4.12, respectively.  The optimal design 

21

21

21
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reached by the algorithm is given by d = 32.99 mm and W = 14.59 mm (see Table 

4.2 for the optimization summary). 

Our proposed approach, without the database system, takes 88 min versus 

172 min for direct optimization.  Utilizing the database system reduces the 

execution time to 15 min. 

We utilize the time domain TLM simulator MEFiSTo [12] to verify our 

results.  We employ the rubber cell feature [12] in MEFiSTo to examine our 

interpolation scheme.  Using the TLM conformal (rubber) cell [28], the 

dimensions of the underlying structure, which are not located at multiple integers 

of the mesh size, will not be shifted to the closest cell boundary.  Rather, a change 

in the size and shape of the TLM boundary cell, due to an irregular boundary 

position, is translated into a change in its input impedance at the cell interface 

with a regular computational mesh [28].  Fig. 4.13 shows a good agreement 

between the interpolated results of the final design obtained from our algorithm 

and the MEFiSTo simulation utilizing rubber cell. 
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TABLE 4.2 
 

OPTIMIZATION RESULTS FOR THE SINGLE-RESONATOR FILTER 
 

Iteration fx  (mm) rε  sU  fU  

0 
29.25
11.05
⎡ ⎤
⎢ ⎥
⎣ ⎦

 1.0000 0.1341 0.1870 

1 
29.98
12.15
⎡ ⎤
⎢ ⎥
⎣ ⎦

 1.0637 0.1152 0.1417 

2 
32.27
13.37
⎡ ⎤
⎢ ⎥
⎣ ⎦

 1.0845 0.0543 0.0523 

3 
33.80
14.95
⎡ ⎤
⎢ ⎥
⎣ ⎦

 1.0721 0.0052 0.0001 

4 
32.99
14.59
⎡ ⎤
⎢ ⎥
⎣ ⎦

 1.0139 -0.0072 -0.0072 
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(b) 

Fig. 4.10 The surrogate response (--•--) and the corresponding fine model 
response (–•–) at: (a) the initial design, and (b) the final design 
(using linear interpolation) for the single-resonator filter. 
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Fig. 4.11 The reduction of the objective function (U) for the fine model (––) 
and the surrogate (--) for the single-resonator filter. 
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Fig. 4.12 The progression of the optimization iterates for the single-
resonator filter on the fine modeling grid (d and W are in mm). 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 

139 

3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

frequency (GHz)

| S
11

|

optimal solution

Linear interpolation
MEFiSTo with rubber cell

 
(a) 

3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

frequency (GHz)

| S
21

|

optimal solution

Linear interpolation
MEFiSTo with rubber cell

 
(b) 

Fig. 4.13 The final design reached by the algorithm (–•–) versus the 
simulation results using MEFiSTo 2D with the rubber cell feature 
(––) for the single-resonator filter: (a) |S11| and (b) |S21|. 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 

140 

4.5.3 Six-Section H-plane Waveguide Filter 

We consider the six-section H-plane waveguide filter [29], [30] (see 3D 

view and 2D cross section in Fig. 4.14(a) and (b), respectively).  A waveguide 

with a width 1.372 inches (3.485cm) is used.  The propagation mode is TE10 with 

a cutoff frequency of 4.3 GHz.  The six-waveguide sections are separated by 

seven H-plane septa, which have a finite thickness of 0.0245 inches (0.6223 mm).  

The design parameters are the three waveguide-section lengths L1, L2 and L3 and 

the septa widths W1, W2, W3 and W4.  A minimax objective function is employed 

with upper and lower design specifications given by 

We use the fine model with a square cell Δx = Δy = 0.6223 mm.  The 

number of TLM cells in the x and y directions are Nx = 301 and Ny = 28, 

respectively.  A Johns matrix boundary [22]–[24] is used as a dispersive 

absorbing boundary condition with Nt  = 8000 time steps.  We utilize 23 points in 

the frequency range [ ]5.0, 10.0ω∈ GHz.  We consider the filter design using two 

different coarse models: empirical coarse model and coarse-grid TLM model.  In 

both cases, we use the least-squares Levenberg-Marquardt algorithm in Matlab 

[9] for the PE.  A linear interpolation scheme with a data base system is utilized 

for the surrogate optimization using the minimax routine [25]–[27].  The PE is 

designed to match the fine model with its surrogate utilizing the most recent three 
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points in (4.7) and the current point in (4.8).  We set the weighting factors to w1 

=1 and w2 = 0. 

 

(a) 

L1 L2 L3 L3 L2 L1

W1 W2 W3 W4 W3 W2 W1

Magnetic wall

B
ou

nd
ar

y

B
ou

nd
ar

y

 
(b) 

Y0 2B1B 3B 4B 3B 2B 1B Y0

θ1 θ1θ2 θ2θ3 θ3
 

(c) 

Fig. 4.14 The six-section H-plane waveguide filter: (a) the 3D view [30], (b) 
one half of the 2D cross section, and (c) the equivalent empirical 
circuit model [30]. 
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4.5.3.1 Case 1: Empirical Coarse Model 

A coarse model with lumped inductances and dispersive transmission line 

sections is utilized.  We simplify formulas due to Marcuvitz [31] for the inductive 

susceptances corresponding to the H-plane septa.  They are connected to the 

transmission line sections through circuit theory [32].  The model is implemented 

and simulated in the Matlab [9] environment.  Fig. 4.14(c) shows the empirical 

circuit model. 

The algorithm converges to an optimal solution in 10 iterations.  The 

initial and final designs are shown in Table 4.3.  The final value of rε  = 1.02.  The 

initial and final responses for the fine model and its surrogate are illustrated in 

Fig. 4.15.  Fig. 4.16 depicts the reduction of objective function of the fine model 

and its surrogate.  The final design response using our algorithm is compared with 

MEFiSTo in Fig. 4.17. 
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TABLE 4.3 
 

INITIAL AND FINAL DESIGNS FOR  
THE SIX-SECTION H-PLANE WAVEGUIDE FILTER  

DESIGNED USING THE EMPIRICAL COARSE MODEL 
 

Parameter 
Initial design 

(mm) 

Final design 

(mm) 

L1 16.5440 16.1551 

L2 16.7340 16.1608 

L3 17.1541 16.6330 

W1 12.8118 12.7835 

W2 11.7704 11.7885 

W3 11.2171 11.2415 

W4 11.0982 11.1621 
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(b) 

Fig. 4.15 The surrogate response (--•--) and the corresponding fine model 
response (–•–) at: (a) the initial design, and (b) the final design 
(using linear interpolation) for the six-section H-plane waveguide 
filter designed using the empirical coarse model. 
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Fig. 4.16 The reduction of the objective function (U) of the fine model (––) 
and the surrogate (--) for the six-section H-plane waveguide filter 
designed using the empirical coarse model. 
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Fig. 4.17 The final design reached by the algorithm (–•–) compared with 
MEFiSTo 2D simulation with the rubber cell feature (––) for the 
six-section H-plane waveguide filter designed using the empirical 
coarse model. 
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4.5.3.2 Case 2: Coarse-grid TLM Model 

We utilize a coarse-grid TLM model with a square cell Δx = Δy = 1.2446 

mm.  The number of TLM cells in the x and y directions are Nx = 150 and Ny = 14, 

respectively.  The number of time steps is Nt  = 1000 time steps.  A single impulse 

reflection coefficient calculated at the center frequency (7.5 GHz) is utilized.  We 

have three sources of inaccuracy of the coarse-grid TLM model, namely, the 

coarser grid, the inaccurate absorbing boundary conditions and the reduced 

number of time steps.  This reduces the computation time of the coarse model 

versus the fine model. 

Despite the poor starting surrogate response (see Fig. 4.18(a)), the 

algorithm reaches an optimal solution in 8 iterations.  The initial and final designs 

are shown in Table 4.4.  The final value of rε  = 0.991.  The initial and final 

responses for the fine model and its surrogate are illustrated in Fig. 4.18.  The 

reduction of the objective function of the fine model and its surrogate is shown in 

Fig. 4.19.  The final design response obtained using our algorithm is compared 

with MEFiSTo simulation in Fig. 4.20.  It shows good agreement. 
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TABLE 4.4 
 

INITIAL AND FINAL DESIGNS FOR  
THE SIX-SECTION H-PLANE WAVEGUIDE FILTER  

DESIGNED USING THE COARSE-GRID TLM MODEL 
 

Parameter 
Initial design 

(mm) 

Final design 

(mm) 

L1 16.5440 16.1527 

L2 16.7340 16.1788 

L3 17.1541 16.6403 

W1 12.8118 12.7906 

W2 11.7704 11.7694 

W3 11.2171 11.2509 

W4 11.0982 11.1558 
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(b) 

Fig. 4.18 The surrogate response (--•--) and the corresponding fine model 
response (–•–) at: (a) the initial design, and (b) the final design 
(using linear interpolation) for the six-section H-plane waveguide 
filter designed using the coarse-grid TLM model. 
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Fig. 4.19 The reduction of the objective function (U) of the fine model (––) 
and the surrogate (--) for the six-section H-plane waveguide filter 
designed using the coarse-grid TLM model. 
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Fig. 4.20 The final design reached by the algorithm (–•–) compared with 
MEFiSTo 2D simulation with the rubber cell feature (––) for the 
six-section H-plane waveguide filter designed using the coarse-
grid TLM model. 
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Using the proposed approach, the optimization time is reduced by 66% 

with respect to direct optimization, as shown in Table V.  The dynamically-

updated database system, implemented in the algorithm, reduces the optimization 

time even more, as reported in Table V.  The run time for the PE process, 

surrogate optimization and fine model simulation of our proposed approach are 

15, 4 and 58 min, respectively. 

 
 

TABLE 4.5 
 

OUR APPROACH WITH/WITHOUT DATABASE SYSTEM  
VERSUS DIRECT OPTIMIZATION FOR  

THE SIX-SECTION H-PLANE WAVEGUIDE FILTER  
DESIGNED USING COARSE-GRID TLM MODEL  

 

The proposed approach 

with database system 

(hrs) 

The proposed approach 

without database system 

(hrs) 

Direct optimization 

(hrs) 

1.3 10 30 

 

4.6 CONCLUDING REMARKS 

In this chapter, we investigate the space mapping approach to modeling 

and design when the coarse model does not faithfully represent the fine model.  In 

this work, a coarse-grid TLM model with relaxed boundary conditions is utilized 

as a coarse model.  Such a model may provide a response that deviates 

significantly from the original design specifications and, hence, previous SM 
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implementations may fail to reach a satisfactory solution.  We propose a 

technique exploiting Implicit SM and Output SM.  The dielectric constant, a 

convenient preassigned parameter, is first calibrated for a rough (preprocessing) 

alignment between the coarse and fine TLM models.  Output SM absorbs the 

remaining response deviation between the TLM fine-grid model and the implicitly 

mapped TLM coarse-grid model (the surrogate).  To accommodate the discrete 

nature of our EM simulator, we designed the algorithm to have interpolation and 

dynamically-updated database capabilities, key to efficient design automation.  

Our approach is illustrated through the TLM-based design of an inductive post, a 

single-resonator filter and a six-section H-plane waveguide filter.  Our algorithm 

converges to a good design for the fine-grid TLM model in spite of poor initial 

behavior of the coarse-grid TLM surrogate. 
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CHAPTER 5  
 

CONCLUSIONS 
 

This thesis describes the recent trends in the microwave circuit CAD tools 

exploiting the SM technology.  The simple CAD methodology follows the 

traditional experience and intuition of engineers, yet appears to be amenable to 

rigorous mathematical treatment. 

In Chapter 2, the SM technique and the SM-oriented surrogate (modeling) 

concept and their applications in engineering design optimization are reviewed.  

The aim and advantages of SM are described.  Proposed approaches to SM-based 

optimization include the original SM algorithm, the Broyden-based aggressive 

space mapping, trust region aggressive space mapping, hybrid aggressive space 

mapping, neural space mapping and implicit space mapping.  We also present a 

mathematical motivation for SM.  We place SM into the context of classical 

optimization, which is based on local Taylor approximations.  The SM model is 

seen as a good approximation over a large region, i.e., it is efficient in the initial 

phase when large iteration steps are needed, whereas the first-order Taylor model 

is better close to the solution.  We briefly discuss convergence issues for the SM 

algorithms which are now emerging.  Interesting SM and surrogate applications 
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are reviewed.  They indicate that exploitation of properly managed “space 

mapped” surrogates promises significant efficiency in all branches of engineering 

design. 

In Chapter 3, we present a family of robust techniques for exploiting 

sensitivities in EM–based circuit optimization through SM.  We exploit a partial 

SM concept where a reduced set of parameters is sufficient in the PE process.  

Available gradients can initialize mapping approximations.  Exact or approximate 

Jacobians of responses can be utilized.  For flexibility, we propose different 

possible “mapping matrices” for the PE processes and SM iterations.  Finite 

differences may be used to initialize the mapping.  A hybrid approach 

incorporating the Broyden formula can be used for mapping updates.  Our 

approaches have been tested on several examples.  They demonstrate simplicity of 

implementation, robustness, and do not rely on designer intervention.  Final 

mappings are useful in statistical analysis and yield optimization.  Furthermore, 

the notion of exploiting reduced sets of physical parameters reflects the important 

idea of postproduction tuning. 

In Chapter 4, we investigate, for the first time, the space mapping 

approach to modeling and design when the coarse model does not faithfully 

represent the fine model.  In this work, a coarse-grid TLM model with relaxed 

boundary conditions is utilized as a coarse model.  Such a model may provide a 

response that deviates significantly from the original design specifications and, 

hence, previous SM implementations may fail to reach a satisfactory solution.  
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We propose a technique exploiting implicit SM and output SM.  The dielectric 

constant, a convenient preassigned parameter, is first calibrated for a rough 

(preprocessing) alignment between the coarse and fine TLM models.  Output SM 

absorbs the remaining response deviation between the TLM fine-grid model and 

the implicitly mapped TLM coarse-grid model (the surrogate).  To accommodate 

the discrete nature of our EM simulator, we designed the algorithm to have 

interpolation and dynamically-updated database capabilities, key to efficient 

design automation.  Our approach is illustrated through the TLM-based design of 

an inductive post, a single-resonator filter and a six-section H-plane waveguide 

filter.  Our algorithm converges to a good design for the fine-grid TLM model in 

spite of poor initial behavior of the coarse-grid TLM surrogate. 

From the experience gained during the course of this work, the author 

suggests the following research topics to be addressed in future developments. 

(1) Exploiting the gradient-based SM approach in statistical analysis and yield 

optimization. 

(2) Applying SM optimization algorithms exploiting sensitivity formulations 

in problems of special interest such as the design of antenna structures. 

(3) Utilizing the gradient-based SM technique to produce enhanced models 

for microwave structures and build library models for the microwave 

components. 
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(4) Employing different dielectric constants, as preassigned parameters, for 

different regions of the underlying microwave structure to provide better 

results in the modeling process. 

(5) Incorporating the gradient PE process within the TLM environment to 

improve the construction of the surrogate, e.g., exploiting adjoint variable 

methods. 

(6) Building an SM engine that incorporates different SM algorithms for 

modeling and design.  This emerges from our capability to drive different 

full EM solvers such as Sonnet’s em, Ansoft HFSS, MEFiSTo Pro, etc., 

from programming environments such as Matlab or Visual C++. 

 

 



 

APPENDIX A  
 

BROYDEN VERSUS BFGS UPDATE 
 

The SM techniques incorporate a procedure to update (extract) the 

mapping P [1]–[2].  The mapping Jacobian is approximated by the matrix B, i.e., 

( )P f≈B J x  (See Chapter 2 for further details).  In Chapter 3, we reviewed 

different schemes proposed in the literature to update the matrix B.  In the 

aggressive SM approach [2], a proposed technique based on the Broyden rank-1 

formula [3] is employed to update B.  The Broyden-based scheme exhibits good 

results [2].  In this appendix, we compare the usage of BFGS rank-2 updating 

formula versus the Broyden rank-1 formula for the aggressive SM techniques.  

We propose a modified BFGS rank-2 updating formula for the non-symmetric 

case, e.g., Jacobian matrix.  We start with a theoretical discussion followed by an 

illustrative example. 

A.1 THEORETICAL DISCUSSION 

The aggressive SM solves the nonlinear system 

*( ) ( )f f c= − =f f x P x x 0  (A.1)
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for  where  is a vector valued function.  According to 

Newton Method for nonlinear equations [

n
f fX∈ ⊆x : nf n

4], the solution of (A.1) at the jth 

iteration is given by 

( 1) ( ) ( )

( ) ( ) ( )

j j j
f f

j j j
P

+ = +

= −

x x h

J h f
 (A.2)

A.1.1 The Broyden Method 

Since the first-order information (required to evaluate PJ ) may be 

difficult to obtain, Broyden [3] suggested a formula which updates an estimate of 

the Jacobian matrix ( 1) ( 1)j j
P

+ ≈B J +  iteratively by satisfying the secant condition [4] 

( ) ( 1) ( )j j j+=y B h  (A.3)

where ( ) ( ) and  j jh y  denotes the difference between the successive iterates and the 

successive function values, respectively, i.e., 

( ) ( 1) ( ) ( ) ( 1) ( ),j j j j j
f f
+ += − = −h x x jy f f  (A.4)

Broyden proposed a correction matrix ( )jC  to iteratively approximate the 

Jacobian matrix as [5], [6] 

( 1) ( ) ( )j j j= ++B B C  (A.5)

In the case of a rank-1 updating matrix, ( )jC  can be given by the outer 

product of two vectors ( ) ( ),j j n∈a b  as  

( 1) ( ) ( ) ( )j j j= +α+B B a b j T  (A.6)
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where α  is a real constant.  Broyden chose ( )ja  and ( )jb  as [3] 

( ) ( ) ( ) ( )

( ) ( )

,  andj j j j

j j=
= −a y B h

b h
 (A.7)

By substituting (A.7) in (A.6) and then multiplying both sides by ( )jh , we get 

( )( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j j j j j T= +α+ −B h B h jy B h h h  (A.8)

To satisfy the secant condition ( ) ( 1) ( )j j+= jy B h , the coefficient α  can be 

calculated as 

( ) ( )
( ) ( )

11 j T j
j T jα α= ⇒ =h h

h h
 (A.9)

This produces the Broyden non-symmetric rank-1 formula for updating the 

Jacobian [3], [4] 

( ) ( ) ( )
( 1) ( ) ( )

( ) ( )

j j j
j j

j T j= ++ −y B h j TB B h
h h

 (A.10)

From another prospective, the secant condition (A.3) can be viewed as a 

system of n linear equations in n2 unknowns, where the unknowns are the 

elements of the matrix .  This system is an underdetermined system with 

non-unique solution [

( 1)j+B

4].  To determine ( 1)j+B  uniquely, the Broyden’s method 

makes the smallest possible change to the Jacobian measured by the Euclidean 

norm ( 1) ( )j j+ −B B .  Dennis and Schnabel [7] presented a Lemma showing that 

among all matrices B satisfying the secant condition ( ) ( )j j=Bh y , the matrix 
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( 1)j+B  defined by (A.10) minimizes the difference ( )j−B B .  In other words, 

 in ( 1)j+B (A.10) is the solution to the optimization problem [4] 

( 1) ( )

( ) ( )

arg min

. .

j j

j j

=

s t

+ −

=
B

B B

Bh y

B
 (A.11)

A.1.2 The BFGS Method 

The BFGS method was introduced in the context of quasi-Newton 

methods for nonlinear optimization [4].  In unconstrained optimization, the 

following objective function is used 

min ( )g
x

x  (A.12)

where  and  is a scalar function. n∈x : ng

In this case, the BFGS method primarily forms the local quadratic model 

( )jm  of the objective function at the current iterate as 

( ) ( ) ( ) ( ) ( )1
2( )j j j j T T jm g g+ = +∇ +x h h h H h  (A.13)

where h is the step suggested by the algorithm and ( ) ( ) and j jg∇ H are the function 

gradient and Hessian, in a vector and matrix forms, at the current iterate, 

respectively. 

Instead of computing the Hessian matrix ( )jH  at every iteration, Davidon 

[8] proposed to update it using an approximating matrix ( )jB  to account for the 
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curvature measured during the most recent steps [4].  Here, ( )jB  is a symmetric 

and positive definite matrix that satisfies the secant condition [4] 

( ) ( 1) ( )j j j+=y B h  (A.14)

where ( ) ( ) and  j jh y  are given by 

( ) ( 1) ( ) ( ) ( 1) ( ),j j j j j
f f g g+ += − = ∇ −∇h x x y j  (A.15)

The secant condition admits infinite number of solutions, since there are 

( 1)n n + 2  degrees of freedom in a symmetric matrix, and the secant condition has 

only n equations.  The requirement of positive definiteness imposes n additional 

inequalities.  However, there are still remaining degrees of freedom [4]. 

In [4], it is shown that to determine ( 1)j+B  uniquely, an additional 

condition is imposed that among all symmetric matrices satisfying the secant 

condition,  is closest to the current matrix ( 1)j+B ( )jB .  In other words,  is the 

solution to the optimization problem [

( 1)j+B

4] 

( 1) ( )

( ) ( )

arg min

. . ,

j j

j j

=

s t

+ −

= =
B

B B B

TBh y B B
 (A.16)

where, ( ) ( ) and  j jh y  are given by (A.15) and the norm used is the weighted 

Frobenius norm [4]. 

By imposing the conditions (A.16) on the inverse of the Hessian 

approximation instead of the Hessian itself and then applying the Sherman-

Morrison-Woodbury formula [4], the rank-2 BFGS updating formula for the 

Hessian approximation matrix ( 1)j+B  can be given by [3]–[5] 
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( ) ( ) ( ) ( ) ( ) ( )
( 1) ( )

( ) ( ) ( ) ( ) ( )

j j T j j j T j T
j j

j T j j T j j= ++ −
y y B h h BB B
y h h B h

 (A.17)

A.1.3 Comment 

Based on our discussion, we conclude that the techniques for solving 

nonlinear equations have similar characteristics with nonlinear optimization 

techniques.  Despite these similarities, there are some important differences.  One 

of those differences is the derivative information requirement.  In optimization, 

knowledge of the second-order information (by approximating the Hessian) of the 

objective function is essential, whereas first-order information is sufficient in 

solving a system of nonlinear equations [4]. 

Comparing, (A.11), to obtain the Jacobian approximation, and (A.16), to 

approximate the Hessian, we realize that the use of the BFGS updating formula 

(A.17) to update the Jacobian matrix has no relevance.  This is because the 

conditions imposed in (A.16) that produce the BFGS updating formula (A.17), 

symmetry and positive definiteness of the Hessian matrix, do not hold in the case 

of the Jacobian matrix.  The Jacobian matrix is not symmetric and not necessarily 

positive definite but the Hessian matrix is.  Therefore, we expect that using the 

BFGS updating formula (A.17) directly instead of the Broyden formula (A.10) in 

solving the system of nonlinear equation (A.1) will give poor results. 

We propose a new approach to update the Jacobian matrix used in solving 

the system of nonlinear equations (A.1) employing a rank-2 updating formula.  In 

this approach, we develop a non-symmetric rank-2 updating formula to adopt the 
168 
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Jacobian matrix characteristics.  The proposed formula is based on the BFGS 

method. 

A.1.4 A Non-Symmetric BFGS Updating Formula 

In the case of a rank-2 updating matrix, the successive approximation 

formula (A.5) can be given by [5] 

( 1) ( ) ( ) ( ) ( ) ( )j j j j T j= + +α β+B B a b c d j T  (A.18)

where  and α β  are real constants.  ( ) ( ) ( ) ( ), ,  and j j j j ∈a b c d n

j

j

 and they can be 

chosen for symmetric BFGS update as follows [5] 

( ) ( ) ( )

( ) ( ) ( )

,j j

j j

= =

= =

a b u
c d v

 (A.19)

Here, for the proposed non-symmetric update, we choose  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,  and 
,

j j j j

j j j j

= =

= =

a u b v
c v d u

 (A.20)

Hence, the general updating formula for non-symmetric case becomes 

( 1) ( ) ( ) ( ) ( ) ( )j j j j T j= + +α β+B B u v v u j T  (A.21)

We apply the secant condition (A.3) by multiplying both sides of (A.21) 

by ( )jh  where ( ) ( ) and j jy h  are given by (A.4)

( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j j j j j j j T j j j T= + +α β+= jy B h B h u v h v u h  (A.22)

Fletcher [5] points out that an obvious choice is to use  
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( ) ( ) ( )

( ) ( )

,  andj j j

j j=
=u B h

v y
 (A.23)

and to satisfy the secant condition, the coefficients and α β  are given by 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 11 , and

1 11

j T j
j T j j T j

j T j
j T j j T j T j

α α

β β

 − −
= − ⇒ = =

= ⇒ = =

v h
v h y h

u h
u h h B h

 (A.24)

By substituting the values of and α β  (A.24) and ( ) ( )and j ju v  (A.23) into 

(A.21), the proposed non-symmetric rank-2 updating formula becomes 

( ) ( ) ( ) ( ) ( ) ( )
( 1) ( )

( ) ( ) ( ) ( ) ( )

j j j T j j T j T
j j

j T j j T j T j= ++ −
B h y y h BB B

y h h B h
 (A.25)

A.2 EXAMPLES 

We apply the aggressive SM algorithm to the seven-section transmission 

line impedance transformer example by solving (A.1).  We compare the usage of 

the Broyden (A.10), the original BFGS (A.17) and the proposed non-symmetric 

BFGS (A.25) updating formulas. 

A.2.1 Seven-section Capacitively Loaded Impedance Transformer 

The seven-section transmission line (TL) capacitively loaded impedance 

transformer example is described in [9]–[10].  We consider a “coarse” model as 

an ideal seven-section TL, where the “fine” model is a capacitively-loaded TL 

with capacitors .  The fine and coarse models are shown 

in 

1 8 0.025 pFC C= = =  

Fig. A.1 and Fig. A.2, respectively.  Design parameters are normalized lengths 
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[ 1 2 3 4 5 6 7 =       T
f L L L L L L Lx ] , with respect to the quarter-wave length  at the 

center frequency 4.35 GHz.  Design specifications are 

qL

11 0.07, for 1 GHz 7.7 GHzS ω≤ ≤ ≤  (A.1)

with 68 points per frequency sweep (m = 68).  The characteristic impedances for 

the transformer are fixed as in Table A.1.  The Jacobians of both the coarse and 

fine models were obtained analytically using the adjoint network method [11].  

We solve the PE problem using the Levenberg-Marquardt algorithm for nonlinear 

least squares optimization available in the Matlab Optimization Toolbox [12].  

The gradient-based minimax optimization routine by Hald and Madsen [13]–[14] 

is used for direct optimization of the fine and coarse models. 

   

Z in   R L =100 Ω   C3 C2

L1

C 5 C4C 7   C6C 8   C1  

L2L3L 4L5L 6   L 7   

 
 

Fig. A.1. Seven-section capacitively-loaded impedance transformer: “fine” 
model [9]. 

 
  

Z in   R L =100 Ω   

L 1L 2L3L4L 5L 6   L 7   

 
 

Fig. A.2. Seven-section capacitively-loaded impedance transformer: 
“coarse” model [9]. 
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TABLE A.1 
 

THE CHARACTERISTIC IMPEDANCES FOR THE SEVEN-SECTION 
CAPACITIVELY LOADED IMPEDANCE TRANSFORMER 

 

Impedance Value (Ohm)

Z1 91.9445 

Z2 85.5239 

Z3 78.1526 

Z4 70.7107 

Z5 63.9774 

Z6 58.4632 

Z7 54.3806 
 
 

We apply the ASM algorithm [2] utilizing three different formulas to 

update the mapping Jacobian matrix B utilizing 6 iterations.   

Firstly, utilizing the Broyden formula, B is given by (non-symmetric 

matrix) 

(6)

 1.5262    0.0074    0.1969    0.3278   0.3875    0.2015   -0.4844
-0.3199    1.1018   -0.0474   -0.0149   0.0207    0.0093   -0.0788
 0.0351   -0.0371    1.0095    0.0412    0.0950    0.1

Broyden =B
310   -0.0126

-0.0861    0.0257   -0.0169    1.0389   0.1064    0.1678    0.0269
-0.1327    0.0375   -0.0562   -0.0146   1.0357    0.1690    0.1977
-0.1182    0.0350   -0.0751   -0.1134   -0.1515    0.9637    0.3956
 0.0722   -0.1064   -0.0168   -0.2013   -0.3640   -0.4405    1.1873

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Secondly, using the BFGS formula, we get the following B (symmetric 

and positive definite matrix) 
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(6)

    1.4639   -0.1274    0.1310    0.1613    0.2002    0.1367   -0.3153
   -0.1274    1.0480   -0.0403   -0.0275   -0.0207    0.0056    0.0304
    0.1310   -0.0403    1.0299    0.0459    0.0661 

BFGS =B
  0.0941   -0.0329

    0.1613   -0.0275    0.0459    1.0835    0.1231    0.1425   -0.1347
    0.2002   -0.0207    0.0661    0.1231    1.1817    0.2008   -0.2272
    0.1367    0.0056    0.0941    0.1425   0.2008    1.1584   -0.3821
   -0.3153    0.0304   -0.0329   -0.1347   -0.2272   -0.3821    0.9123

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Finally, we utilize our proposed non-symmetric BFGS updating formula 

(6)
 

   1.5614    0.2822    0.3425    0.4108   0.2272   -0.0559   -0.4612
  -0.6924    1.0861    0.0317    0.0308   0.0500   -0.0399   -0.0059
  -0.1343   -0.0949    1.0299    0.0706    0

modified BFGS =B
.1742    0.1718   -0.0065

  -0.2252   -0.0785   -0.0090    1.0365   0.1520    0.1929    0.0745
  -0.0204   -0.1067   -0.1073   -0.0680   1.0513    0.2024    0.1897
   0.2685   -0.0440   -0.1482   -0.1559   -0.1405    1.0621    0.3304
   0.3183    0.0390   -0.0820   -0.1657  -0.2742   -0.2693    1.1663

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Convergence results utilizing the three updating formulas are given in 

Table A.2.  As we expect, the original BFGS update provides poor convergence 

w.r.t. the non-symmetric (Broyden and modified BFGS) updates (see the last 

column in Table A.2).  The initial responses are depicted in Fig. A.3.  The final 

responses, the reduction of 2f  and optU U−  versus iteration using the Broyden 

and the modified BFGS formulas are shown in Fig. A.4–Fig. A.9.  

11,max , 1,2,..,iU S i= = m  and  is obtained by fine model optimization.  The 

final response using the original BFGS is similar to 

optU

Fig. A.4.  Convergence of 

2f  and  versus iteration using the original BFGS formula are depicted 

in 

optU U−

Fig. A.10 and Fig. A.11, respectively. 
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TABLE A.2 
 

ASM ALGORITHM USING  
BROYDEN RANK-1 VERSUS MODIFIED BFGS RANK-2 UPDATING 
FORMULAS FOR THE SEVEN-SECTION CAPACITIVELY LOADED  

IMPEDANCE TRANSFORMER 
 

Updating method Iterations optU U−  
2f  

Broyden 6 5.34e–4 7.39e–4 

BFGS 6 7.64e–4 1.98e–2 

modified BFGS 6 5.38e–4 3.68e–4 
 
 

1 2 3 4 5 6 70

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

frequency (GHz)

| S
11

|

Responses at the starting point

 

Fig. A.3. Optimal coarse model response (--), optimal fine model response 
(–•–) and the fine model response (•) at the starting point for the 
seven-section transmission line capacitively loaded impedance 
transformer. 
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1 2 3 4 5 6 7
0

0.02
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0.06

0.08

0.1

0.12

0.14
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|

Responses at the 6th  iteration using Broyden update

 

Fig. A.4. Optimal coarse model response (--), optimal fine model response 
(–•–) and the fine model response (•) at the final iteration for the 
seven-section transmission line capacitively loaded impedance 
transformer using the Broyden update. 
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Fig. A.5. Optimal coarse model response (--), optimal fine model response 
(–•–) and the fine model response (•) at the final iteration for the 
seven-section transmission line capacitively loaded impedance 
transformer using the modified BFGS update. 
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Fig. A.6. 
2

f  versus iteration for the seven-section transmission line 
capacitively loaded impedance transformer using the Broyden 
update. 
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 || 
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Fig. A.7. 
2

f  versus iteration for the seven-section transmission line 
capacitively loaded impedance transformer using the modified 
BFGS update. 
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Fig. A.8. U – Uopt versus iteration for the seven-section transmission line 
capacitively loaded impedance transformer using the Broyden 
update. 
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Fig. A.9. U – Uopt versus iteration for the seven-section transmission line 
capacitively loaded impedance transformer using the modified 
BFGS update. 
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100
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Fig. A.10. 
2

f  versus iteration for the seven-section transmission line 
capacitively loaded impedance transformer using the original 
BFGS update. 
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Fig. A.11. U – Uopt versus iteration for the seven-section transmission line 
capacitively loaded impedance transformer using the original 
BFGS update. 
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A.3 CONCLUDING REMARKS 

The usage of the original BFGS rank-2 formula to update the Jacobian 

matrix in the context of solving a system of nonlinear equations is not appropriate.  

The Jacobian matrix is not symmetric and it is not necessarily a positive definite 

matrix.  The BFGS rank-2 formula is primarily designed to update the Hessian 

matrix in the context of solving nonlinear optimization problems.  Utilizing the 

Broyden rank-1 formula to update the Jacobian matrix within the aggressive SM 

algorithm provides better convergence versus the BFGS rank-2. 

We propose a modified rank-2 BFGS updating formula for the non-

symmetric case.  The proposed formula is successfully examined with an 

illustrative example.  It provides slightly better convergence for solving the 

system of nonlinear equation using the aggressive SM algorithm versus the 

Broyden rank-1 update. 

The results presented are promising.  We expect that the proposed formula 

will outperform the Broyden formula if the coarse model is badly chosen.  

Employing the trust region methodology with the proposed formula to improve 

the convergence properties of the algorithm needs further investigation.  Using 

higher ranks of our proposed formula, e.g., rank-3, in the case of complicated 

problems and an inaccurate coarse model, is another research topic to be 

addressed in future. 
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APPENDIX B 
 

CONSTRAINED UPDATE FOR B 
 

B could be better conditioned, in the PE process, if it is constrained to be 

close to the identity matrix I by 

2

211 ][minarg TT
n

TT
n

T bbeeB
B

ΔΔ= ηη  (B.1)

where η is a weighting factor, ei and Δbi are the ith columns of E and ΔB, 

respectively, defined as 

IBB

BJJE

−=Δ

−=   cf  (B.2)

Solving (B.1) as follows 

{ }
{ }

2 22
1 12 2

2 22

arg min  [ ] [ ]  

arg min   

T T T T T T
n n

F F

η Δ Δ

η Δ

= +

= +

B

B

B e e b b

B E B
 (B.3)

where ||.||F stands for the Frobenius matrix norm.  Generally, ||A||F for any matrix 

A can be described as 

)(2 AAA T
F Tr=  (B.4)

Thus (B.3) can be rewritten as 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 
 

{ }2arg min  ( ) ( ) T TTr Trη Δ Δ= +
B

B E E B B  (B.5)

To determine the optimal solution for matrix B we differentiate the 

argument of (B.5) w.r.t. matrix B and equate the result to zero, knowing that E 

and ΔB are given by (B.2). 

{ }

0

0

=⎥
⎦

⎤
⎢
⎣

⎡
ΔΔ∂
ΔΔ∂

⎥
⎦

⎤
⎢
⎣

⎡
Δ∂
ΔΔ∂

⎥⎦
⎤

⎢⎣
⎡

∂
Δ∂

+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
⎥⎦
⎤

⎢⎣
⎡
∂
∂

=ΔΔ+
∂
∂

)(
)(

)(
)()(

)(
)()(

)()(

2

2

BB
BB

B
BB

B
B

EE
EE

E
EE

B
E

BBEE
B

T

TT

T

TT

TT

TrTr

TrTr

η

η
 (B.6)

However, for any matrix A that has independent elements, the following is 

true. 

I
A
A

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

)(
)(Tr  (B.7)

Therefore, we can simplify (B.6) as follows 

)()(

)())((

))(2)(())(2)((

22

2

2

IJJBIJJ

IBBJJJ

IBIIEJ

ηη

η

η

+=+

=−+−−

=Δ+−

f
T
cc

T
c

cf
T

c

T
c

0

0

 (B.8)

The analytical solution of (B.1) is given by 

)()( 212 IJJIJJB ηη ++= −
f

T
cc

T
c  (B.9)
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APPENDIX C 
 

L-MODEL AND Q-MODEL 

 

A linear (quadratic) interpolation scheme [1]–[2], [3]–[4] is essential for 

optimizing the surrogate in both the calibration (PE) and prediction (surrogate 

optimization) steps. 

We assume a vector φ  contains all the design (optimizable) parameters of 

a microwave structure.  φ  can be represented as a point in the n-dimensional 

parameter space 

[ ] 1  2  ... T
nφ = φ φ φ  (C.1)

Numerical EM simulation is performed at discretized values of the 

geometrical design parameters [1] 

 ; 1,2,...,i i ik d i n= =φ  (C.2)

where di is a discretization step (modeling grid size), i.e., the distance between 

adjacent modeling grid points, for the ith parameter.  It is a positive floating-point 

number.  It has the same units as the corresponding parameter.  ki is an integer, 

typically positive [1]. 
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L-Model.  The L-model is a multi-dimensional linear polynomial.  To 

evaluate the response at an off-grid point φ , a set S of n + 1 base on-grid points 

should be created [2]. 

The first base (reference) point 1φ  is selected by snapping the considered 

point φ  to the closest (in the l2 sense) modeling grid point (see Fig. 4.2(a) for n = 

2).  The following n base points are generated by perturbing one parameter at a 

time around the reference point 1φ  [2]. 

[ ]
( )

 1  1

 1
  

0 0 ( ) 0 0

, 1,2,...

Ti
i i

i i
i

i

sign d

i n
d

φ φ+ = +

−
= =

θ

φ φ
θ

 (C.3)

where  iφ and  1
 iφ  are the ith component of the considered point φ  and the 

reference point  1φ , respectively. 

The L-model formula used to evaluate the response function at the 

considered point φ  could be given by 

 1  1

1
( ) ( ) ( ) ( )

n
i

L EM i EM EM
i

φ φ φ φ+

=

 1⎡ ⎤= + −⎣ ⎦∑R R R Rθ  (C.4)

where ( )L φR  is the linearly interpolated response function and  is the EM 

response function at the on-grid point.  In [

(.)EMR

1], [4], (C.3) and (C.4)are given in a 

compact matrix form. 

Q-model.  The Q-model is build based on 2n+1 base points around the 

point of interest φ .  To build a Q-model, we use the maximally flat quadratic 

186 



Ph.D. Thesis––Ahmed Mohamed            McMaster––Electrical & Computer Engineering 
 

interpolation (MFQI) modeling technique introduced in [1], [5] with a fixed and 

symmetrical pattern of base points [1]–[2].  The first base (reference) point  1φ  is 

selected as in the L-model case.  The other 2n base points are chosen by 

perturbing one parameter at a time with value id±  (see Fig. 4.2(b) for n = 2) as 

follows. 

[ ]
[ ]

 1  1

 1  1

0 0 0 0

0 0 0 0

Ti
i

Tn i
i

d

d

φ φ

φ φ

+

+ +

= + +

= + −
 (C.5)

The Q-model formula used to evaluate the MFQI response function 

( )Q φR  at the considered point φ  is given by [2] 

( )

 1  1

 1

 1  1  11

( ) ( )
( ) ( )

( ) ( ) 2 ( )
2

i n i
EM EMn

Q EM i n i ii EM EM EM i

φ φ
φ φ

φ φ φ

+ + +

+ + +
=

⎧ ⎫⎡ − +⎣⎪ ⎪= + ⎨ ⎬
⎤+ −⎪ ⎪⎦⎩ ⎭

∑
R R

R R
R R R θθ

 (C.6)

where iθ  is given in (C.3). 
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1φ
2φ

3φ

φ

 

(a) 

1φ
φ

2φ

3φ

4φ

5φ  

(b) 

Fig. C.1 Selection of base points in the n = 2 case: (a) for the L-model and 
(b) for the Q-model. 
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