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ABSTRACT             

This thesis contributes to advances in Space Mapping (SM) technology in 

computer-aided modeling, design and optimization of engineering components 

and devices.  Our developments in modeling and optimization of microwave 

circuits include the SM framework and SM-based surrogate modeling; implicit 

SM optimization exploiting preassigned parameters; implicit, frequency and 

output SM surrogate modeling and design; an SM design framework and 

implementation techniques. 

We review the state of the art in space mapping and the SM-based 

surrogate (modeling) concept and applications.  In the review, we recall proposed 

SM-based optimization approaches including the original algorithm, the Broyden-

based aggressive SM algorithm, various trust region approaches, neural space 

mapping and implicit space mapping.  Parameter extraction (PE) is developed as 

an essential SM subproblem.  Different approaches to enhance uniqueness of PE 

are reviewed.  Novel physical illustrations are presented, including the cheese-

cutting problem.  A framework of space mapping steps is extracted. 

Implicit Space Mapping (ISM) optimization exploits preassigned 

parameters.  We introduce ISM and show how it relates to the now well-
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established (explicit) space mapping between coarse and fine device models.  

Through comparison a general space-mapping concept is proposed.  A simple 

ISM algorithm is implemented.  It is illustrated on the contrived “cheese-cutting 

problem” and applied to EM-based microwave modeling and design.  An 

auxiliary set of parameters (selected preassigned parameters) is extracted to match 

the coarse model with the fine model.  The calibrated coarse model (the surrogate) 

is then (re)optimized to predict an improved fine model solution.  This is an easy 

SM technique to implement since the mapping itself is embedded in the calibrated 

coarse model and updated automatically in the procedure of parameter extraction. 

We discuss the enhancement of the ISM by “output space” mapping 

(OSM) specifically, response residual space mapping (RRSM), when the model 

cannot be aligned.  ISM calibrates a suitable coarse (surrogate) model against a 

fine model (full-wave EM simulation) by relaxing certain coarse model 

preassigned parameters.  Based on an explanation of residual response 

misalignment, our new approach further fine-tunes the surrogate by the RRSM.  

We present an RRSM approach.  A novel, simple “multiple cheese-cutting” problem 

illustrates the technique.  The approach is implemented entirely in the Agilent ADS 

design environment. 

A new design framework which implements various SM techniques is presented.  

We demonstrate the steps, for microwave devices, within the ADS (2003) schematic 

design framework.  The design steps are friendly.  The framework runs with Agilent 

Momentum, HFSS and Sonnet em.  Finally, we review various engineering 
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applications and implementations of the SM technique. 
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Chapter 1  
 
INTRODUCTION 

The manufacturability-driven design and time-to-market products in the 

electronics industry demand powerful computer-aided design (CAD) techniques.  

As signal speed and frequency increase, conventional electrical models for 

components are no longer adequate.  Design and modeling with 

physical/geometrical information, including electromagnetic (EM)/physics 

effects, become necessary. 

The first CAD techniques in circuit design appeared in the sixties of the 

last century.  Temes and Calahan (1967) advocated CAD technology for filter 

design.  Since then design and modeling of microwave circuits applying 

optimization techniques have been extensively researched.   

With the dramatic increase in computer hardware performance, EM 

simulators could be built to solve Maxwell’s equations for circuits of arbitrary 

geometrical shapes.  Analysis technologies such as the finite element method 

(FEM), the method of moments (MoM), etc., are used.  Rautio and Harrington 

(1987a, 1987b) presented excellent agreement between EM field solvers and 

measurements.  We can single out the High Frequency Structure Simulator 
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(HFSS) from Ansoft and HP (Agilent) as the flagship FEM solver(s) and the 

MoM product em from Sonnet Software as the benchmark planar solver. 

Due to the computational expense of EM/physics models, simply 

substituting conventional equivalent electrical models by EM/physics models into 

the design optimization process will not work, because of extremely long or 

prohibitive computation.  CAD procedures such as statistical analysis and yield 

optimization taking into account process variations and manufacturing tolerances 

in the components demands that the component models are accurate and fast so 

that design solutions can be achieved feasibly and reliably (Bandler, Cheng, 

Dakroury, Mohamed, Bakr, Madsen and Søndergaard, 2004, Steer, Bandler and 

Snowden, 2002).  To achieve success in modern, high-frequency, circuit and 

systems design optimization, we need EM/physics-based component solutions on 

a much larger scale, a task beyond the reach of available design tools. 

Space Mapping (SM) is an optimization concept, allowing expensive EM 

optimization to be performed efficiently with the help of fast and approximate 

“coarse” or surrogate models (Bandler, Cheng, Dakroury, Mohamed, Bakr, 

Madsen and Søndergaard, 2004, Steer, Bandler and Snowden, 2002, Bandler, 

Biernacki, Chen, Grobelny and Hemmers, 1994, Bandler, Biernacki, Chen, 

Hemmers and Madsen, 1995, Bakr, Bandler, Biernacki, Chen and Madsen, 1998, 

Bakr, Bandler, Madsen and Søndergaard, 2001, Bandler, Georgieva, Ismail, 

Rayas-Sánchez and Zhang, 2001, Bandler, Ismail and Rayas-Sánchez, 2002, 

Bakr, Bandler, Ismail, Rayas-Sánchez and Zhang, 2000, Bandler, Cheng, 
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Nikolova and Ismail, 2004).  It has been applied with great success to otherwise 

expensive direct EM optimizations of microwave components and circuits with 

substantial computation speedup.  Research is being carried out on mathematical 

motivation, to place SM into the context of classical optimization.  The aim of SM 

is to achieve a satisfactory design solution with a minimal number of 

computationally expensive “fine” model evaluations.  Procedures iteratively 

update and optimize surrogates based on fast physically-based “coarse” models. 

Space mapping was first introduced by Bandler, Biernacki, Chen, 

Grobelny and Hemmers (1994).  In its ten-year history, researchers explored a 

number of variations and enormously successful applications.  The theory is still 

in its infancy, but SM is accepted by the mathematical and engineering 

communities as a significant contribution.   

This thesis addresses advances in SM technology in the computer-aided 

modeling, design and optimization.  An objective is to present our developments 

in modeling and optimization of microwave circuits.  These developments include 

the SM framework and surrogate modeling for SM technology (Bandler, Cheng, 

Dakroury, Mohamed, Bakr, Madsen and Søndergaard, 2004), implicit SM 

optimization exploiting preassigned parameters (Bandler, Cheng, Nikolova and 

Ismail, 2004), implicit, frequency and output SM surrogate modeling and design 

(Bandler, Cheng, Gebre-Mariam, Madsen, Pedersen and Søndergaard, 2003), an 

implementable SM design framework (Bandler, Cheng, Hailu and Nikolova, 

2004) and various other implementations and applications.   
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Chapter 2 addresses basic concepts and notation of Space Mapping.  We 

review the state of the art of SM technology and the SM-based surrogate 

(modeling) concept and applications in engineering optimization.  We recall 

proposed approaches to SM-based optimization, including the original algorithm, 

the Broyden-based aggressive SM algorithm, various trust region approaches, 

neural space mapping and implicit space mapping.  Different approaches to 

enhance uniqueness of parameter extraction are reviewed.  Novel physical 

illustrations are presented, including the cheese-cutting problem.  SM framework 

steps are extracted. 

In Chapter 3, we discuss implicit SM (ISM) optimization exploiting 

preassigned parameters.  We show how it relates to the well-established (explicit) 

SM between coarse and fine device models.  Through comparison a general SM 

concept is proposed.  A simple ISM algorithm is implemented.  It is illustrated on 

a contrived “cheese-cutting problem” and applied to EM-based microwave 

modeling and design.  An auxiliary set of parameters (selected preassigned 

parameters) is extracted to match the coarse model with the fine model.  The 

calibrated coarse model (the surrogate) is then (re)optimized to predict a better 

fine model solution.  The mapping itself is embedded in the calibrated coarse 

model and updated automatically in the procedure of parameter extraction.  We 

illustrate our approach through optimization of an HTS filter using Agilent ADS 

(2000) with Momentum (2000) and Agilent ADS with Sonnet’s em (2001). 

In Chapter 4, we discuss the enhancement of ISM by an “output space” 
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mapping (OSM) or specifically, “response residual space” mapping (RRSM) 

when the coarse and fine model cannot be aligned.  We present a significant 

improvement to ISM for EM-based microwave modeling and design.  ISM 

calibrates a suitable coarse (surrogate) model against a fine model (full-wave EM 

simulation) by relaxing certain coarse model preassigned parameters.  Based on 

an explanation of residual response misalignment, our approach further fine-tunes 

the surrogate by exploiting RRSM.  An accurate design of an HTS filter, easily 

implemented in Agilent ADS, emerges after only four EM simulations using ISM 

and RRSM with sparse frequency sweeps.  We also present an RRSM approach.  

A new “multiple cheese-cutting” design problem illustrates the concept.  Our 

approach is implemented entirely in the ADS framework.  An H-plane filter 

design demonstrates the method. 

In Chapter 5, we discuss a number of SM implementation frameworks and 

examples.  We present and demonstrate an Agilent ADS schematic framework for 

SM.  Using this framework, a number of SM techniques are implemented in ADS 

with Momentum, Sonnet em, and Agilent HFSS in an interactive way.  We review 

significant practical applications done by various groups and researchers from 

different engineering and mathematical communities. 

We conclude in Chapter 6 with some suggestions for future research. 

The author contributed substantially to the following original 

developments presented in this thesis: 

(1) Development of a space-mapping framework for space mapping 
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algorithms. 

(2) Development of an implicit space-mapping algorithm to simplify 

microwave device design. 

(3) Development of an implicit and output space-mapping (RRSM) 

algorithm to fine-tune microwave designs.  

(4) Contribution to the review paper: “Space mapping: the state of the 

art.” 

(5) Implementation of the implicit and output space-mapping (RRSM) 

algorithm. 

(6) Development of the software package SMX to automate the SM 

optimization exploiting surrogates algorithm (Bakr, Bandler, 

Madsen, Rayas-Sánchez and Søndergaard, 2000). 

(7) Development of the demonstration “cheese-cutting” problem and 

“multiple cheese-cutting” problem.   

(8) Design of an ADS schematic framework for SM.  Entirely within 

this framework, implicit SM and output space mappings (RRSM) 

are implemented. 

 

 

 

 

 



 

7 

 
Chapter 2  
 
SPACE MAPPING: THE STATE OF 
THE ART 

2.1 INTRODUCTION 

Engineers have been using optimization techniques for device, component 

and system modeling and CAD for decades (Steer, Bandler and Snowden, 2002).  

The target of component design is to determine a set of physical parameters to 

satisfy certain design specifications.  Traditional optimization techniques 

(Bandler, Kellermann and Madsen, 1985, Bandler and Chen, 1988) directly utilize 

the simulated responses and possibly available derivatives to force the responses 

to satisfy the design specifications.  Circuit-theory based simulation and CAD 

tools using empirical device models are fast: analytical solutions or available 

exact derivatives may promote optimization convergence.  Electromagnetic (EM) 

simulators, long used for design verification, need to be exploited in the 

optimization process.  But the higher the fidelity (accuracy) of the simulation the 

more expensive direct optimization is expected to be.  For complex problems this 

cost may be prohibitive. 

Alternative design schemes combining the speed and maturity of circuit 

simulators with the accuracy of EM solvers are desirable.  The recent exploitation 
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of iteratively refined surrogates of fine, accurate or high-fidelity models, and the 

implementation of Space Mapping (SM) methodologies (Bandler, Cheng, 

Dakroury, Mohamed, Bakr, Madsen and Søndergaard, 2004) address this issue.  

Through the construction of a space mapping, a suitable surrogate is obtained.  

This surrogate is faster than the “fine” model and at least as accurate as the 

underlying “coarse” model.  The SM approach updates the surrogate to better 

approximate the corresponding fine model. 

Bandler conceived the SM approach in 1993 for modeling and design of 

engineering devices and systems, e.g., RF and microwave components using EM 

simulators.  Bandler et al. (1994, 1995) demonstrated how SM intelligently links 

companion “coarse” (ideal, fast or low-fidelity) and “fine” (accurate, practical or 

 

fine
model

coarse
model

design
parameters

responses responsesdesign
parameters

Z

C3 = f (w,d)

JDH +=×∇ ωj

BE ωj−=×∇
ρ=∇ D

ED ε=

HB µ=

0=∇ Bdesign
 parameters

responses design
 parameters

responses

fine
 space

coarse
 spacefind a mapping to

match the models

 
Fig. 2.1 Linking companion coarse (empirical) and fine (EM) models through a 

mapping. 
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high-fidelity) models of different complexities.  An EM simulator could serve as a 

fine model.  A low fidelity EM simulation or empirical circuit model could be a 

coarse model (see Fig. 2.1).   

Generally, SM-based optimization algorithms comprise four steps.   

(1) fine model simulation (verification) 

(2) extraction of the parameters of a coarse or surrogate model 

(3) updating the surrogate 

(4) (re)optimization of the surrogate. 

The original SM-based optimization algorithm was introduced by  

Bandler, Biernacki, Chen, Grobelny and Hemmers (1994), where a linear 

mapping is assumed between the parameter spaces of the coarse and fine models.  

It is evaluated by a least squares solution of the linear equations resulting from 

associating corresponding data points in the two spaces.  Hence, the surrogate is a 

linearly mapped coarse model. 

The aggressive space mapping (ASM) approach (Bandler, Biernacki, 

Chen, Hemmers and Madsen, 1995) eliminates the simulation overhead required 

in (Bandler, Biernacki, Chen, Grobelny and Hemmers, 1994) by exploiting each 

fine model iterate as soon as it is available.  This iterate, determined by a quasi-

Newton step, optimizes the (current) surrogate model. 

Parameter Extraction (PE) is the key to establishing the mapping and 

updating the surrogate.  In this step, the surrogate is locally aligned with a given 

fine model through various techniques.  However, nonuniqueness of the PE step 
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may cause breakdown of the algorithm (Bandler, Biernacki and Chen, 1996). 

Many approaches are suggested to improve the uniqueness of the PE step.  

Multi-point PE (Bandler, Biernacki and Chen, 1996, Bandler, Biernacki, Chen 

and Omeragic, 1999), a statistical PE (Bandler, Biernacki, Chen and Omeragic, 

1999), a penalty PE (Bandler, Biernacki, Chen and Huang, 1997) and an 

aggressive PE (Bakr, Bandler and Georgieva, 1999) are such approaches.  A 

recent gradient PE approach (Bandler, Mohamed, Bakr, Madsen and Søndergaard, 

2002) takes into account not only the responses of the fine model and the 

surrogate, but the corresponding gradients w.r.t. design parameters as well. 

A mathematical motivation (Bandler, Cheng, Dakroury, Mohamed, Bakr, 

Madsen and Søndergaard, 2004) places SM into the context of classical 

optimization based on local Taylor approximations.  If the coarse model reflects 

the nonlinearity of the fine model then the space mapping is expected to involve 

less curvature (less nonlinearity) than the two physical models.  The SM model is 

then expected to yield a good approximation over a large region, i.e., it generates 

large descent iteration steps.  Close to the solution, however, only small steps are 

needed, in which case the classical optimization strategy based on local Taylor 

models is better.  A combination of the two strategies gives the highest solution 

accuracy and fast convergence. 

SM techniques require sufficiently faithful coarse models to assure good 

results.  Sometimes the coarse model and fine models are severely misaligned, 

i.e., it is hard to make the PE process work.  The hybrid aggressive SM algorithm 



PhD Thesis – Q.S. Cheng McMaster – Electrical and Computer Engineering  
 

11 

(Bakr, Bandler, Georgieva and Madsen, 1999) overcomes this by alternating 

between (re)optimization of a surrogate and direct response matching.  More 

recently, the surrogate model based SM (Bakr, Bandler, Madsen, Rayas-Sánchez 

and Søndergaard, 2000) optimization algorithm combines a mapped coarse model 

with a linearized fine model and defaults to direct optimization of the fine model. 

Neural space mapping approaches (Bandler, Ismail, Rayas-Sánchez and 

Zhang, 1999, Bakr, Bandler, Ismail, Rayas-Sánchez and Zhang, 2000, Bandler, 

Ismail, Rayas-Sánchez and Zhang, 2003) utilize Artificial Neural Networks 

(ANN) in EM-based modeling and design of microwave devices.  This is 

consistent with the knowledge-based modeling techniques of Zhang and Gupta 

(2000).  After updating an ANN-based surrogate (Bandler, Ismail, Rayas-Sánchez 

and Zhang, 1999), a fine model optimal design is predicted in NSM (Bakr, 

Bandler, Ismail, Rayas-Sánchez and Zhang, 2000) by (re)optimizing the 

surrogate.  Neural inverse SM simplifies (re)optimization by inversely connecting 

the ANN (Bandler, Ismail, Rayas-Sánchez and Zhang, 2003).  The next fine 

model iterate is then only an ANN evaluation. 

The latest development of SM is implicit space mapping (ISM) (Bandler, 

Cheng, Nikolova and Ismail, 2004).  An auxiliary set of parameters (selected 

preassigned parameters such as dielectric constant or substrate height) is extracted 

to match the coarse and fine model responses.  The resulting (calibrated) coarse 

model, the surrogate, is then (re)optimized to evaluate the next iterate (fine model 

point). 
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The SMX (Bakr, Bandler, Cheng, Ismail and Rayas-Sánchez, 2001) 

system is a first attempt to automate SM optimization by linking different 

simulators. 

The SM technology has been recognized as a contribution to engineering 

design (Zhang and Gupta, 2000, Hong and Lancaster, 2001, Conn, Gould and 

Toint, 2000, Bakr, 2000, Rayas-Sánchez, 2001, Ismail, 2001), especially in the 

microwave and RF arena.  Zhang and Gupta (2000) have considered the 

integration of the SM concept into neural network modeling for RF and 

microwave design.  Hong and Lancaster (2001) describe the aggressive SM 

algorithm as an elegant approach to microstrip filter design.  Conn, Gould and 

Toint (2000) have stated that trust region methods have been effective in the SM 

framework, especially in circuit design.  Bakr (2000) introduces advances in SM 

algorithms, Rayas-Sánchez (2001) employs artificial neural networks and Ismail 

(Ismail, 2001) studies SM-based model enhancement. 

Mathematicians are addressing mathematical interpretations of the 

formulation and convergence issues of SM algorithms (Bakr, Bandler, Madsen 

and Søndergaard, 2001, Søndergaard, 1999, 2003a, Pedersen, 2001, Søndergaard, 

2003b, Vicente, 2002, 2003a, 2003b).  For example, Madsen’s group (Bakr, 

Bandler, Madsen and Søndergaard, 2001, Søndergaard, 1999, 2003a, Pedersen, 

2001) considers the SM as an effective preprocessor for engineering 

optimizations.  Madsen and Søndergaard investigate convergence properties of 

SM algorithms (Madsen and Søndergaard, 2004).  Vicente studies convergence 
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properties of SM for design using the least squares formulation (Vicente, 2002, 

2003b), and introduces SM to solve optimal control problems (Vicente, 2003a). 

2.2 THE SPACE MAPPING APPROACH 

The SM approach introduced by Bandler, Biernacki, Chen, Grobelny and 

Hemmers (1994) involves a calibration of a physically-based “coarse” surrogate 

by a “fine” model to accelerate design optimization.  This simple CAD 

methodology embodies the learning process of a designer.  It makes effective use 

of the surrogate’s fast evaluation to sparingly manipulate the iterations of the fine 

model. 

2.2.1 The Optimization Problem 

The design optimization problem to be solved is given by  

* arg min ( ( ))f f f
f

Ux R x
x

 (2-1)

where Rf ∈ ℜm×1 is a vector of m responses of the model, e.g., |S11| at m selected 

frequency points ω  or sample points.  xf ∈ ℜn×1 is the vector of n design 

parameters and U is a suitable objective function.  For example, U could be the 

minimax objective function with upper and lower specifications.  xf
* is the 

optimal solution to be determined.  It is assumed to be unique. 

2.2.2 The Space Mapping Concept 

As depicted in Fig. 2.2, the coarse and fine model design parameters are 
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denoted by xc and xf ∈ ℜn×1, respectively.  The corresponding response vectors 

are denoted by Rc and Rf ∈ ℜm×1, respectively. 

We propose to find a mapping P relating the fine and coarse model 

parameters as 

( )c f=x P x  (2-2)

such that 

( ( )) ( )c f f f≈R P x R x  (2-3)

in a region of interest. 

Then we can avoid using direct optimization, i.e., solving (2-1) to find xf
*.  

Instead, we declare fx , given by 

1 *( )f c
−x P x  (2-4)

as a good estimate of xf
*, where xc

* is the result of coarse model optimization. 

fx

( )f fR x
fine

model
coarse
modelcx

( )c cR x

such that
( )c f=x P x

( ( )) ( )c f f f≈R P x R x

fx cx

 

Fig. 2.2 Illustration of the fundamental notation of space mapping (Steer, 
Bandler and Snowden, 2002). 
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2.2.3 Jacobian Relationships 

Using (2-2), the Jacobian of P is given by 

( )( )
T TTT

c
P P f

f f

⎛ ⎞ ⎛ ⎞∂∂
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

xPJ J x
x x

 (2-5)

An approximation to the mapping Jacobian is designated by the matrix 

B∈ℜn×n, i.e., B ≈ JP(xf ).  Using (2-3) we obtain (Bakr, Bandler, Georgieva and 

Madsen, 1999) 

f c≈J J B  (2-6)

where Jf and Jc are the Jacobians of the fine and coarse models, respectively.  

This relation can be used to estimate the fine model Jacobian if the mapping is 

already established. 

An expression for B which satisfies (2-6) can be derived as (Bakr, 

Bandler, Georgieva and Madsen, 1999) 

1( )T T
c c c f

−=B J J J J  (2-7)

If the coarse and fine model Jacobians are available, the mapping can be 

established through (2-7), provided that Jc has full rank and m≥n. 

2.2.4 Interpretation of Space Mapping Optimization 

SM algorithms initially optimize the coarse model to obtain the optimal 

design xc
*, for instance in the minimax sense.  Subsequently, a mapped solution is 

found by minimizing the objective function 2
2g , where g is defined by 



PhD Thesis – Q.S. Cheng McMaster – Electrical and Computer Engineering  
 

16 

*( ) ( ) ( )f f f c c= −g g x R x R x  (2-8)

Correspondingly, according to Bakr, Bandler, Madsen and Søndergaard 

(2001), Rc(P(xf)) is optimized in the effort of finding a solution to (2-1).  Here, 

Rc(P(xf)) is an expression of an “enhanced” coarse model or “surrogate.”  Thus, 

the problem formulation can be rewritten as 

arg min ( ( ( ))f c f
f

U=x R P x
x

 (2-9)

where fx  may be close to xf
* if Rc is close enough to Rf .  If xc

* is unique then the 

solution of (2-9) is equivalent to driving the following residual vector f  to zero 

*( ) ( )f f c= −f f x P x x  (2-10)

2.3 ORIGINAL SPACE MAPPING APPROACH  

In this approach (Bandler, Biernacki, Chen, Grobelny and Hemmers, 

1994), an initial approximation of the mapping, P(0) is obtained by performing 

fine model analyses at a pre-selected set of at least m0 base points, m0 ≥ n+1.  A 

corresponding set of coarse model points is then constructed through the 

parameter extraction (PE) process 

( ) ( )arg min ( ) ( )j j
c f c cf

c
−x R x R x

x
 (2-11)

The additional m0 – 1 points apart from xf
(1) are required to establish full-

rank conditions leading to the first mapping approximation P(0).  Bandler, 

Biernacki, Chen, Grobelny and Hemmers (1994) assumed a linear mapping 

between the two spaces, i.e., 
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( ) ( ) ( )( )j j j
c f f= = +x P x B x c  (2-12)

where B (j) ∈ ℜn×n and c (j) ∈ ℜn×1. 

At the jth iteration, the sets of points in the two spaces may be expanded to 

contain, in general, mj points which are used to establish the updated mapping P(j).  

Since the analytical form of P is not available, SM uses the current approximation 

P(j), to estimate xf
* at the jth iteration as 

( 1) ( ) 1 *( ) ( )jm j
f cf

+ −≈ =x x P x  (2-13)

The process continues iteratively until Rf (
( 1)jm
f

+x ) is close enough to Rc 

(xc
*).  If so, P(j) is assumed close enough to our desired P.  If not, the set of base 

points in the fine space is augmented by ( 1)jm
f

+x , and ( 1)jm
c

+x , as determined by 

(2-11), augments the set of base points in the coarse space.  Upon termination, we 

set the SM design as in (2-13). 

This algorithm is simple but has pitfalls.  First, m0 upfront high-cost fine 

model analyses are needed.  Second, a linear mapping may not be valid for 

significantly misaligned models.  Third, nonuniqueness in the PE process may 

lead to an erroneous mapping estimation and algorithm breakdown. 

2.4 AGGRESSIVE SPACE MAPPING APPROACH  

The aggressive SM algorithm (Bandler, Biernacki, Chen, Hemmers and 

Madsen, 1995) incorporates a quasi-Newton iteration using the classical Broyden 

formula (1965).  A rapidly improved design is anticipated following each fine 
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model simulation, while the bulk of the computational effort (optimization, 

parameter extraction) is carried out in the coarse model space. 

2.4.1 Theory 

The aggressive SM technique iteratively solves the nonlinear system 

( )f = 0f x  (2-14)

for xf.  Note, from (2-10), that at the jth iteration, the error vector f (j) requires an 

evaluation of P(j)(xf
(j)).  This is executed indirectly through the PE (evaluation of 

xc
(j)).  Coarse model optimization produces *

cx . 

The quasi-Newton step in the fine space is given by 

( ) ( ) ( )j j j= −B h f  (2-15)

where B(j), the approximation of the mapping Jacobian Jp defined in (2-5), is 

updated using Broyden’s rank one update.  Solving (2-15) for h(j) provides the 

next iterate xf
(j+1) 

( 1) ( ) ( )j j j
f f

+ = +x x h  (2-16)

The algorithm terminates if ||f (j)|| becomes sufficiently small.  The output 

of the algorithm is an approximation to 1 *( )f c
−=x P x  and the mapping matrix B.  

The matrix B can be obtained in several ways. 

2.4.2 Unit Mapping 

A “steepest-descent” approach may succeed if the mapping between the 

two spaces is essentially represented by a shift.  In this case Broyden’s updating 
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formula is not utilized.  We can solve (2-15) keeping the matrix B(j) fixed at B(j) = 

I.  Bila, Baillargeat, Verdeyme, Guillon (1998) and Pavio (1999) utilized this 

special case. 

2.4.3 Broyden-like Updates 

An initial approximation to B can be taken as B(0) = I, the identity matrix.  

B(j) can be updated using Broyden’s rank one formula (1965) 

( +1) ( ) ( ) ( )
( 1) ( ) ( )

( ) ( )

j j j j
j j j T

j T j= ++ − −f f B hB B h
h h

 (2-17)

When h(j) is the quasi-Newton step, (2-17) can be simplified using (2-15) to 

( +1)
( 1) ( ) ( )

( ) ( )

j
j j j T

j T j= ++ fB B h
h h

 (2-18)

2.4.4 Jacobian Based Updates 

If we have exact Jacobians w.r.t. xf and xc at corresponding points we can 

use them to obtain B at each iteration through a least squares solution (Bandler, 

Mohamed, Bakr, Madsen and Søndergaard, 2002, Bakr, Bandler, Georgieva and 

Madsen, 1999) as given in (2-7). 

Note that B can be fed back into the PE process and iteratively refined 

before making a step in the fine model space. 

Hybrid schemes can be developed following the integrated gradient 

approximation approach to optimization (Bandler, Chen, Daijavad and Madsen, 

1988).  One approach incorporates finite difference approximations and the 
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Broyden formula (Bandler, Mohamed, Bakr, Madsen and Søndergaard, 2002).  

Finite difference approximations could provide initial estimates of Jf and Jc.  

These are then used to obtain a good approximation to B(0).  The Broyden formula 

is subsequently used to update B. 

2.4.5 Constrained Update 

On the assumption that the fine and coarse models share the same physical 

background, Bakr, Bandler, Madsen and Søndergaard (2000) suggested that B 

could be better conditioned in the PE process if it is constrained to be close to the 

identity matrix I by letting 

2
1 1 2

arg min [ ]T T T T T
n nη η= ∆ ∆

B
B e e b b  (2-19)

where η is a user-assigned weighting factor, ei and ∆bi are the ith columns of E 

and ∆B, respectively, defined as 

 f c= −

∆ = −

E J J B

B B I
 (2-20)

The analytical solution of (2-19) is given by 

2 1 2( ) ( )T T
c c c fη η−= + +B J J I J J I  (2-21)

2.4.6 Cheese-cutting Problem 

This simple physical example, depicted in Fig. 2.3, demonstrates the 

aggressive SM approach.  Our “response” is weight.  The designable parameter is 

length.  A density of one is assumed.  The goal is a desired weight. 
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Our idealized “coarse” model is a uniform cuboidal block (top block of 

Fig. 2.3).  The optimal length xc
* is easily calculated. 

Let the actual block (“fine” model) be similar but imperfect (second block 

of Fig. 2.3).  We take the optimal coarse model length as the initial guess for the 

fine model solution, i.e., cutting the cheese so that xf
(1) = xc

*.  This does not satisfy 

our goal.  We realign our coarse model to match the outcome of the cut.  This is a 

PE step in which we obtain a solution xc
(1) (third block of Fig. 2.3).  Thus, we 

have corresponding values xf
(1) and xc

(1).  Assuming a unit mapping, we can write 

for j = 1 

( 1) ( ) * ( )j j j
c cf fx x x x+ = + −  (2-22)

to predict the next fine model length (last block of Fig. 2.3). 

Note that we assume that the actual block (fine model) perfectly matches 

its coarse model, except for the missing piece; also that the first and second 

attempts (cuts) to achieve our goal are confined to a uniform section.  Our goal is 

achieved in one SM step, a result consistent with expectations. 

Observe that the length of the coarse model is shrunk during PE to match 

our first outcome.  The difference between the proposed initial length of the block 

and the shrunk length is applied through the (unit) mapping to predict a new cut.  

This procedure can be repeated until the goal is satisfied. 

2.5 PARAMETER EXTRACTION 

Parameter Extraction (PE) is crucial to successful SM.  Typically, an 
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optimization process extracts the parameters of a coarse model or surrogate to 

match the fine model.  Inadequate response data in the PE process may lead to 

nonunique solutions.  Sufficient data to overdetermine a solution should be 

sought.  For example, we may use responses such as real and imaginary parts of 

the S-parameters in the PE even though the design criteria may include the 

magnitude of S11 only. 

2.5.1 Single Point Parameter Extraction (SPE)  

The traditional SPE (Bandler, Biernacki, Chen, Grobelny and Hemmers, 

1994)is described by the optimization problem given in (2-11).  It is simple and 

works in many cases. 

  

(2) (1) * (1)
c cf fx x x x= + −

(2) (1) 1 * (1)( )c cf fx x P x x−= + −

PE

prediction

initial guess

optimal coarse model

* cx

(1) fx

(1) cx

(2) fx

(1) *
cfx x=

 
 
Fig. 2.3 Cheese-cutting problem solved by aggressive space mapping of model 

lengths. 
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2.5.2 Multipoint Parameter Extraction (MPE)  

The MPE approach (Bandler, Biernacki and Chen, 1996, Bandler, 

Biernacki, Chen and Omeragic, 1999) simultaneously matches the responses at a 

number of corresponding points in the coarse and fine model spaces.  A more 

reliable algorithm is presented by Bakr, Bandler, Biernacki, Chen and Madsen 

(1998) and improved by Bakr, Bandler and Georgieva (1999). 

2.5.3 Statistical Parameter Extraction 

Bandler, Biernacki, Chen and Omeragic suggest a statistical approach to 

PE.  The SPE process is initiated from several starting points and is declared 

unique if consistent extracted parameters are obtained.  Otherwise, the best 

solution is selected. 

2.5.4 Penalized Parameter Extraction 

Another approach is suggested in (Bandler, Biernacki, Chen and Huang, 

1997).  Here, the point xc
(j+1) is obtained by solving the penalized SPE process 

( 1) *( 1) arg min ( ) ( )jj
c c c f c cf

c
w++ = − + −R x R x x xx x

 (2-23)

where w is a user-assigned weighting factor. 

2.5.5 PE Involving Frequency Mapping 

Alignment of the models might be achieved by simulating the coarse 

model at a transformed set of frequencies (Bandler, Ismail, Rayas-Sánchez and 
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Zhang, 1999).  For example, an EM model of a microwave structure usually 

exhibits a frequency shift w.r.t. an idealized representation.  Also, available quasi-

static empirical models exhibit good accuracy over a limited range of frequencies, 

which can be alleviated by frequency transformation.  Frequency mapping 

introduces new degrees of freedom (Bakr, Bandler, Madsen, Rayas-Sánchez and 

Søndergaard, 2000). 

A suitable mapping can be as simple as frequency shift and scaling given 

by Bandler, Biernacki, Chen, Hemmers and Madsen (1995) 

( )c Pωω ω σω δ= +  (2-24)

where σ represents a scaling factor and δ is an offset (shift). 

The approach can be divided into two phases (Bandler, Biernacki, Chen, 

Hemmers and Madsen, 1995).  In Phase 1, we determine σ0 and δ0 that align Rf 

and Rc in the frequency domain.  This is done by finding 

0 0

0 0
         ,

( , )) ( ) ,  1, 2,...,arg min c c i f f i kσ ω δ
σ δ

+ − =R x R x  (2-25)

In Phase 2, the coarse model point xc is extracted to match Rc with Rf, starting 

with σ = σ0 and δ = δ0.  Three algorithms (Bandler, Biernacki, Chen, Hemmers 

and Madsen, 1995) can implement this phase: a sequential algorithm and two 

exact-penalty function algorithms, one using the l1 norm and the other is suitable 

for minimax optimization (Bandler, Biernacki, Chen, Hemmers and Madsen, 

1995). 
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2.5.6 Gradient Parameter Extraction (GPE) 

GPE (Bandler, Mohamed, Bakr, Madsen and Søndergaard, 2002) exploits 

the availability of exact Jacobians Jf and Jc.  At the jth iteration xc
(j) is obtained 

through a GPE process.  GPE matches not only the responses but also the 

derivatives of both models through the optimization problem. 

This approach reflects the idea of the MPE (Bandler, Biernacki and Chen, 

1996) process, but permits the use of exact or implementable sensitivity 

techniques (Bandler, Zhang and Biernacki, 1988, Bandler, Zhang, Song and 

Biernacki, 1990, Alessandri, Mongiardo and Sorrentino, 1993, Georgieva, Glavic, 

Bakr and Bandler, 2002a, 2002b, Nikolova, Bandler and Bakr, 2004).  Finite 

differences can be employed to estimate derivatives if exact ones are unavailable. 

2.5.7 Other Considerations 

We can broaden the scope of parameters that are varied in an effort to 

match the coarse (surrogate) and fine models.  We already discussed the scaling 

factor and shift parameters in the frequency mapping.  We can also consider 

neural weights in neural SM, preassigned parameters in implicit SM, mapping 

coefficients B, etc., as in the generalized SM tableau approach (Bandler, 

Georgieva, Ismail, Rayas-Sánchez and Zhang, 2001) and surrogate model-based 

SM (Bakr, Bandler, Madsen, Rayas-Sánchez and Søndergaard, 2000). 
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2.6 EXPANDED SPACE MAPPING EXPLOITING 
PREASSIGNED PARAMETERS 

A design framework for microwave circuits is proposed by Bandler, 

Ismail and Rayas-Sánchez (2002).  The original SM technique is expanded by 

allowing some preassigned parameters (which are not used in optimization) to 

change in some components of the coarse model (Bandler, Ismail and Rayas-

Sánchez, 2002).  Those components are referred to as “relevant” components and 

a method based on sensitivity analysis is used to identify them.  As a result, the 

coarse model can be calibrated to align with the fine model. 

The concept of calibrating coarse models (circuit based models) to align 

with fine models (typically an EM simulator) in microwave circuit design has 

been exploited by several authors (Bandler, Biernacki, Chen, Grobelny and 

Hemmers, 1994, Bandler, Georgieva, Ismail, Rayas-Sánchez and Zhang, 2001, Ye 

and Mansour, 1997).  In Bandler, Biernacki, Chen, Grobelny and Hemmers 

(1994) and Bandler, Georgieva, Ismail, Rayas-Sánchez and Zhang (2001), this 

calibration is performed by means of optimizable parameter space transformation 

known as space mapping.  In Ye and Mansour (1997), this is done by adding 

circuit components to nonadjacent individual coarse model elements.  Here, the 

SM technique is expanded to calibrating the coarse model by allowing some 

preassigned parameters (we call them key preassigned parameters (KPP)) to 

change in certain coarse model components. 
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Examples of KPP are dielectric constant and substrate height in microstrip 

structures.  It is assumed that the coarse model consists of several components 

such as transmission lines, junctions, etc.  The coarse model is decomposed into 

two sets of components.  The KPPs are allowed to change in the first set and are 

kept intact in the second set.  Ismail (2001) presents a method based on sensitivity 

analysis to perform this decomposition. 

At each iteration, the Expanded Space Mapping Design Framework 

(ESMDF) algorithm calibrates the coarse model by extracting the KPP such that 

the coarse model matches the fine model.  Then it establishes a mapping from 

some of the optimizable parameters to the KPP.  The mapped coarse model (the 

coarse model with the mapped KPP) is then optimized subject to a trust region 

size.  The optimization step is accepted only if it results in an improvement in the 

fine model objective function.  The trust region size is updated (Bakr, Bandler, 

Biernacki, Chen and Madsen, 1998, Alexandrov, Dennis, Lewis and Torczon, 

1998, Søndergaard, 1999) according to the agreement between the fine and 

mapped coarse model.  Therefore, the algorithm enhances the coarse model at 

each iteration either by extracting the KPP and updating the mapping or by 

reducing the region in which the mapped coarse model is to be optimized.  The 

algorithm terminates if one of certain relevant stopping criteria is satisfied.  

Possible practical stopping criteria are elaborated in (Ismail, 2001).  Some 

solutions to overcome the problems associated with the KPP extraction process is 

also presented. 



PhD Thesis – Q.S. Cheng McMaster – Electrical and Computer Engineering  
 

28 

2.7 OUTPUT SPACE MAPPING 

The “output” or response SM concept could address a residual 

misalignment in the optimal responses of the coarse and fine models.  For 

example, a coarse model such as Rc = x2 will never match the fine model Rf = x2 – 

2 around its minimum with any mapping xc=P(xf), xc, xf ∈ ℜ.  An “output” or 

response mapping can overcome this deficiency by introducing a transformation 

of the coarse model response based on a Taylor approximation (Dennis, 2001, 

2002).  Current research is directed to this topic (Bandler, Cheng, Gebre-Mariam, 

Madsen, Pedersen and Søndergaard, 2003). 

2.8 DISCUSSION OF SURROGATE MODELING AND 
SPACE MAPPING 

2.8.1 Building and Using Surrogates (Dennis) 

In his summarizing comments (Dennis, 2000) on the Workshop on 

Surrogate Modelling and Space Mapping (2000) Dennis integrates the 

terminology “coarse” and “fine” from the SM community with his own.  Dennis 

uses the term “surrogate” to denote the function s to which an optimization 

routine is applied in lieu of applying optimization to the fine model f.  Another 

piece of terminology he uses is “surface” to denote a function (it may be vector 

valued) trained to fit or to smooth fine model data. 

Dennis mentions several ways to choose fine model data sites, also known 

as experimental designs.  The surfaces are generated from the data sites.  He notes 
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that “surfaces (are) designed to correct a coarse model and to be combined with 

the coarse model to act as a surrogate in optimization.”  Then he used the surface 

concept to interpret SM.  Here, “The surrogate is the coarse model applied to the 

image of the fine model parameters under the space mapping surface.” 

Dennis discusses “heuristics” that optimize the surrogate and (perhaps) 

correct the surface part of the surrogate.  He classifies SM in terms of “local space 

mappings and methods that use poised designs implicitly or explicitly 

approximate derivatives.  The former do this by Broyden updates and the latter by 

the derivatives of the surface.” 

Dennis’s definition of surrogate agrees with our definition in the sense that 

the surrogate is an enhanced coarse model.  Dennis regards the mapping as a 

surface. 

We think of the mapping as that part of the surrogate, an approximation to 

which needs to be updated in each iteration.  The mapping (surface) is the same 

during all iterations. 

2.8.2 Building and Using Surrogates 

In an editorial, Bandler and Madsen (2001) emphasize that “surrogate 

optimization” refers to the process of applying an optimization routine directly to 

a coarse model, a surrogate, which is a function (or a model) that replaces the 

original fine model.  Some surrogates attempt to fit the fine model directly (e.g., 

by polynomials), in other cases the information gained during the optimization 
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process is used to train the surrogate to fit the data derived from evaluation of the 

fine model (e.g., by artificial neural networks).  In the SM approach, coarse 

models may be enhanced by mapping (transforming, correcting) the optimization 

variables.  In this case, surrogates of increasing fidelity are developed during the 

optimization process. 

2.8.3 The Space Mapping Concept 

The SM-based optimization algorithms we review have four major steps.  

The first is fine model simulation (verification).  The fine model is verified and 

checked to see if it satisfies the design specifications.  The second is PE, in which 

the coarse model is (re)aligned with the fine model to permit (re)calibration.  The 

third is updating or (re)mapping the surrogate using the information obtained 

from the first two steps.  At last the aligned, calibrated, mapped or enhanced 

coarse model (the surrogate) is (re)optimized.  This suggests a new fine model 

design iterate. 

2.8.4 Space Mapping Framework Optimization Steps 

A flowchart of general SM is shown in Fig. 2.4. 

Step 1 Select a coarse model suitable for the fine model. 

Step 2 Select a mapping process (original, aggressive SM, neural or ISM, 

etc.) 

Step 3 Optimize the coarse model (initial surrogate) w.r.t. design 

parameters. 
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Step 4 Simulate the fine model at this solution. 

Step 5 Terminate if a stopping criterion is satisfied, e.g., response meets 

specifications. 

Step 6 Apply parameter extraction using preassigned parameters 

(Bandler, Ismail and Rayas-Sánchez, 2002), neuron weights 

(Bandler, Ismail, Rayas-Sánchez and Zhang, 1999), coarse space 

parameters, etc. 

Step 7 Rebuild surrogate (may be implied within Step 6 or Step 8). 

Step 8  Reoptimize the “mapped coarse model” (surrogate) w.r.t. design 

parameters (or evaluate the inverse mapping if it is available). 

Step 9  Go to Step 4. 

Comments 

As shown in Fig. 2.4, we use symbol ,  and  to represent Step 6, 7 

and 8, respectively.  We let operator (·) represent implied.  We can see that 

rebuilding the surrogate (Step 7) may be implied in either the PE process (Step 6) 

or in the reoptimization (Step 8).  Steps 6, 7 and 8 are separate steps in neural 

space mapping (training data is obtained by parameter extraction, the surrogate is 

rebuilt by the neural network training process and prediction is obtained by 

evaluating the neural network).  However, Step 7 may be implied in either the 

parameter extraction process (Step 6), e.g., ISM, where the surrogate is rebuilt by 

extracting preassigned parameters, or in the prediction (Step 8), e.g., aggressive 

SM, where the surrogate is not explicitly rebuilt.  Step 6 can be termed modeling 
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for some cases. 

2.8.5 Space Mapping Classification 

TABLE 2.1 classifies SM.  In this table, a number of SM technologies are 

categorized in 3 types: explicit/input, implicit and output SM.  Their properties 

are in two categories: model alignment and fine model prediction.  Each category 

has a few sub-categories to specify the details of the SM techniques.  TABLE 2.2 

Start

simulate fine model

select models and
mapping framework

optimize coarse model

criterion
satisfied

yes

no

End

optimize surrogate
(invert mapping)

parameter extraction

update surrogate
(update mapping)

may be
implied

Neural Space Mapping           
Implicit Space Mapping         ( )
Aggressive Space Mapping     ( )

 
Fig. 2.4 Space mapping framework. 
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shows the explanations of these categories. 

TABLE 2.1 
SPACE MAPPING CLASSIFICATION  
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1 applicable but not implemented 
2 extract neural weights 
3 extract preassigned parameters 
4 for single-layer perceptron case 
5 output SM only 
6 implicit SM only 
7 modeling approach, can be used in optimization 
8 by solving system of equations
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TABLE 2.2 
SPACE MAPPING CATEGORY EXPLANATION 

 

category explanation 

using upfront fine model points  using more than one fine model point to 
start the design 

fine model gradient required using fine model Jacobian in the loop 

multi-point PE using several points to extract parameters 

by design parameters extracting designable parameters in PE 

by non-designable parameters extracting non-designable parameters in PE 

model generation a calibrated model (surrogate) is available 
for modeling purposes 

linear mapping the mapping is linear 

nonlinear mapping the mapping is nonlinear 

by optimization surrogate obtain the prediction by optimizing the 
surrogate 

by inverting mapping obtain the prediction by inverting the 
mapping i.e. solving a system of equations 

by evaluating inverse mapping obtain the prediction by evaluating the 
inverse mapping 

 

2.9 CONCLUSIONS 

In this chapter we reviewed the SM techniques and the SM-oriented 

surrogate (modeling) concept and their applications in engineering design 

optimization.  The simple CAD methodology follows the traditional experience 
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and intuition of engineers, yet appears to be amenable to rigorous mathematical 

treatment.  The aim and advantages of SM are described.  The general steps for 

building surrogates and SM are indicated.  Proposed approaches to SM-based 

optimization include the original SM algorithm, the Broyden-based aggressive 

space mapping, trust region aggressive space mapping, hybrid aggressive space 

mapping, neural space mapping and implicit space mapping.  Parameter 

extraction is an essential subproblem of any SM optimization algorithm.  It is 

used to align the surrogate with the fine model at each iteration.  Different 

approaches to enhance the uniqueness of parameter extraction are reviewed, 

including the gradient parameter extraction process. 

A design framework we call expanded space mapping exploiting 

preassigned parameters is reviewed.  This technique expands original space 

mapping allowing some preassigned parameters (which are not used in 

optimization) to change in some components of the coarse model.  The mapped 

coarse model is then optimized subject to a trust region size. 

SM concepts and an SM framework are discussed.  SM techniques are 

categorized through their properties. 
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Chapter 3  
 
IMPLICIT SPACE MAPPING 
OPTIMIZATION 

3.1 INTRODUCTION 

In this chapter, we introduce the idea of implicit space mapping (ISM) 

(Bandler, Cheng, Nikolova and Ismail, 2004) and show how it relates to the well-

established (explicit) SM between coarse and fine device models.  Through 

comparison a general SM concept is proposed.  A simple ISM algorithm is 

implemented.  It is illustrated on a contrived “cheese-cutting problem” and is 

applied to EM-based microwave modeling and design.  An auxiliary set of 

parameters (selected preassigned parameters) is extracted to match the coarse 

model with the fine model.  The calibrated coarse model (the surrogate) is then 

(re)optimized to predict a better fine model solution.  This is an easy SM 

technique to implement since the mapping itself is embedded in the calibrated 

coarse model and updated automatically in the procedure of parameter extraction.  

We illustrate our approach through optimization of an HTS filter using Agilent 

ADS with Momentum and Agilent ADS with Sonnet’s em. 

In Bandler, Biernacki, Chen, Grobelny and Hemmers (1994), Bandler, 

Biernacki, Chen, Hemmers and Madsen (1995), Bandler, Ismail, Rayas-Sánchez 
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and Zhang (1999), Bakr, Bandler, Madsen, Rayas-Sánchez and Søndergaard 

(2000), a calibration is performed through a mapping between optimizable design 

parameters of the fine model and precisely corresponding parameters of the 

coarse model such that their responses match.  This mapping is iteratively 

updated.  In Ye and Mansour (1997), the coarse model is calibrated against the 

fine model by adding circuit components to nonadjacent individual coarse model 

elements.  The component values are updated iteratively.  The ESMDF algorithm 

(Bandler, Ismail and Rayas-Sánchez, 2002) calibrates the coarse model by 

extracting certain preassigned parameters such that corresponding responses 

match.  It establishes an explicit mapping from the optimizable design parameters 

to preassigned (non-optimized) parameters. 

The ISM approach does not establish an explicit mapping.  We suggest an 

indirect approach.  In each iteration we extract selected preassigned parameters to 

match the coarse model with the fine model.  With these preassigned parameters 

now fixed, we reoptimize the calibrated coarse model.  Then we assign its 

optimized design parameters to the fine model.  We repeat this process until the 

fine model response is sufficiently close to the target response.  The preassigned 

parameters, which are updated, calibrate the “mapping”. 

Examples of preassigned parameters are physical parameters such as 

dielectric constant in microstrip structures, geometrical parameters such as 

substrate height or mathematical concepts such as frequency transformation 

parameters.  Typically, they are not optimized but clearly they influence the 
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responses.  As in Bandler, Ismail and Rayas-Sánchez (2002) we allow the 

preassigned parameters (of the coarse model) to change in some components and 

keep them intact in others.  We implement our technique in Agilent ADS (2000). 

3.2 SPACE MAPPING TECHNOLOGY  

We categorize space mapping into (1) the original or explicit SM and (2) 

implicit space mapping.  Both share the concept of “coarse” and “fine” models.  

Both use an iterative approach to update the mapping and predict the new design. 

3.2.1 Explicit Space Mapping 

In explicit SM, we should be able to draw a clear distinction between a 

physical coarse model and the mathematical mapping that links it to the fine 

coarse
model

fine
model

space
mapping

design
parameters responses

responses

surrogate
 

 
Fig. 3.1 Illustration of explicit SM. 
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model.  See Fig. 3.1.  Here, the mapping together with the coarse model constitute 

a “surrogate”.  In each iteration, only the mapping is updated, while the physical 

coarse model is kept fixed.  If the inverse mapping is available at each iteration, 

then the solution (best current prediction of the fine model) can be evaluated 

directly.  Otherwise an optimization is performed on the mapping itself (not the 

mapped coarse model) to obtain the prediction.  Examples of explicit SM are the 

original SM (Bandler, Biernacki, Chen, Grobelny and Hemmers, 1994), 

aggressive SM (Bandler, Biernacki, Chen, Hemmers and Madsen, 1995), neural 

SM (Bandler, Ismail, Rayas-Sánchez and Zhang, 1999), etc. 

3.2.2 Implicit Space Mapping 

Sometimes identifying the mapping is not obvious: it may be buried 

within the coarse model.  If the “mapping” is integrated with the coarse model, 

the (mapped) coarse model becomes a calibrated coarse model or enhanced coarse 

model, which we also call a “surrogate”.  See Fig. 3.2(a) (the rectangular box).  In 

the next step, the calibrated or enhanced coarse model is optimized to obtain an 

“inverse” mapped solution.  If the implicitly mapped model is not sufficiently 

good after calibration, we may add an explicit mapping or output mapping 

(Bandler, Cheng, Dakroury, Mohamed, Bakr, Madsen and Søndergaard, 2004, 

Bandler, Cheng, Gebre-Mariam, Madsen, Pedersen and Søndergaard, 2003).  See 

Fig. 3.2(b).   

Both explicit and implicit SM iteratively calibrate the mapped model when 

approaching the fine model solution.  Interestingly, the explicit mapping could be 
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expressed in the form of ISM by using a simple mathematical substitution.  We 

discuss this in Section 3.3. 
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(b) 
 
Fig. 3.2 Illustration of ISM, (a) implicit mapping within the surrogate, (b) with 

extra mapping and output mapping. 
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3.3 IMPLICIT SPACE MAPPING (ISM): THE CONCEPT 

3.3.1 Implicit Space Mapping 

At the jth iteration, we denote by *( )j
cx  a coarse model optimum point 

(usually designable parameters) for given ( )jx , a set of other (auxiliary) 

parameters, for example, preassigned parameters.  The corresponding coarse 

model (the surrogate) response vector is *( ) ( )( , )j j
c cR x x . 

As indicated in Fig. 3.3, at the jth iteration, ISM aims at establishing an 

implicit mapping Q between the spaces fx , cx  and x .  We solve 

( , , )f c = 0Q x x x  (3-1)

w.r.t. x  to obtain ( )jx  indirectly by an optimization algorithm, during which we 

set 

*( 1)j
f c c

−= =x x x  (3-2)

such that 

*( 1) *( 1) ( )( ) ( , )j j j
f c c c

− −≈R x R x x  (3-3)

over a region in the parameter space.  We think of this as a modeling procedure, 

also referred to as parameter extraction in this case. 

As in Fig. 3.4, ISM then utilizes the mapping to obtain a prediction of fx .  

Here, we set 
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Fig. 3.3 Illustration of ISM modeling.  Here, Q = 0 is solved for x. 
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Fig. 3.4 Illustration of ISM prediction.  Here, Q = 0 is solved for *
cx . 
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( )j=x x  (3-4)

where ( )jx  is obtained from the foregoing modeling procedure.  Since the 

mapping is usually nonlinear and implicit, the prediction is obtainable by 

optimizing a mapped coarse model or surrogate, i.e., we find 

*( ) ( )arg min ( ( , ))j j
c c c

c
Ux R x x

x
 (3-5)

Then the fine model parameters are assigned (predicted) as 

*( )j
f c=x x  (3-6)

In general, ISM optimization obtains a space-mapped design fx  whose 

response approximates an optimized cR  target.  fx  is a solution, found 

iteratively, of the nonlinear system (3-1) which is enforced through a parameter 

extraction (modeling) w.r.t. x, and subsequent prediction of the fine model 

solution (through optimization of the calibrated coarse model). 

3.3.2 Interpretation and Insight 

As mentioned before, the mapping is buried in the coarse model.  

However, we can synthesize examples to develop insight into ISM, i.e., we can 

construct and connect a known mapping to a physical coarse model to study the 

behavior of the mapping.  See Fig. 3.5.  A set of intermediate parameters xi is 

introduced for this purpose. 

In a physically based simulation, design parameters such as physical 

length and width of a microstrip line can be mapped to intermediate parameters 
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such as electrical length and characteristic impedance through well-known 

empirical formulas (Pozar, 1998).  The mapping may, in that case, be extractable 

(detachable), and it can be (re)optimized to obtain an “inverse” mapped solution 

(the prediction).  For a library of microstrip components, the transformation from 

circuit parameters to physical parameters may be implicit, and the intermediate 

parameters may not be directly accessible.  The prediction is then obtained 

through optimizing suitably (the preassigned parameters of) calibrated microstrip 

components. 

Assuming the intermediate parameters ix  are accessible, a corresponding 

hidden mapping in the modeling procedure can be thought of as finding 

( ) *( 1)( , )j j
i c

−=x P x x  (3-7)

to match the coarse and fine model responses. 

coarse
model

fine
model

space
mapping

design
parameters responses

responses

surrogate

intermediate
parameters

 

Fig. 3.5 Synthetic illustration of ISM optimization with intermediate parameters. 
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Let *
ix  be the intermediate solution producing coarse model optimum *

cR .  

Correspondingly, the prediction procedure can then be expressed as 

*( ) 1 * ( )( , )j j
c i

−=x P x x  (3-8)

3.3.3 Relationship with Explicit Space Mapping 

The first step in all SM-based algorithms results in an optimal coarse 

model design *
cx  for given nominal preassigned parameters x.  The corresponding 

response is denoted by *
cR .  Once obtained, *

cx  is fixed, as seen in Fig. 3.6(a).  In 

ISM, on the other hand, *( )j
cx  starts with *

cx  and depends on the current value of 

x and will change from iteration to iteration through reoptimization, as in Fig. 

3.6(b). 

An interesting point that relates the ISM to the explicit mapping is when 

we set the preassigned parameters at jth iteration 

( ) ( ) ( ) *( 1)j j j j
c c c∆ −= −x x x x  (3-9)

where ( )j
cx  is obtained through parameter extraction.  We can show that after the 

modeling procedure, the prediction is 

( ) ( 1) * ( )j j j
c cf f

−= + −x x x x  (3-10)

This agrees with the steps of aggressive space mapping (Bandler, Biernacki, 

Chen, Hemmers and Madsen, 1995) using a unit mapping.  The ISM in this case, 

is consistent with the original SM with the difference, highlighted in Fig. 3.6, that 

ISM extracts c∆x  rather than cx  during parameter extraction. 
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In the case of neuro SM (Bandler, Ismail, Rayas-Sánchez and Zhang, 

1999), if we set 

=x w  (3-11)

where w represents the weights of the neurons, then by associating the artificial 

neural networks (ANN) with the coarse model, neuro space mapping is 

representable by ISM.  Preassigned parameters x could also represent other 

variables such as the space mapping parameters B, c, σ, and δ, in the SM-based 

surrogate approach (Bakr, Bandler, Madsen, Rayas-Sánchez and Søndergaard, 

2000), in frequency SM (Bandler, Biernacki, Chen, Hemmers and Madsen, 1995), 

•
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 (a) (b) 

Fig. 3.6 When we set the preassigned parameters c∆=x x , ISM is consistent with 
the explicit SM process.  (a) The original SM.  (b) The ISM process 
interpreted in the same spaces. 
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etc. 

3.3.4 Cheese-Cutting Illustration 

The ISM process can be demonstrated by a simple example, the cheese-

cutting problem, depicted in Fig. 3.7.  The goal is to deliver a segment of cheese 

of weight 30 units (target “response”).  The “coarse” model is a cuboidal block 

(top block in Fig. 3.7).  A unity density and a cross-section of 3 by 1 units are 

assumed.  The “fine” model has a corresponding cuboidal shape with a defect of 6 

missing units of weight (the second block from top). 

A length of 10 units will give 30 units of weight for the coarse model (top 

block in Fig. 3.7).  An unbiased cut of the same length in the fine model weighs 

24 units (fine model evaluation).  The width (preassigned parameter) of the 

(coarse) model is shrunk to 2.4 units to match the fine model weight (parameter 

extraction).  A reoptimization of the length of the calibrated coarse model (the 

surrogate) is performed to achieve the goal.  Then the new length of 12.5 units is 

assigned to the irregular block (fine model).  The procedure continues in this 

manner until the irregular block is sufficiently close to the desired weight of 30 

units.  From the illustration, we see that the error reaches 1% after 3 iterations. 

ISM, in this case, is an indirect approach.  A direct approach would 

extract the length in the parameter extraction process. 

The weight of the coarse cheese model can be written as 

( , )cR l w l w h= × ×  
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Fig. 3.7 Cheese-cutting problem⎯a demonstration of the ISM algorithm. 
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where l, w and h are the length, width and height, respectively, as in Fig. 3.8.  An 

intermediate variable xi is the area 

ix w l= ×  

We can see that each prediction procedure returns xi to a fixed *
ix  = 30, which 

produces the optimal coarse model design.  We can feed the parameters and 

variables of the cheese-cutting problem in implicit SM diagram as shown in Fig. 

3.9. 

3.3.5 Three-section 3:1 Microstrip Transformer Illustration 

We use an example of the three-section microstrip impedance transformer 

(Bakr, Bandler, Biernacki and Chen, 1997).  The filter structure is shown in Fig. 

3.10(a).  The fine model utilizes a full-wave electromagnetic simulator (Agilent 

Momentum (2000)).  The coarse model utilizes the empirical transmission line 

circuit models available in the circuit simulator Agilent ADS Schematic (2000) 

and the circuit parameters are converted (implicitly mapped) into physical 

dimensions of the microstrip lines using well-known empirical formulas (Pozar, 

1998).  The coarse model is shown in Fig. 3.10(b).  The designable parameters are 

the width and physical length of each microstrip line.  The intermediate variables xi 

are the circuit parameters. 
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Fig. 3.8 Cheese-cutting problem⎯illustration of an intermediate parameter, 
ix w l= × . 

 

coarse
model

fine
model

space
mapping

l

Rc

surrogate

xi

Rf

w
h

 
 

Fig. 3.9 Implicit space mapping diagram for cheese problem. 
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Fig. 3.10 Three-section 3:1 microstrip transformer illustration. 
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3.4 IMPLICIT SPACE MAPPING (ISM): AN ALGORITHM 

In Fig. 3.11 we represent a microwave circuit whose coarse model is 

decomposed.  We catalog the preassigned parameters into two sets as in (Bandler, 

Ismail and Rayas-Sánchez, 2002).  In Set A, we vary certain preassigned 

parameters x.  In Set B, we keep preassigned parameters 0x  fixed.  We can follow 

the sensitivity approach of Bandler, Ismail and Rayas-Sánchez (2002) to formally 

select components for Sets A and B. 

As implied in Fig. 3.11(b), in each iteration of the parameter extraction 

process we set 

( )j
c f= x x  (3-12)

Notice also that we do not explicitly establish a mapping between the optimizable 

parameters and the preassigned parameters.  This contrasts with Bandler, Ismail 

and Rayas-Sánchez (2002), where the mapping is explicit (see Fig. 3.11(c)).  

Therefore, our proposed approach is easier to implement in commercial 

microwave simulators. 

The algorithm is summarized as follows 

Step 1 Select candidate preassigned parameters x as in Bandler, Ismail 

and Rayas-Sánchez (2002) or through experience. 

Step 2 Set j = 0 and initialize x(0). 

Step 3 Obtain the optimal (calibrated) coarse model parameters by 

solving (3-5). 
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Fig. 3.11 Calibrating (optimizing) the preassigned parameters x in Set A results 
in aligning the coarse model (b) or (c) with the fine model (a).  In (c) 
we illustrate the ESMDF approach (Bandler, Ismail and Rayas-
Sánchez, 2002), where ( )⋅P  is a mapping from optimizable design 
parameters to preassigned parameters. 
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Step 4 Predict ( )j
fx  from (3-6). 

Step 5 Simulate the fine model at ( )j
fx . 

Step 6 Terminate if a stopping criterion (e.g., response meets 

specifications) is satisfied. 

Step 7 Calibrate the coarse model by extracting (parameter extraction 

step) the preassigned parameters x (noting (3-12)) 

( 1) ( ) ( )arg min ( ) ( , )j+ j j
f cf f= −x R x R x x

x
 (3-13)

Step 8 Increment j and go to Step 3. 

3.5 FREQUENCY IMPLICIT SPACE MAPPING  

Frequency implicit SM is a special kind of implicit SM.  In each iteration, 

we extract selected frequency transforming preassigned parameters to match the 

updated surrogate model with the fine model.  Then we assign its optimized 

design parameters to the fine model.  We repeat this process until the fine model 

response is sufficiently close to the target (optimal original coarse model) 

response. 

Algorithm 

Step 1 Select a coarse model and a fine model. 

Step 2 Select the frequency transformation and initialize associated 

preassigned parameters.  For example, we can use a linear 

transformation of frequency cω σω δ= +  (Bandler, Biernacki, 
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Chen, Hemmers and Madsen, 1995).  The preassigned parameters 

are then [σ δ]T, initialized as [1 0]T. 

Step 3 Optimize the coarse model (initial surrogate) w.r.t. design 

parameters. 

Step 4 Simulate the fine model at this solution. 

Step 5 Terminate if a stopping criterion is satisfied, e.g., response meets 

specifications. 

Step 6 Apply parameter extraction (PE) to extract frequency transforming 

preassigned parameters. 

Step 7 Reoptimize the “frequency mapped coarse model” (surrogate) 

w.r.t. design parameters (or evaluate the inverse mapping if it is 

available). 

Step 8 Go to Step 4. 

Examples involving frequency implicit SM have been investigated. 

3.6 HTS FILTER EXAMPLE 

We consider the HTS bandpass filter of Bandler, Biernacki, Chen, 

Getsinger, Grobelny, Moskowitz and Talisa (1995). The physical structure is 

shown in Fig. 3.12(a).  Design variables are the lengths of the coupled lines and 

the separation between them, namely, 

1 2 3 1 2 3[      ]T
f S S S L L L=x  

The substrate used is lanthanum aluminate with εr= 23.425, H= 20 mil and 
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substrate dielectric loss tangent of 0.00003.  The length of the input and output 

lines is L0=50 mil and the lines are of width W= 7 mil.  We choose εr and H as the 

preassigned parameters of interest, thus x0=[20 mil 23.425]T.  The design 

specifications are 

21 0.05 S ≤  for ω ≥ 4.099 GHz and for ω ≤ 3.967 GHz 

21 0.95 S ≥  for 4.008 GHz ≤ ω ≤ 4.058 GHz 

This corresponds to 1.25% bandwidth. 

Our Agilent ADS (2000) coarse model consists of empirical models for 

single and coupled microstrip transmission lines, with ideal open stubs.  See Fig. 

3.12(b).  Set A (Fig. 3.11(b)) consists of the three coupled microstrip lines.  

Notice the symmetry in the HTS structure, i.e., coupled lines “CLin5” are 

identical to “CLin1” and “CLin4” to “CLin2”.  Here, Set B (Fig. 3.11(b)) is 

empty.  The preassigned parameter vector is 

1 1 2 2 3 3[      ]T
r r rH H Hε ε ε=x  

The fine model is simulated first by Agilent Momentum (2000).  The 

relevant responses at the initial solution are shown in Fig. 3.13(a), where we 

notice severe misalignment.  The algorithm requires 2 iterations (3 fine model 

simulations).  The total time taken is 26 min (one fine model simulation takes 

approximately 9 min on an Athlon 1100 MHz).  Responses at the final iteration 

are shown in Fig. 3.13(b).  Sonnet em (2001)has also been used as a fine model.   
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Fig. 3.12 The HTS filter (Bandler, Biernacki, Chen, Getsinger, Grobelny, 
Moskowitz and Talisa, 1995), (a) the physical structure, (b) the coarse 
model as implemented in Agilent ADS (2000). 
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It takes 74 minutes to complete a sweep on an Intel P4 2200 MHz machine.  The 

initial solution and the final result in 1 iteration (2 fine model simulations) are 

shown in Fig. 3.14(a) and (b), respectively.  TABLE 3.1 shows initial and final  
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Fig. 3.13 The Momentum fine (○) and optimal coarse ADS model (⎯) responses 
of the HTS filter at the initial solution (a) and at the final iteration (b) 
after 2 iterations (3 fine model evaluations). 
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designs.  TABLE 3.2 shows the variation in the preassigned (coarse model) 

parameters. 

The parameter extraction process uses real and imaginary S parameters 

and the ADS quasi-Newton optimization algorithm, while coarse model optima 

are obtained by the ADS minimax optimization algorithm. 
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Fig. 3.14 The Sonnet em fine (○) and optimal coarse ADS model (⎯) responses 
of the HTS filter at the initial solution (a) and at the final iteration (b) 
after one iteration (2 fine model evaluations). 
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3.7 CONCLUSIONS 

Based on a general concept, we present an effective technique for 

microwave circuit modeling and design w.r.t. full-wave EM simulations.  We vary 

preassigned parameters in a coarse model to align it with the EM (fine) model.  

We believe this is the easiest to implement “Space Mapping” technique offered to 

date.  The HTS filter design is entirely carried out by Agilent ADS and 

Momentum (3 frequency sweeps) or Sonnet em, (only 2 frequency sweeps) with 

no matrices to keep track of.  A general SM concept is presented which enables us 

to verify that our implementation is correct and that no redundant steps are used. 
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TABLE 3.1 
AGILENT MOMENTUM/SONNET em 

OPTIMIZABLE PARAMETER VALUES OF THE HTS FILTER 
 

Parameter Initial solution 
(mil) 

Solution (mil) 
Agilent Momentum 

Solution (mil) 
Sonnet em 

L1 189.65 187.10 186.80 
L2 196.03 191.30 192.68 
L3 189.50 186.97 185.86 
S1 23.02 22.79 22.19 
S2 95.53 93.56 88.12 
S3 104.95 104.86 103.42 

 
 

TABLE 3.2 
THE INITIAL AND FINAL PREASSIGNED PARAMETERS OF THE 

CALIBRATED COARSE MODEL OF THE HTS FILTER 
 

Preassigned 
parameters  Original values Final iteration 

Momentum Final iteration em 

H1 20 mil 19.80 mil 18.79 mil 
H2 20 mil 19.05 mil 17.42 mil 
H3 20 mil 19.00 mil 17.67 mil 
εr1 23.425 24.404 23.81 
εr2 23.425 24.245 24.45 
εr3 23.425 24.334 23.94 
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Chapter 4  
 
RESPONSE RESIDUAL SPACE 
MAPPING TECHNIQUES 

4.1 INTRODUCTION 

As presented in Chapter 2, the space mapping (SM) concept exploits 

coarse models (usually computationally fast circuit-based models) to align with 

fine models (typically CPU intensive full-wave EM simulations) (Bandler, Cheng, 

Dakroury, Mohamed, Bakr, Madsen and Søndergaard, 2004).  The novel implicit 

space mapping (ISM) concept, presented in Chapter 3, exploits preassigned 

parameters such as the dielectric constant and substrate height (Bandler, Cheng, 

Nikolova and Ismail, 2004).  In the parameter extraction process these parameters 

were exploited to match the fine model. 

In this chapter, we present a significant improvement to ISM.  Based on an 

explanation of residual misalignment close to the optimal fine model solution, 

where a classical Taylor model is seen to be better than SM, our new approach 

further fine-tunes the surrogate by exploiting an “response residual space” 

mapping (RRSM). 

The RRSM we suggest is very simple to apply.  It is consistent with the 

idea of pre-distorting design specifications to permit the fine model greater 
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latitude—anticipating violations and making the specifications correspondingly 

stricter.  Our RRSM exploits this to fine tune the surrogate model.  An accurate 

design of an HTS filter, easily implemented in Agilent ADS (2000), emerges after 

only four EM simulations using ISM and RRSM with sparse frequency sweeps 

(two iterations of ISM, followed by one application of the RRSM). 

In this chapter we also broaden the concept of auxiliary (preassigned) 

parameters to frequency transformation parameters.  See, e.g. (Bandler, Biernacki, 

Chen, Hemmers and Madsen, 1995).  We embed a linear mapping to relate the 

actual (fine model) frequency and the transformed (coarse model) frequency into 

the surrogate. 

At the end of this chapter, we present a microwave design framework for 

implementing an implicit and RRSM approach.  The RRSM surrogate is matched 

to the fine model through parameter extraction.  An intuitive “multiple cheese-

cutting” example demonstrates the concept.  For the first time, an ADS 

framework implements the SM steps interactively.  A six-section H-plane 

waveguide filter design emerges after four iterations, using the implicit SM and 

RRSM optimization entirely within the design framework.  We use sparse 

frequency sweeps and do not use the Jacobian of the fine model.  

4.2 RESPONSE RESIDUAL SPACE MAPPING 

The RRSM addresses residual misalignment between the optimal coarse 

model response and the true fine model optimum response Rf (xf
*).  (In SM, an 
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exact match between the fine model and the mapped coarse model is unlikely.)  

For example, a coarse model such as Rc = x2 will never match the fine model Rf = 

x2 – 2 around its minimum with any mapping xc=P(xf), xc, xf ∈ ℜ.  An “output” or 

response mapping can overcome this deficiency by introducing a transformation 

of the coarse model response based on a Taylor approximation (Dennis, 2001, 

2002). 

Fig. 4.1 depicts model effectiveness plots (Søndergaard, 2003) for a two-

section capacitively loaded impedance transformer (Søndergaard, 2003) at the 

final iterate xf
(i), approximately [74.23 79.27]T.  Centered at h = 0, the light grid 

shows ( ) ( )|| ( ) ( ( )) ||i i
f c pf f+ − +R x h R L x h .  This represents the deviation of the 

mapped coarse model (using the Taylor approximation to the mapping, i.e., a 

linearized mapping) from the fine model.  The dark grid shows 

( ) ( )|| ( ) ( ) ||i i
f ff f+ − +R x h L x h .  This is the deviation of the fine model from its 

classical Taylor approximation.  It is seen that the Taylor approximation is most 

accurate close to xf
(i) whereas the mapped coarse model is best over a large region. 

Response residual SM aims at establishing a mapping O between sR  

(output mapped surrogate response) and cR (mapped coarse model response) 
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( )s c=R O R  (4-1)

such that 

s f≈R R  (4-2)

We can predict the fine model solution using this surrogate. 

4.3 IMPLICIT AND RESPONSE RESIDUAL SPACE 
MAPPING SURROGATE 

Our proposed algorithm starts with ISM (Bandler, Cheng, Nikolova and 

 

xf1 xf2 

 

Fig. 4.1 Error plots for a two-section capacitively loaded impedance transformer 
(Søndergaard, 2003) exhibiting the quasi-global effectiveness of space 
mapping (light grid) versus a classical Taylor approximation (dark 
grid).  See text. 
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Ismail, 2004).  If the calibration (PE) step in (Bandler, Cheng, Nikolova and 

Ismail, 2004) does not improve the match, which will eventually happen close to 

xf
*, then we create a surrogate with response Rs.  In this chapter we consider a 

mapping of the form 

{ }1 2( ) ( ) , , ,s c c c mλ λ λ ∆= +,R O R R x x diag R  (4-3)

where 

*( )( ) ( , )i
f f c c= −∆R R x R x x  (4-4)

is the residual between the mapped coarse model response after PE and the fine 

model response, and where the λj are user-defined weighting parameters, 

normally unity. 

The coarse model parameters xc are obtained by (re)optimizing the 

surrogate (4-3) to give 

*( 1) arg min ( ( ( , )))i
c c c

c
U+x O R x x

x
 (4-5)

Then we predict an update to the fine model solution as 

*( 1)i
f c

+=x x  (4-6)

 

4.4 HTS FILTER EXAMPLE 

Again, we consider the HTS bandpass filter of (Bandler, Biernacki, Chen, 

Getsinger, Grobelny, Moskowitz and Talisa, 1995) as in Chapter 3.  The physical 

structure is shown in Section 3.5.  Design variables are the lengths of the coupled 
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lines and the separations between them.  The design specifications are the same as 

described in Section 3.5.  The fine model is simulated by Agilent Momentum 

(2000). 

The relevant responses at the initial solution are shown in Fig. 4.2 (a), 

where we notice severe misalignment.  Fig. 4.2(a) and Fig. 4.3(b) show the 

response after running the ISM algorithm.  After two iterations (3 fine model 
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Fig. 4.2 The fine (○) and optimal coarse model (⎯) magnitude responses of the 
HTS filter, at the final iteration using ISM (a), followed by one iteration 
of RRSM (b). 
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simulations), the calibration step does not improve further, as seen in Fig. 4.3(b).  

Since we believe we are close to the true optimal solution, we introduce the 

output space mapping and use the output space mapped response in (4-3) with λj 

= 0.5, j = 1, 2, …, m as initial values.  After one iteration of RRSM, we obtain the 

improved response shown in Fig. 4.2(b) and Fig. 4.3(c).  This is achieved in only 

4 fine model evaluations.  The total time taken is 35 min (one fine model 

simulation takes approximately 9 min on an Athlon 1100 MHz).  TABLE 4.1 

shows initial and final designs.  The initial and final preassigned parameters of the 

calibrated coarse model of the HTS filter have the same values as in (Bandler, 

Cheng, Nikolova and Ismail, 2004), i.e., x(3) = [24.404  19.80 mil  24.245  19.05 

mil  24.334  19.00 mil]T. 

The PE uses real and imaginary S parameters and the ADS quasi-Newton 

optimization algorithm, while coarse model and RRSM surrogate optima are 

TABLE 4.1 
OPTIMIZABLE PARAMETER VALUES OF THE HTS FILTER 

 

Parameter Initial solution 
Solution reached 

by the ISM 
algorithm 

Solution by the 
ISM and RRSM 

L1 189.65 187.10 178.28 
L2 196.03 191.30 200.86 
L3 189.50 186.97 177.99 
S1 23.02 22.79 20.18 
S2 95.53 93.56 86.15 
S3 104.95 104.86 85.17 

All values are in mils 
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obtained by the ADS minimax optimization algorithm. 
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Fig. 4.3 The fine (○) and optimal coarse model (⎯) responses of the HTS filter 
in dB at the initial solution (a), at the final iteration using ISM (b), and 
at the final iteration using ISM and RRSM (c). 
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4.5 RESPONSE RESIDUAL SPACE MAPPING APPROACH 

In this section we introduce the response residual space mapping (RRSM) 

approach.  It differs from the approach described in (Bandler, Cheng, Gebre-

Mariam, Madsen, Pedersen and Søndergaard, 2003).  Here, we match the 

response residual SM surrogate with the fine model in a parameter extraction (PE) 

process.  A novel and simple “multiple cheese-cutting” problem is used as an 

illustration.  An implementation in an ADS (2003) design framework is presented 

in the next chapter.  Entirely in ADS, a good six-section H-plane waveguide filter 

(Young and Schiffman, 1963, Matthaei, Young and Jones, 1964) design is 

achieved after only five EM simulations (Agilent HFSS (2000)) or four iterations. 

4.5.1 Surrogate 

The response residual surrogate is a calibrated (implicitly or explicitly 

space mapped) coarse model plus an output or response residual as defined in the 

previous section.  The residual is a vector whose elements are the differences 

between the calibrated coarse model response and the fine model response at each 

sample point after parameter extraction.  The surrogate is shown in Fig. 4.4.  Each 

residual element (sample point) may be weighted using a weighting parameter λj, 

j = 1…m, where m is the number of sample points. 
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In the parameter extraction, we match the previous output residual SM 

surrogate (instead of the calibrated coarse model of (Bandler, Cheng, Gebre-

Mariam, Madsen, Pedersen and Søndergaard, 2003) to the fine model at each 

sample point. 

4.5.2 Multiple Cheese-cutting Problem 

We develop a physical example suitable for illustrating the optimization 

process.  Our “responses” are the weights of individual cheese slices.  The 

designable parameter is the length of the top slice [see Fig. 4.5(a)].  A density of 

one is assumed.  The goal is to cut through the slices to obtain a weight for each 

one as close to a desired weight s as possible.  Note that we measure the length 

fine
model
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model

calibrated
coarse model

design
 parameters

design parameters
from previous

iteration

-

+

residual
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calibrated
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Fig. 4.4 Illustration of the RRSM surrogate. 
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from the right-hand end.  We cut on the left-hand side (the broken line). 

The coarse model involves 3 slices of the same height x, namely, the 

preassigned parameter shown in Fig. 4.5(a).  The lengths of the two lower slices 

are c units shorter than the top one.  The optimal length xc
* can be calculated to 

minimize the differences between the weights of the slices and the desired weight 

s.  We use minimax optimization.  The responses of the coarse model are given by  

1

2

3

1
( ) 1
( ) 1

c c

c c

c c

R x x
R x x c
R x x c

= ⋅ ⋅

= ⋅ − ⋅

= ⋅ − ⋅
 

The fine model is similar but the lower two slices are f1 and f2 units 

shorter, respectively, than the top slice [Fig. 4.5(b)].  The heights of the slices are 

x1, x2 and x3, respectively.  The corresponding responses of the fine model are  

cx

x

x

x

fx
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Fig. 4.5 Multiple cheese-cutting problem: (a) the coarse model (b) and fine model. 
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Fig. 4.6 “Multiple cheese-cutting” problem: implicit SM and RRSM optimization: 

step by step. 
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We demonstrate the implicit and RRSM optimization process.  We set c = 

2 and f1 = f2 = 4.  The specification s is set to 10.  The heights of the slices are 

fixed at unity for the fine model, i.e., x1 = x2 = x3 = 1.  The coarse model 

preassigned parameter x is initially unity.  Fig. 4.6 shows the first two iterations of 

the algorithm, step by step.  The RRSM algorithm converges to the optimal fine 

model solution as shown in Fig. 4.7. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10 -15 

10 -10 

10 -5 

10 0 
||x

f -
 x

f* || 

iteration  
Fig. 4.7 Parameter difference between the RRSM design and minimax direct 

optimization.  Finally, xf  = xf
* = 12. 
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4.6 H-PLANE WAVEGUIDE FILTER DESIGN 

4.6.1 Optimization Steps 

We use the ADS framework exploiting implicit SM and RRSM to design 

an H-plane filter.  The following iterations are employed: two iterations of 

implicit SM to drive the design to be close to the optimal solution; one implicit 

SM and RRSM iteration using weighting parameters λj = 0.5, j = 1…m (λj ≤ 1 

because the optimizer has difficulty reoptimizing the surrogate with the full 

residual added); a second implicit SM and RRSM iteration with the full residual 

added. 

4.6.2 Six-Section H-plane Waveguide Filter 

The six-section H-plane waveguide filter (Young and Schiffman, 1963, 

Matthaei, Young and Jones, 1964) is shown in Fig. 4.8(a).  The setup of the 

problem follows Bakr, Bandler, Georgieva and Madsen (1999).  The design 

parameters are the lengths and widths: {L1, L2, L3, W1, W2, W3, W4}.  Design 

specifications are  

|S11| ≤ 0.16, for frequency range 5.4≤ ω ≤ 9.0 GHz; 

|S11| ≥ 0.85, for frequency ω ≤ 5.2 GHz;  

|S11| ≥ 0.5,   for frequency ω ≥ 9.5 GHz.   

We use 23 sample points. 

A waveguide with a cross-section of 1.372 × 0.622 inches (3.485 × 1.58 
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cm) is used.  The six sections are separated by seven H-plane septa, which have a 

finite thickness of 0.02 inches (0.508 mm).  The coarse model consists of lumped 

inductances and waveguide sections.  There are various approaches to calculate 

the equivalent inductive susceptance corresponding to an H-plane septum.  We 

utilize a simplified version of a formula due to Marcuvitz (1951) in evaluating the 

inductances.  The coarse model is simulated using ADS (2003) as in Fig. 4.8(b). 

We the select waveguide width of each section as the preassigned 

parameter to calibrate the coarse model.  The frequency coefficient of each 
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Fig. 4.8 (a) Six-section H-plane waveguide filter (b) ADS coarse model. 
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inductor, for convenience PI, is also harnessed as a preassigned parameter to 

compensate for the suceptance change.  The fine model exploits Agilent HFSS.  

One frequency sweep takes 2.5 minutes on an Intel Pentium 4 (3 GHz) computer 

with 1 GB RAM and running in Windows XP Pro.  Fig. 4.9(a) shows the fine 

model response at the initial solution.  Fig. 4.9(b) shows the fine model response 

after running the algorithm using the Agilent HFSS simulator.  Since no Jacobian 

is needed, the total time taken for five fine model simulations is 15 minutes on an 

Intel P4 3 GHz computer.  TABLE 4.2 shows the initial and optimal design 

parameter values of the six-section H-plane waveguide filter. 

4.7 CONCLUSIONS 

We propose significant improvements to implicit space mapping for EM-

based modeling and design.  Based on an explanation of residual misalignment, 

our new approach further fine-tunes the surrogate by exploiting an “response 

residual space” mapping.  The required HTS filter models and RRSM surrogate 

are easily implemented by Agilent ADS and Momentum with no matrices to keep 

track of.  An accurate HTS microstrip filter design solution emerges after only 

four EM simulations with sparse frequency sweeps.  We present a RRSM 

modeling technique that matches the RRSM surrogate with the fine model.  A new 

“multiple cheese-cutting” design problem illustrates the concept.  Our approach is 

implemented entirely in the ADS framework.  A good H-plane filter design 

emerges after only five EM simulations using the implicit and RRSM with sparse 
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frequency sweeps and no Jacobian calculations. 
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Fig. 4.9 H-plane filter optimal coarse model response (⎯), and the fine model 
response at: (a) initial solution (○); (b) solution reached via RRSM after 4 
iterations (○). 
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TABLE 4.2 
OPTIMIZABLE PARAMETER VALUES OF THE SIX-SECTION 

H-PLANE WAVEGUIDE FILTER 
 

Parameter Initial solution Solution reached via 
RRSM 

W1 0.555849 0.499802 
W2 0.519416 0.463828 
W3 0.5033 0.44544 
W4 0.49926 0.44168 
L1 0.591645 0.630762 
L2 0.660396 0.644953 
L3 0.67667 0.665449 

all values are in inches 



81 

 
Chapter 5  
 
IMPLEMENTABLE SPACE 
MAPPING DESIGN FRAMEWORK 

5.1 INTRODUCTION 

The required interaction between coarse model, fine model and 

optimization tools makes SM difficult to automate within existing simulators.  A 

set of design or preassigned parameters and frequencies have to be sent to the 

different simulators and corresponding responses retrieved.  Software packages 

such as OSA90 or Matlab can provide coarse model analyses as well as 

optimization tools.  Empipe (1997) and Momentum_Driver (Ismail, 2001) have 

been designed to drive and communicate with Sonnet’s em (2001) and Agilent 

Momentum (2000) as fine models.  Aggressive SM optimization of 3D structures 

(Bandler, Biernacki and Chen, 1996) has been automated using a two-level 

Datapipe (1997) architecture of OSA90.  The Datapipe technique allows the 

algorithm to carry out nested optimization loops in two separate processes while 

maintaining a functional link between their results (e.g., the next increment to xf is 

a function of the result of parameter extraction). 

We present an ADS schematic framework for SM.  The steps of the 

framework are listed.  It uses Agilent ADS circuit models as coarse models.  ADS 
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has a suite of built-in optimization tools.  The ADS component S-parameter file 

enables S-parameters to be imported in Touchstone file format from different EM 

simulators (fine model) such as Sonnet’s em and Agilent Momentum.  Imported 

S-parameters can be matched with the ADS circuit model (coarse model) 

responses.  This PE procedure can be done simply by proper setup of the ADS 

optimization components (optimization algorithm and goals).  These major steps 

of SM are friendly for engineers to apply.  We implement these steps upfront in 

ADS Schematic designs.  In the algorithm iteration we fill each design with 

proper data and optimize it.   

In this chapter we provide a brief summary of applications of SM by other 

researchers and engineers, thereby placing our own work into context. 

5.2 ADS SCHEMATIC DESIGN FRAMEWORK FOR SM 

5.2.1 ADS Schematic Design Framework 

Term
Term2

Term
Term1

S2P
SNP1

21

Ref

 
 

Fig. 5.1 S2P (2-Port S-Parameter File) symbol with terminals. 
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Agilent ADS (2003) has a huge library of circuit models that can be used 

as “coarse” models.  ADS also has a suite of easy-to-use optimization tools, e.g., 

random search, gradient search, Quasi-Newton search, discrete search, genetic 

algorithm.  An S-parameter file SnP in ADS can import data files (S-parameters) 

in Dataset or Touchstone format.  Here, n is the port number.  Fig. 5.1 is a symbol 

of 2-port S-Parameter File component S2P with terminals.  Many EM simulators 

(“fine” model) such as Sonnet’s em (2001), Agilent Momentum (2000), and 

Agilent HFSS (2000) support Touchstone file format.  Using this file, we import 

S-parameters and match them with the ADS circuit model (coarse model) 

responses in the PE procedure.  The residual between the calibrated coarse model 

and fine model can also be obtained using the SnP file and MeasEqn 

(Measurement Equation) component.  These major steps of SM are friendly for 

engineers to apply. 

5.2.2 ADS Schematic Design Framework for SM 

Step 1 Set up the coarse model in ADS schematic. 

Step 2 Optimize the coarse model using the ADS optimizer. 

Step 3 Copy and paste the parameters into the parameterized fine model 

(Agilent Momentum, HFSS/Empipe3D (2000), or Sonnet’s em).  

In ADS, the Momentum fine model can also be generated using the 

Generate/Update Layout command. 

Step 4 Simulate the fine model and save the responses in Touchstone 
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format (Agilent Momentum, HFSS, or Sonnet’s em) or Dataset 

(Momentum). 

Step 5 If stopping criteria are satisfied, stop. 

Step 6 Parameter extraction 

(a) Import the responses to the ADS schematic using SnP 

component under Data Items. 

(b) Set up ADS (calibrated) coarse model or response residual SM 

(RRSM) surrogate to match the SnP component. 

(c) Run ADS optimization to perform parameter extraction.   

Comment: Here, you may extract the coarse model design 

parameter or the preassigned parameters to implement explicit 

(original or aggressive SM) or implicit space mapping, 

respectively. 

Step 7 Predict the next fine model solution by 

(a) Explicit SM: transfer extracted parameters to MATLAB (2002) 

(or other scientific computing tool) and calculate a prediction 

based on the algorithm in (Bandler, Biernacki, Chen, Grobelny 

and Hemmers, 1994, Bandler, Biernacki, Chen, Hemmers and 

Madsen, 1995), or, 

(b) Implicit SM: reoptimize the calibrated coarse model w.r.t. 

design parameters to predict the next fine model design, and/or, 

(c) RRSM: reoptimize the surrogate (calibrated coarse model plus 
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response residual) w.r.t. design parameters to predict the next 

fine model design. 

Step 8 Update the fine model design and go to Step 4. 

We implement implicit and response residual SM optimization in the ADS 

schematic framework in an interactive way.  The fine model is Agilent 

momentum, HFSS, or Sonnet’s em. 

5.2.3 Three-Section Microstrip Transformer 

An example of ADS implementation ISM optimization is the three-section 

microstrip impedance transformer (Bakr, Bandler, Biernacki and Chen, 1997) 

(Fig. 5.2) as we described in Section 3.3.  The coarse model is shown in Fig. 5.3.  

The design specifications are 

⏐S11⏐ ≤ 0.11  for 5 GHz ≤ ω ≤ 15 GHz 

L1 L2 L3 

W1 W3 W2

 
 

Fig. 5.2 The three-section 3:1 microstrip impedance transformer. 
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The designable parameters are the width and physical length of each 

microstrip line.  Here, the reflection coefficient S11 is used to match the two model 

responses.  The fine model is an Agilent Momentum model.  The designable 

parameters for the fine model are the widths and physical lengths of the three 

microstrip lines.  The thickness of the dielectric substrate is 0.635 mm (25 mil) 

and its relative permittivity is 9.7.  The effect of nonideal dielectric is considered 

 

VAR
Electrical_length_to_phy sical_length

E3=4*L3/1000*90*sqrt(epslon_e3)*f 0/c0*1e9
E2=4*L2/1000*90*sqrt(epslon_e2)*f 0/c0*1e9
E1=4*L1/1000*90*sqrt(epslon_e1)*f 0/c0*1e9
f 0=10

Eqn
Var

S_Param
SP1

Step=100 MHz
Stop=15 GHz
Start=5 GHz

S-PARAMETERS

VAR
Width_to_Z0

Z3= if  ((W3/h)<=1) then ((60/sqrt(epslon_e3))* ln(8*h/W3+ W3/(4*h))) else (120*pi/(sqrt(epslon_e3)*(W3/h+1.393+0.667*ln(W3/h+1.444)))) endif
epslon_e3=(epslon_r+1)/2+(epslon_r-1)/(2* sqrt(1+12*h/W3))
Z2= if  ((W2/h)<=1) then ((60/sqrt(epslon_e2))* ln(8*h/W2+ W2/(4*h))) else (120*pi/(sqrt(epslon_e2)*(W2/h+1.393+0.667*ln(W2/h+1.444)))) endif
epslon_e2=(epslon_r+1)/2+(epslon_r-1)/(2* sqrt(1+12*h/W2))
Z1= if  ((W1/h)<=1) then ((60/sqrt(epslon_e1))* ln(8*h/W1+ W1/(4*h))) else (120*pi/(sqrt(epslon_e1)*(W1/h+1.393+0.667*ln(W1/h+1.444)))) endif
epslon_e1=(epslon_r+1)/2+(epslon_r-1)/(2* sqrt(1+12*h/W1))
h=0.635
epslon_r=9.7

Eqn
Var

VAR
Optimizable_Variables_in_mil

L3=L3mil*mil2mm
L2=L2mil*mil2mm
L1=L1mil*mil2mm
W3=W3mil*mil2mm
W2=W2mil*mil2mm
W1=W1mil*mil2mm
mil2mm=0.0254
L3mil=120 opt{ 0.0001 to 1200 }
L2mil=120 opt{ 0.0001 to 1200 }
L1mil=120 opt{ 0.0001 to 1200 }
W3mil=2 opt{ 0.001 to 400 }
W2mil=6 opt{ 0.001 to 400 }
W1mil=15 opt{ 0.001 to 400 }

Eqn
Var

Goal
OptimGoal1

RangeMax[1]=15GHz
RangeMin[1]=5GHz
RangeVar[1]="f req"
Weight=1
Max=-20
Min=
SimInstanceName="SP1"
Expr="db(mag(S11))"

GOAL Optim
Optim1

UseAllGoals=y es
StatusLev el=4
DesiredError=-1000
P=2
MaxIters=1000
ErrorForm=MM
OptimTy pe=Minimax

OPTIM

TLIN
TL3

F=f 0 GHz
E=E3
Z=Z3 Ohm

TLIN
TL2

F=f 0 GHz
E=E2
Z=Z2 Ohm
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F=f 0 GHz
E=E1
Z=Z1 Ohm

Term
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Z=150 Ohm
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Term
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Z=50 Ohm
Num=1

optimization 
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specification frequency  
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design  
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Fig. 5.3 Coarse model optimization. Coarse model optimization of the three-
section impedance transformer.  The coarse model is optimized using 
the minimax algorithm. 

 

 
 

Fig. 5.4 Fine model simulated in ADS Momentum. 
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by setting the loss tangent to 0.002.  We use 11 frequency points in the sweep. 

The first step is to obtain an optimal coarse model design using the ADS 

Schematic (minimax) optimization utilities as in Fig. 5.3.  In this schematic, we 

show the starting point (in mils) of the coarse model design parameter values.  

The coarse model parameter conversion components implement well-known 

empirical formulas (Pozar, 1998).  The schematic will sweep S-parameters in the 

band.   When we “simulate” the schematic, ADS provides an optimal coarse 

model solution.  We apply the obtained design parameters to the fine model (Fig. 

5.4).  To achieve this, we can create a Momentum layout from schematic layout 
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Fig. 5.5 Coarse (—) and fine (○) model responses |S11| at the initial solution of 
the three-section transformer. 
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directly or copy and paste the parameters to the parameterized Momentum fine 

model.  In the fine model preassigned parameters are (always) kept fixed at 

nominal values.   

We obtain the fine model response as Fig. 5.5.  Imported by S2P (2-Port 

S-Parameter File), the fine model real and imaginary responses are used in the 

parameter extraction (calibration) step (Fig. 5.6).  In this step, the preassigned 

parameters of coarse model are calibrated to match the fine and coarse model 

responses.  The goal is to match the real and imaginary parts of S11 at the same 

 

Goal
OptimGoal2

RangeMax[1]=15GHz
RangeMin[1]=5GHZ
RangeVar[1]="freq"
Weight=1
Max=0.001
Min=
SimInstanceName="SP1"
Expr="abs(imag(S11)-imag(S33))"

GOAL

Goal
OptimGoal3

RangeMax[1]=15GHz
RangeMin[1]=1GHZ
RangeVar[1]="freq"
Weight=1
Max=0.001
Min=
SimInstanceName="SP1"
Expr="abs(real(S11)-real(S33))"

GOAL

VAR
Width_to_Z0

Z3= if ((W3/h3)<=1) then ((60/sqrt(epslon_e3))* ln(8*h3/W3+ W3/(4*h3))) else (120*pi/(sqrt(epslon_e3)*(W3/h3+1.393+0.667*ln(W3/h3+1.444)))) endif
epslon_e3=(epslon_r3+1)/2+(epslon_r3-1)/(2* sqrt(1+12*h3/W3))
Z2= if ((W2/h2)<=1) then ((60/sqrt(epslon_e2))* ln(8*h2/W2+ W2/(4*h2))) else (120*pi/(sqrt(epslon_e2)*(W2/h2+1.393+0.667*ln(W2/h2+1.444)))) endif
epslon_e2=(epslon_r2+1)/2+(epslon_r2-1)/(2* sqrt(1+12*h2/W2))
Z1= if ((W1/h1)<=1) then ((60/sqrt(epslon_e1))* ln(8*h1/W1+ W1/(4*h1))) else (120*pi/(sqrt(epslon_e1)*(W1/h1+1.393+0.667*ln(W1/h1+1.444)))) endif
epslon_e1=(epslon_r1+1)/2+(epslon_r1-1)/(2* sqrt(1+12*h1/W1))

Eqn
Var

VAR
Electrical_length_to_physical_length

E3=4*L3/1000*90*sqrt(epslon_e3)*f0/c0*1e9
E2=4*L2/1000*90*sqrt(epslon_e2)*f0/c0*1e9
E1=4*L1/1000*90*sqrt(epslon_e1)*f0/c0*1e9
f0=10

Eqn
Var

S2P
SNP1

ImpDeltaFreq=1 GHz
ImpMaxFreq=15 GHz

21

Ref

Term
Term4

Z=150 Ohm
Num=4

Term
Term3

Z=50 Ohm
Num=3

Optim
Optim2

UseAllGoals=yes
Seed= 
SetBestValues=yes
NormalizeGoals=no
FinalAnalysis="None"
StatusLevel=4
DesiredError=-1000
P=2
MaxIters=100000
ErrorForm=L2
OptimType=Quasi-Newton

OPTIM

S_Param
SP1

Step=1000 MHz
Stop=15 GHz
Start=5 GHz

S-PARAMETERS

VAR
Optimizable_Variables_in_mil

L3=L3mil*mil2mm
L2=L2mil*mil2mm
L1=L1mil*mil2mm
W3=W3mil*mil2mm
W2=W2mil*mil2mm
W1=W1mil*mil2mm
mil2mm=0.0254
L3mil=123.844 noopt{ 0.0001 to 1200 }
L2mil=120.918 noopt{ 0.0001 to 1200 }
L1mil=117.616 noopt{ 0.0001 to 1200 }
W3mil=1.70331 noopt{ 0.001 to 400 }
W2mil=5.91547 noopt{ 0.001 to 400 }
W1mil=14.8217 noopt{ 0.001 to 400 }

Eqn
Var

VAR
Preassigned_Parameters

epslon_r3=9.7 opt{ 0.001 to 1000 }
epslon_r2=9.7 opt{ 0.001 to 1000 }
epslon_r1=9.7 opt{ 0.001 to 1000 }
h3=0.635 opt{ 0.001 to 1000 }
h2=0.635 opt{ 0.001 to 1000 }
h1=0.635 opt{ 0.001 to 1000 }

Eqn
Var

TLIN
TL3

F=f0 GHz
E=E3
Z=Z3 Ohm

TLIN
TL2

F=f0 GHz
E=E2
Z=Z2 Ohm
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F=f0 GHz
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Fig. 5.6 The calibration of the coarse model of the three-section impedance 
transformer.  This schematic extracts preassigned parameters x.  The 
coarse and fine models are within the broken line.  The goal is to match 
the coarse and fine model real and imaginary S11 from 5 to 15 GHz.  The 
optimization algorithm uses the Quasi-Newton method. 
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time.  A quasi-Newton algorithm is used to perform this procedure. 

Supposedly we obtain a good match between the fine and coarse model, 

i.e., a set of preassigned parameter values providing the best match are found, we 

proceed to the next step.  With fixed preassigned parameters the new coarse 

model (surrogate) is reoptimized w.r.t. the original specification.  This is done as 

in Fig. 5.7.  This schematic is similar to Fig. 5.3, but with a different set of 

preassigned parameter values.  The ADS minimax algorithm is used again in this 

case. 

We apply the prediction to the fine model again.  The fine model 

simulation gives a satisfying result as in Fig. 5.8.  It takes 2 fine model  

simulations. 

 

VAR
Width_to_Z0

Z3= if ((W3/h3)<=1) then ((60/sqrt(epslon_e3))* ln(8*h3/W3+ W3/(4*h3))) else (120*pi/(sqrt(epslon_e3)*(W3/h3+1.393+0.667*ln(W3/h3+1.444)))) endif
epslon_e3=(epslon_r3+1)/2+(epslon_r3-1)/(2* sqrt(1+12*h3/W3))
Z2= if ((W2/h2)<=1) then ((60/sqrt(epslon_e2))* ln(8*h2/W2+ W2/(4*h2))) else (120*pi/(sqrt(epslon_e2)*(W2/h2+1.393+0.667*ln(W2/h2+1.444)))) endif
epslon_e2=(epslon_r2+1)/2+(epslon_r2-1)/(2* sqrt(1+12*h2/W2))
Z1= if ((W1/h1)<=1) then ((60/sqrt(epslon_e1))* ln(8*h1/W1+ W1/(4*h1))) else (120*pi/(sqrt(epslon_e1)*(W1/h1+1.393+0.667*ln(W1/h1+1.444)))) endif
epslon_e1=(epslon_r1+1)/2+(epslon_r1-1)/(2* sqrt(1+12*h1/W1))

Eqn
Var

S_Param
SP1

Step=100 MHz
Stop=15 GHz
Start=5 GHz

S-PARAMETERS

Optim
Optim1

UseAllGoals=yes
Seed=
SetBestValues=yes
NormalizeGoals=no
FinalAnalysis="None"
StatusLevel=4
DesiredError=-1000
P=2
MaxIters=1000
ErrorForm=MM
OptimType=Minimax

OPTIM

Goal
OptimGoal1

RangeMax[1]=15GHz
RangeMin[1]=5GHz
RangeVar[1]="freq"
Weight=1
Max=-20
Min=
SimInstanceName="SP1"
Expr="db(mag(S11))"

GOAL

VAR
Optimizable_Variables_in_mil

L3=L3mil*mil2mm
L2=L2mil*mil2mm
L1=L1mil*mil2mm
W3=W3mil*mil2mm
W2=W2mil*mil2mm
W1=W1mil*mil2mm
mil2mm=0.0254
L3mil=123.844 opt{ 0.0001 to 1200 }
L2mil=120.918 opt{ 0.0001 to 1200 }
L1mil=117.616 opt{ 0.0001 to 1200 }
W3mil=1.70331 opt{ 0.001 to 400 }
W2mil=5.91547 opt{ 0.001 to 400 }
W1mil=14.8217 opt{ 0.001 to 400 }

Eqn
Var

VAR
Preassigned_Parameters

epslon_r3=9.98638 noopt{ 0.001 to 1000 }
epslon_r2=10.4046 noopt{ 0.001 to 1000 }
epslon_r1=10.6273 noopt{ 0.001 to 1000 }
h3=0.675311 noopt{ 0.001 to 1000 }
h2=0.741192 noopt{ 0.001 to 1000 }
h1=0.73242 noopt{ 0.001 to 1000 }

Eqn
VarVAR

Electrical_length_to_physical_length

E3=4*L3/1000*90*sqrt(epslon_e3)*f0/c0*1e9
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Fig. 5.7 Reoptimization of the coarse model of the three-section impedance 

transformer using the fixed preassigned parameter values obtained from 
the previous calibration (parameter extraction).  This schematic uses the 
minimax optimization algorithm.  The goal is to minimize |S11| of the 
calibrated coarse model. 
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Fig. 5.8 Optimal coarse (—) and fine model (○) responses |S11| for the three-
section transformer using Momentum after 1 iteration (2 fine model 
simulations).  The process satisfies the stopping criteria. 

 
 

TABLE 5.1 
OPTIMIZABLE PARAMETER VALUES OF THE THREE-SECTION 

IMPEDANCE TRANSFORMER 

Parameter Initial solution Solution reached 
via ISM 

W1 14.8217 15.354 
W2 5.91547 6.34991 
W3 1.70331 1.70155 
L1 117.616 113.749 
L2 120.918 117.141 
L3 123.844 121.733 

all values are in mils 
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5.2.4 Response Residual SM Implementation of HTS Filter 

The Response Residual SM example of the HTS filter is described in 

Chapter 4.  We discuss the implementation technique in this section.  A coarse 

model is optimized as in the previous sub-section.  A fine model is simulated 

using the coarse model design parameters.  The coarse model is calibrated to 

match the fine model response.  In Fig. 5.9, previous coarse model is the 
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Fig. 5.9 Implementation of response residual space mapping in Agilent ADS. 
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calibrated coarse model in which the design parameters and preassigned 

parameters are fixed.  The fine model response is imported from the fine model 

simulation.  The residual is calculated using weighted misalignment between the 

fine model and previous coarse model.  The new surrogate is generated using 

residual and the calibrated coarse model.  We optimize the surrogate to predict 

next fine model design. 

5.3 REVIEW OF OTHER SM IMPLEMENTATIONS AND 
APPLICATIONS 

5.3.1 RF and Microwave Implementation 

The required interaction between coarse model, fine model and 

optimization tools makes SM difficult to automate within existing simulators.  A 

set of design or preassigned parameters and frequencies have to be sent to the 

different simulators and corresponding responses retrieved.  Software packages 

such as OSA90 or MATLAB can provide coarse model analyses as well as 

optimization tools.  Empipe (1997) and Momentum_Driver (Ismail, 2001) have 

been designed to drive and communicate with Sonnet’s em (2001) and Agilent 

Momentum (2000) as fine models.  Aggressive SM optimization of 3D structures 

(Bandler, Biernacki and Chen, 1996) has been automated using a two-level 

Datapipe (OSA90/hope, 1997) architecture of OSA90.  The Datapipe technique 

allows the algorithm to carry out nested optimization loops in two separate 

processes while maintaining a functional link between their results (e.g., the next 
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increment to xf  is a function of the result of parameter extraction). 

SMX system 

The object-oriented SMX (Bakr, Bandler, Cheng, Ismail and Rayas-

Sánchez, 2001) (see Appendix A) optimization system implements the surrogate 

model-based SM algorithm (Bakr, Bandler, Madsen, Rayas-Sánchez and 

Søndergaard, 2000), which is automated for the first time.  SMX has been linked 

with Empipe and Momentum_Driver to drive Sonnet’s em and Agilent 

Momentum, as well as with user-defined simulators. 

Six-Section H-Plane Waveguide Filter 

Bakr (2000) consider to apply SM technique in designing a six-section H-

plane waveguide filter (Young and Schiffman, 1963, Matthaei, Young and Jones, 

1964).  The coarse model consists of lumped inductances and dispersive 

transmission line sections.  It is simulated using OSA90/hope.  There are various 

approaches to calculate the equivalent inductive susceptance corresponding to an 

H-plane septum.  We utilize a simplified version of a formula due to Marcuvitz 

(1951) in evaluating the inductances.  The fine model exploits HP HFSS Ver. 5.2 

through HP Empipe3D.  A good result is obtained using HASM (Bakr, Bandler, 

Georgieva and Madsen, 1999). 

Automatic Model Generation, Neural Networks and Space Mapping 

Devabhaktuni, Chattaraj, Yagoub and Zhang (2003) propose a technique 

for generating microwave neural models of high accuracy using less accurate 

data.  The proposed Knowledge-based Automatic Model Generation (KAMG) to 
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make extensive use of the coarse generator and minimal use of the fine generator. 

Space Mapping Implementation of Harscher et al. 

This technique combines EM simulations with a minimum prototype filter 

network (surrogate).  Harscher, Ofli, Vahldieck and Amari (2002) present two 

examples: a direct coupled 4-resonator E-plane filter and a dual-mode filter.  The 

EM solver is based on Mode Matching. 

CAD Technique for Microstrip Filter Design 

Ye and Mansour (1997) apply SM steps to reduce the simulation overhead 

required in microstrip filter design.  They illustrated their technique through an 

HTS filter. 

SM Models for RF Components 

Snel (2001) proposed the SM technique in RF filter design for power 

amplifier circuits.  He suggests building a library of fast, space-mapped RF filter 

components.  These components can be incorporated in the design of ceramic 

multilayer filters for different center frequencies in wireless communication 

systems.  The library is implemented in the Agilent ADS design framework. 

Multilayer Microwave Circuits (LTCC) 

Pavio, Estes and Zhao (2002) apply typical SM techniques in optimization 

of high-density multilayer RF and microwave circuits.  They apply the SM 

approach to a three-pole bandstop filter, Low Temperature Co-firing Ceramic 

(LTCC) capacitor, LTCC three-section bandstop filter and an LTCC broadband 

tapered transformer. 
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Cellular Power Amplifier Output Matching Circuit 

Lobeek (2002) demonstrates the design of a DCS/PCS output match of a 

cellular power amplifier using SM.  The design uses a 6-layer LTCC substrate, a 

silicon passive integration die, discrete surface mount designs as well as bond 

wires.  Lobeek also applies the SM model to monitor the statistical behavior of 

the design w.r.t. parameter values.  Monte Carlo analysis with EM accuracy based 

on the space-mapped model shows good agreement with manufactured data. 

A Multilevel Design Optimization Strategy 

Safavi-Naeini, Chaudhuri, Damavandi and Borji (2002) consider a 3-level 

design methodology for complex RF/microwave structure using an SM concept.  

Their technique is implemented in the WATML-MICAD software.  Applications 

include a parallel-coupled line filter, combline-type filters and multiple-coupled 

cavity filters. 

LTCC RF Passive Circuits Design 

Wu, Zhang, Ehlert and Fang (2003) present an explicit knowledge 

embedded space mapping optimization technique. They apply the proposed 

scheme on the design of low temperature cofired ceramic (LTCC) RF passive 

circuits, along with the required CAD formulas (knowledge) for typical embedded 

multilayer passives.  Wu, Zhao, Wang and Cheng (2004) propose a concept called 

the dynamic coarse model and apply to the optimization design of LTCC 

multilayer RF circuits with the aggressive SM technique. 
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Waveguide Filter Design 

Steyn, Lehmensiek and Meyer (2001)consider the design of irises in 

multi-mode coupled cavity filters.  With the aggressive SM technique only 4 

coupling coefficients were sufficient to obtain the same error. 

Dielectric Resonator Filter and Multiplexer Design 

Ismail, Smith, Panariello, Wang and Yu (2004) apply SM optimization 

with FEM (fine model) to design a 5-pole dielectric resonator loaded filter and a 

10-channel output multiplexer.  The proposed approach reduces overall tuning 

time compared with traditional techniques. 

Combline Filter Design 

Swanson and Wenzel (2001) introduce a design approach based on the SM 

concept and commercial FEM solvers.  From a good starting point, one iteration 

is needed to implement the design process. 

CAD of Integrated Passive Elements on PCBs 

Draxler (2002) introduces a methodology for CAD of integrated passive 

elements on Printed Circuit Board (PCB) incorporating Surface Mount 

Technology (SMT).  The proposed methodology uses the SM concept to exploit 

the benefits of both domains. 

Coupled Resonator Filter 

Pelz (2002) applies SM in realization of narrowband coupled resonator 

filter structures.  A 5-pole coupled resonator filter design is achieved with fast 

convergence. 
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Nonlinear Device Modeling 

Zhang, Xu, Yagoub, Ding and Zhang (2003) introduce a new Neuro-SM 

approach for nonlinear device modeling and large signal circuit simulation.  The 

Neuro-SM approach is demonstrated by modeling the SiGe HBT and GaAs FET 

devices. 

Comb Filter Design 

Gentili, Macchiarella and Politi (2003) implement an accurate design of 

microwave comb filters using SM technique.  They use internal circuit model 

parameters as preassigned parameters to apply the implicit SM. 

Inductively Coupled Filters  

Soto, Bergner, Gomez, Boria and Esteban (2000) apply the aggressive SM 

procedure to build an automated design of inductively coupled rectangular 

waveguide filters.  The complete aggressive SM design procedure required 3 

iterations to converge (10 times faster than directly using a precise simulation 

tool). 

5.3.2 Electrical Engineering Implementation 

Magnetic Systems 

Choi, Kim, Park and Hahn (2001) utilize SM to design magnetic systems.  

They validate the approach by two numerical examples: a magnetic device with 

leakage flux and a machine with highly saturated part.  Both examples converge 

after only 5 iterations (Choi, Kim, Park and Hahn, 2001).  



PhD Thesis – Q.S. Cheng McMaster – Electrical and Computer Engineering 

98 

Photonic Devices 

Feng, Zhou and Huang (2003) apply the SM technique for design 

optimization of antireflection (AR) coatings for photonic devices such as the 

semiconductor optical amplifiers (SOA).  Feng and Huang (2003) employ the 

generalized space mapping (GSM) technique for modeling and simulation of 

photonic devices. 

5.3.3 Other Engineering Implementation 

Structural Design 

Leary, Bhaskar and Keane (2001) apply the SM technique in civil 

engineering structural design.  Their aim is to establish a mapping between the 

constraints of a fine model and a coarse model.  They illustrate their approach 

with a simple structural problem of minimizing the weight of a beam subject to 

constraints such as stress. 

Vehicle Crashworthiness Design 

Redhe and Nilsson (2002) apply the SM technique and surrogate models 

together with response surfaces to structural optimization of crashworthiness 

problems.  Using the SM technique CPU time is reduced relative to the traditional 

response surface methodology. 

5.4 CONCLUSIONS 

In this chapter, we discussed implementations and framework techniques.  

We introduced an easy to use ADS schematic framework for SM.  We 
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demonstrate its implementation.  We reviewed various successful implementa-

tions by other groups and researchers.  This verifies that SM technology can be 

applied to substantially different design and modeling areas in science and 

engineering.  It also places our work into context. 
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Chapter 6  
 
CONCLUSIONS 
 

This thesis presents innovative methods for electromagnetics-based 

computer-aided modeling and design of microwave circuits exploiting implicit 

and output space mapping (SM) and surrogate modeling technology.  These 

technologies are demonstrated by the so-called “cheese problem” and illustrated 

by designing several practical microstrip structures.  We also discuss various 

implementations. 

In Chapter 2 we review the SM technique and the SM-oriented surrogate 

(modeling) concept and their applications in engineering design optimization.  

The simple CAD methodology follows the traditional experience and intuition of 

engineers, yet appears to be amenable to rigorous mathematical treatment.  The 

aim and advantages of SM are described.  The general steps for building 

surrogates and SM are indicated.  Approaches reviewed include the original SM 

algorithm, the Broyden-based aggressive space mapping, trust region aggressive 

space mapping, hybrid aggressive space mapping, neural space mapping and 

implicit space mapping.  Parameter extraction is an essential subproblem of any 

SM optimization algorithm.  It is used to align the surrogate with the fine model at 

each iteration.  Different approaches to enhance the uniqueness of parameter 
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extraction are reviewed, including the recent gradient parameter extraction 

process.  An expanded space mapping design framework is reviewed.  This 

technique expands original space mapping by allowing certain preassigned 

parameters (which are not used in optimization) to change in some components of 

the coarse model.  The space mapping concept and frameworks are discussed.  

SM techniques are categorized based on their properties.   

Based on a general concept, we present an effective technique for 

microwave circuit modeling and design w.r.t. full-wave EM simulations in 

Chapter 3.  We vary preassigned parameters in a coarse model to align it with the 

EM (fine) model.  We believe this is the easiest to implement “Space Mapping” 

technique offered to date.  The HTS filter design is entirely carried out by Agilent 

ADS and Momentum (3 frequency sweeps) or Sonnet em, (only 2 frequency 

sweeps) with no matrices to keep track of.  A general SM concept is presented 

which enables us to verify that our implementation is correct and that no 

redundant steps are used. 

In Chapter 4 we propose significant improvements to implicit space 

mapping for EM-based modeling and design.  Based on an explanation of residual 

misalignment, our new approach further fine-tunes the surrogate by exploiting an 

“output space” mapping (OSM) or “response residual space” mapping (RRSM).  

The required HTS filter models and RRSM are easily implemented by Agilent 

ADS and Momentum with no matrices to keep track of.  An accurate HTS 

microstrip filter design solution emerges after only four EM simulations with 
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sparse frequency sweeps.  We present the RRSM modeling technique that 

matches the output residual SM surrogate with the fine model.  A new “multiple 

cheese-cutting” design problem illustrates the concept.  Our approach is 

implemented entirely in the ADS framework.  A good H-plane filter design 

emerges after only five EM simulations using the implicit and RRSM with sparse 

frequency sweeps and no Jacobian calculations. 

Chapter 5 discusses the implementation framework techniques.  We 

introduce an easy ADS schematic design framework for SM and demonstrate in a 

three-section transformer.  We also review other successful implementations both 

from our group and from other researchers or engineers.  They prove that SM 

technology can be applied to different design and modeling areas. 

Appendix A describes the object-oriented SMX optimization system.   It 

implements the surrogate model-based SM (SMSM) algorithm, which is 

automated for the first time.  

Appendix B explains our so-called cheese-cutting problems.  We utilize 

the simple physics and geometry of ideal or contrived cheese blocks (slices) to 

study and illustrate various space mapping techniques. 

From the experience and knowledge gained in the course of this work the 

author is convinced that the following research topics should be interesting to 

investigate: 

(1) Implicit SM optimization is emphasized in this thesis.  ISM is also 

a modeling technique.  We can explore further on this aspect.  For 
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example, we can use a set of preassigned parameters to calibrate a 

coarse (large) grid EM simulator to match a fine (small) grid EM 

simulator.  Taking advantage of continuous preassigned parameters 

we could interpolate the responses of structures that are not on the 

discrete grids of the coarse EM simulator meshes.  This ISM 

interpolated coarse grid EM simulator could act as a fast but 

accurate EM simulator. 

(2) The ISM discussed in this thesis uses the same preassigned 

parameters for all the frequency (sample) points.  This may not be 

sufficient for frequency-sensitive devices.  We can introduce a 

frequency-based ISM.  The ISM model uses different preassigned 

parameters for different frequency points or different frequency 

bands.  The new ISM could make a better surrogate. 

(3) In this thesis, output SM or RRSM is only used to calibrate the 

implicitly mapped coarse model.  We could extend OSM/RRSM to 

other types of space mapping.  For example, we can use the output 

calibrated coarse model in aggressive SM to speed up or increase 

the probability of convergence. 

(4) Currently, the ADS schematic design framework for SM is 

applicable to several kinds of space mapping (aggressive or 

implicit/output SM) algorithms.  It is possible to apply the design 

framework to more SM algorithms.  We could also support other 
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EM simulators, e.g., Ansoft HFSS under this design framework.  

More examples and illustrations could be done in this framework. 

(5) The ADS schematic design framework for SM described in this 

thesis is not automated.  It needs human intervention at each 

iteration because of the current limitations of ADS.  However, 

Agilent is constantly updating its ADS.  In the near future, the 

semi-automated interactive implementation could be automated as 

soon as a better sequential optimization method is available from 

Agilent. 
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Appendix A  
 
SMX OBJECT-ORIENTED 
OPTIMIZATION SYSTEM 
 

The object-oriented SMX (Bakr, Bandler, Cheng, Ismail and Rayas-

Sánchez, 2001) optimization system implements the surrogate model-based SM 

(SMSM) algorithm (Bakr, Bandler, Madsen, Rayas-Sánchez and Søndergaard, 

2000), which is automated for the first time.  SMX has been linked with Empipe 

(1997) and Momentum_Driver (Ismail, 2001) to drive Sonnet’s em and Agilent 

Momentum, as well as with user-defined simulators. 

In the SMSM approach, a surrogate (Booker, Dennis, Frank, Serafini, 

Torczon and Trosset, 1999) of the fine model is iteratively used to solve the 

original design problem.  This surrogate model is a convex combination of a 

mapped coarse model and a linearized fine model.  It can exploit a frequency-

sensitive mapping. 

The SMX engine implements the SMSM algorithm.  Object-Oriented 

Design (OOD) abstracts the basic behavior of the models and optimizers modules.  

A universal parameter setting and results retrieval method is utilized for all 

simulators and optimizers.  The SMX architecture integrates these modules. 

Another advantage of OOD is reusability and extendibility.  SMX is 
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intended to support a number of EM and circuit simulators.  Here, the basic 

functionality of simulators and optimizers is abstracted in the two basic classes 

Simulator and Optimizer.  Many commercial simulators and optimizers could be 

derived from these classes. 

The SMX system is described in the Unified Modeling Language  (UML).  

Using this language, a complicated system can be decomposed into relatively 

independent small objects without losing readability and intuitiveness.  The 

structure of each object can be represented in UML. 

SMX takes advantage of the multi-thread capability of the Microsoft 

Windows operating system (Petzold, 1990).  The user-friendly interface responds 

smoothly while the SMX core is running in a different thread in the background.  

Synchronization and communication between threads are properly arranged.  

SMX is capable of optimizing while showing intermediate results and interacting 

with the user. 

A.1 SMX ARCHITECTURE 

SMX automates the algorithm and drives EM/circuit simulators.  Object-

oriented design is employed to decompose the algorithm into independent 

modules (objects).  Here the module or object is an instance of a certain class.  

Each module can carry out certain functionality.  It includes data structures 

describing the properties of the object.  Using the encapsulation concept, the SMX 

system is decomposed into 6 modules, as shown in Fig. A.1.  
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The user interface and SMX engine run in two separate threads 

concurrently.  The user chooses the simulators and setup problem specifications 

through a user interface.  The interface initiates the starting point (0)
cx , the 

constraints and the control signals for the coarse and fine models.  The SMX 

engine performs optimization and returns the progress, the current status, 

responses fR  and cR , etc., to the user interface.  The user interface feeds back 

the optimization status such as objective function, designable parameters and 

critical mapping parameters ( )iB , ( )is , ( )it , ( )iσ , ( )ic and ( )iγ in graphical and 

numerical format to the user.  The engine can optimize a model using either 

classical optimization methods such as gradient-based minimax or the SMSM 

algorithm (Bakr, Bandler, Madsen, Rayas-Sánchez and Søndergaard, 2000). 

 

SMX user
interface

SMX engine

model optimizer

simulator

file system

 

Fig. A.1 The modules of SMX. 
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A.2 ALGORITHM CORE: SMX ENGINE 

The SMX engine is abstracted as the SMX_Engine class.  After setup, the 

coarse model is optimized by the member function OptimizeCoarseModel from the 

starting point (0)
cx .  This function uses m_pCoarseModelOptimizer, a pointer to a 

minimax optimizer object to obtain *
cx .  Then the member function OptimizeSurrogate 

is called to optimize the surrogate model ( ) ( )i
s fR x  starting from the optimized 

coarse model.  The Huber optimizer is used for parameter extraction in 

OptimizeSurrogate.  To carry out space mapping, three base classes, Optimizer, Simulator 

and Model, are abstracted and built. 

The Optimizer base class is an abstract class.  It provides the interface for 

standard optimization routines.  With override of optimization routines, additional 

parameter setup and objective function, the Huber, Minimax or other optimization 

classes can be derived from Optimizer.  Some of the important functions in Optimizer 

are GetNorm, GetErrors, FDF and SetConstraintMatrix.  Different optimizers use different 

norms as their objective functions.  The purely virtual function GetNorm is 

overridden to obtain the appropriate norm.  FDF gets the error values and their 

derivatives by perturbation.  It calls GetErrors to evaluate the error used for 

parameter extraction, as well as for minimax design optimization.  SetConstrantMatrix 

sets constraints in matrix form.  The inheritance relation of Optimizer is shown in 

Fig. A.2. 
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GetNorm
FDF

GetError
SetConstraintMatrix

...

Optimizer

GetNorm
SetHuberThreshold

...

Huber

GetNorm
...

MinMax

 
Fig. A.2 Illustration of the derivation of basic optimizer class. 

 

Similar to Optimizer, the Simulator class is a parent class for different 

simulators.  Commercial simulators and user defined simulators are derived 

classes.  Interface functions are overridden for each new derived simulator class.  

Additional parameters may also be added.  OSA90/hopeTM (1997) and Agilent 

MomentumTM (2000) are commercial simulators currently derived from the  

Simulator class. 

The SMX_Engine utilizes SurrogateModel which is derived from a base Model 

class.  The Model class functions as a wrapper of a simulator.  The responses are 

obtained independent of the simulator.  Obviously, Simulator is one of the Model 

members.  The Model class sends data to the simulator and retrieves responses from 

it.  Since Optimizer needs normalized parameters, scaling factors are added. 

A.3 HTS FILTER EXAMPLE 

We consider two cases of the HTS filter problem (Bandler, Biernacki, 
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Chen, Getsinger, Grobelny, Moskowitz and Talisa, 1995).  In Case 1, the “coarse” 

and “fine” models are both empirical models of OSA90/hope.  The “coarse” 

model uses the ideal open circuit for the open stubs while the “fine” model uses 

empirical models.   

The designable parameters are the lengths L1, L2 and L3 of the coupled 

 

Fig. A.3 Case 1: The initial response of the HTS filter for the “fine” model 
(OSA90). 

 

  

Fig. A.4 Case 1: The optimal “fine” model (OSA90) response of the HTS filter. 
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lines and their separation S1, S2 and S3. 

The SMX system obtained the optimal solution in 4 iterations.  The “fine” 

model response in the first iteration is shown in Fig. A.3.  The “fine” model 

response at the final iteration is shown in Fig. A.4.  TABLE A.1 shows the initial 

 

Fig. A.5 Case 2: The SMX optimized fine model (Agilent Momentum) 
response of the HTS filter. 

 

 

Fig. A.6 Case 2: The final Momentum optimized fine model response of the HTS 
filter with a fine interpolation step of 0.1mil. 
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and final parameters obtained by SMX optimization. 

In Case 2 we use Momentum as the fine model, while the coarse model is 

the same as in Case 1. SMX obtains the solution in 4 iterations.  Fig. A.5 shows 

the fine model responses at the fourth SMX iteration.  Then the minimax 

optimizer in Momentum is used to refine this solution.  It takes approximately 32 

hours on an IBM Aptiva computer with AMD-K7 650MHz CPU and 384MB 

RAM.  We use fine interpolation resolution (0.1mil for all parameters).  See Fig. 

A.6. 

 

 

 

 

 

TABLE A.1 
THE INITIAL AND FINAL DESIGNS OF THE FINE MODEL (OSA90) 

FOR THE HTS FILTER 
 

Parameter )1(
fx  )4(

fx  

L1 187.50 185.55 
L2 198.84 191.71 
L3 187.91 185.82 
S1 20.04 21.03 
S2 98.08 99.44 
S3 100.90 114.21 

all values are in mils 
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Appendix B  
 
CHEESE-CUTTING PROBLEMS 
 

Our so-called cheese-cutting problems utilize the simple physics and 

geometry of ideal or contrived cheese blocks (slices) to study and illustrate 

various space mapping techniques. 

B.1 CHEESE-CUTTING PROBLEM 

The cheese blocks, depicted in Fig. B.1, demonstrate how the aggressive 

SM approach may not converge in certain cases.  Our “response” is weight.  The 

designable parameter is length.  A height and a density of one are assumed.  A 

width of 3 units is used.  The goal is a desired weight of 30 units. 

Our idealized “coarse” model is a uniform cuboidal block (top block of 

Fig. B.1).  The optimal length xc
* = 10 is easily calculated.  The response is 

evaluated by 

* 3 1 30c cR x= ⋅ ⋅ =  

In practice, coarse models may have limitations.  For example, the range 

of the coarse model may be smaller than the range of the fine model.  The coarse 

model may not be capable of matching the fine model in the parameter extraction.  

However, in this one-dimensional linear cheese-cutting example, the coarse model 
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range is not limited.  To mimic limitations in higher dimensions and for non-linear 

coarse models, we will confine the coarse model range, e.g., [30, )+∞ , by 

rewriting the coarse model as follows  

max{30,3 } 1c cR x= ⋅  

Let the actual block (“fine” model) be similar but imperfect (second block 

of Fig. B.1).  A six-unit part is missing.  We take the optimal coarse model length 

as the initial guess for the fine model solution, i.e., cutting the cheese so that xf
(1) 

= xc
* = 10.  The fine model response is 

(1) 3 1 6 24f fR x= ⋅ ⋅ − =  

This does not satisfy our goal.  We realign (calibrate the design parameter xc) our 

coarse model to match the outcome of the cut (on the fine model).  This is a 

parameter extraction (PE) step in which we obtain a solution xc
(1) = 10 (third 

block of Fig. B.1, noting the coarse model constraint).  This value is equal to xc
*.  

The algorithm exits.  In this example, we notice that PE is not able to generate a 

  

PE

initial guess

optimal coarse model

* cx

(1) fx
(1) *; 30 6 24c ffx x  R == − =

* 10,  30c cx R= =

(1) cx
(1) 10;cx =

1

3

(1) * 0;  exitc cf x x= − =

 
Fig. B.1 The aggressive SM may not converge to the optimal fine model 

solution in this case. 



PhD Thesis – Q.S. Cheng McMaster – Electrical and Computer Engineering 

117 

good match between coarse and fine model, an essential assumption in the ASM. 

A response residual space mapping (RRSM) takes into account the 

mismatch in the parameter extraction and is able to overcome the problem.  We 

calculate the residual ∆R after the PE (see 3rd block of Fig. B.2) and generate a 

surrogate Rs using the original coarse model plus the residual ∆R.  This procedure 

can be thought of as to correct (relax or tighten) the coarse model specification by 

a residual.  We re-optimize the surrogate w.r.t. the original specification to obtain 

a new (or updated) xc
*, or in other words, re-optimize the coarse model w.r.t. the 

new specification.  Let xf
(2) = xc

* = 12.  We obtain the new fine model response.  

The optimal fine model solution is obtained in 1 iteration (2 fine model 

evaluations).  See Fig. B.2. 

  

(2) * 12cfx x= =

PE

prediction

initial guess

optimal coarse model

* cx

(1) fx
(1) *; 30 6 24c ffx x  R == − =

* 10,   30c cx R= =

(1) cx
(1) 10;  6c f cx R R R= ∆ = − = −

*3 6; 12s c c cR =R R x  x  ∆+ = − =
(2) fx

1

3

 

Fig. B.2 The RRSM solves the problem in one iteration (two fine model 
evaluations). 
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B.2 MULTIPLE CHEESE-CUTTING PROBLEM 

We develop a physical example suitable for illustrating space mapping 

optimization.  This example is intended to examine the mismatch problem in the 

parameter extraction.  Our “responses” are the weights of individual cheese slices.  

The designable parameter is the length of the top slice [see Fig. B.3(a)].  A width 

and a density of one are assumed.  The goal is to cut through the slices to obtain a 

weight for each one as close to a desired weight s as possible.  Note that we 

measure the length from the right-hand end.  We cut on the left-hand side. 

The coarse model involves 3 slices of the same height x, namely, the 

preassigned parameter shown in Fig. B.3(a).  The lengths of the two lower slices 

are c units shorter than the top one.  The optimal length xc
* can be calculated to 

minimize the differences between the weights of the slices and a desired weight s.  

We use minimax optimization.  The responses of the coarse model are given by 

cx

x

x

x

fx

1x

2x

3x

c

c

1f

2f

(a) (b)
 

Fig. B.3 The multiple cheese-cutting problem: (a) the coarse model (b) and fine 
model. 
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1

2

3

1
( ) 1
( ) 1

c c

c c

c c

R x x
R x x c
R x x c

= ⋅ ⋅

= ⋅ − ⋅

= ⋅ − ⋅

 (B.1) 

The fine model is similar but the lower two slices are f1 and f2 units 

shorter, respectively, than the top slice [Fig. B.3(b)].  The heights of the slices are 

x1, x2 and x3, respectively.  The corresponding responses of the fine model are  

 
1 1

2 2 1

3 3 2

1

( ) 1

( ) 1

f f

f f

f f

R x x

R x x f

R x x f

= ⋅ ⋅

= ⋅ − ⋅

= ⋅ − ⋅

 (B.2) 

B.2.1 Aggressive Space Mapping 

Before we apply ASM to the multiple cheese-cutting problem, we review 

the following ASM algorithm (Bandler, Biernacki, Chen, Hemmers and Madsen, 

1995) 

Step 0 Initialize (1) *
cf =x x , (1) = 1B , (1) (1) *( ) cf= −f P x x , 1j = .  Stop if 

(1) η≤f . 

Step 1 Solve ( ) ( ) ( )j j j= −B h f  for ( )jh . 

Step 2 Set ( 1) ( ) ( )j j j
f f
+ = +x x h . 

Step 3 Perform parameter extraction optimization to get ( 1)j
c
+x , i.e., 

evaluate ( 1)( )j
f
+P x . 

Step 4 Compute ( 1) ( 1) *( )j j
cf

+ += −f P x x .  If ( 1)j η+ ≤f , stop. 
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Step 5 Update ( )jB  to ( 1)j+B  using the Broyden formula. 

Step 6 Set j = j +1; go to Step 1. 

We demonstrate the Aggressive Space Mapping algorithm using the 

coarse and fine model in Fig. B.3.  We show the ASM algorithm may not 

converge to fine model optimal solution in this case (Fig. B.4).  In this example 

we set c = 0 and  f1 = f2 = 4.  The specification s is set to 10.   The heights of the 

cheese blocks are fixed at unity, i.e. x = x1 = x2 = x3 = 1.  The algorithm exits after 

1 iteration since f = 0 as in Fig. B.4(5).  We can see there is a significant residual 

between the coarse and fine model.  A new surrogate is needed to find the real 

solution [Fig. B.4(6)]. 

We use the optimality conditions of ASM on this multiple cheese-cutting 

problem to show the possible non-convergence to fine model optimal solution.  

We assume the fine model parameters f1 = f2 = f0, coarse mode parameter c = c0 

and x1 = x2 = x3 = x = 1.  We obtain the optimality conditions for ASM 

* *
0

0 0

*

10 10
2 ( ) 4 [( ) ( )] 0

0

c c

c f c f

c c

x c x
x x x c x f

x x

⎧ − − = −
⎪⎪ ⋅ − + ⋅ − − − =⎨
⎪

− =⎪⎩

 
(B.3)

(B.4)

(B.5)

where (B.3) is from applying the minimax optimality condition to the coarse 

model, (B.4) is the least-squares optimality condition (stationary point) for the 

parameter extraction and (B.5) is the exit condition (stopping criteria, see Step 4 

of the ASM algorithm). 

From (B.3) we obtain 
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* 010
2c
cx = +  (B.6)

From (B.4) we obtain 

0 0
2 2
3 3f cx x c f= − +  (B.7)

Incorporating (B.5) and (B.6) with (B.7) we obtain 

* *

(1)

( );  10

1;
c c cx x

B

=

=

R (1) * (1)10;  ( )f c f fx x x= = R

(1) (0) (1)

(1) (1) *

( ) ( );  7.3333; 

7.333 10 2.6667
c c f f c

c c

x x

f x x

≈ =

= − = − = −

R R x (1) (1) (1) (1) (1) (2) (1) (1)

(2)

;  / 2.6667;  

10 2.6667= 12.6667
f f

f

B h f h f B x x h

x

= − = − = = +

= +

(2) (2) (2)

(2) (2) *

( ) ( );  10;

= 10 10 0
exit

c c f f c

c c

x x x

f x x η

≈ =

− = − = <

R R * *( );  12f f fx x =R

0 5 10 15
0

2

4

6

(6)
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0

2

4

6

(1)
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6

(2)
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6
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0

2

4

6
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Fig. B.4 The ASM algorithm may not converge in this case. 
 



PhD Thesis – Q.S. Cheng McMaster – Electrical and Computer Engineering 

122 

0 0210
6 3f
c fx = − +  (B.8)

Equation (B.8) shows the solution is a function of coarse model parameter 

c0.  A misaligned coarse model may result in non-convergence of the ASM.   

Letting c0 = 0 and f0 = 4, we obtain xf = 12.6667 which is consistent with the 

solution obtained in Fig. B.4(4).  The optimal solution is not reached. 

B.2.2 Response Residual ASM 

Based on the observation of the non-convergence, we revise the ASM 

algorithm to include the response residual SM surrogate calibration.  We  

calibrate the coarse model using the residual. 

The new algorithm uses the ASM stopping criterion to switch to an RRSM 

surrogate calibration. 

Step 0 Initialize (1) *
cf =x x , (1) = 1B , (1) (1) *( ) cf= −f P x x , ∆ = 0R  and 

1j = . 

Step 1 Solve ( ) ( ) ( )j j j= −B h f  for ( )jh . 

Step 2 Set ( 1) ( ) ( )j j j
f f
+ = +x x h .  If ε≤h , stop. 

Step 3 Perform parameter extraction optimization to get ( 1)j
c
+x , i.e., 

evaluate ( 1)( )j
f
+P x .  Surrogate s c= + ∆R R R  is used as a coarse 

model to perform PE. 

Step 4 Compute ( 1) ( 1) *( )j j
cf

+ += −f P x x .  
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Step 5 If ( 1)j η+ ≤f  or ( 1) ( )j j
c c
+ =x x , update f c∆ = −R R R , minimize 

the surrogate s c= + ∆R R R  to obtain a new *
cx  and *

c c= −f x x , 

( 1)j+ = 1B  else update ( )jB  to ( 1)j+B  using the Broyden formula. 

Step 6 Set j = j +1; go to Step 1. 

In this algorithm, initial condition ∆ = 0R  is added in Step 0.  A new 

* *

(1)

( );  10

1;
c c cx x

B

=

=

R (1) * (1)10;  ( )f c f fx x x= = R (1) (0) (1)

(1) (1) *

( ) ( );  7.3333; 

7.333 10 2.6667
c c f f c

c c

x x

f x x

≈ =

= − = − = −

R R x

(2) (1) 1 * (1)

(1) (1) (1) (1) (1) (2) (1) (1)

( ) 10 (10 7.3333)= 12.6667

;  / 2.6667;  
f f c c

f f

x x P x x

B h f h f B x x h

−= + − = + −

= − = − = = +

(2) (2) (2)

(2) (2) *

( ) ( );  10;

= 10 10 0
c c f f c

c c

x x x

f x x η

≈ =

− = − = <

R R
(2) (2)( )f c cx∆ = −R R R
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6

(8)

* (2) (2) *

(2) (2)

min ( )

9.3333;   0.6667

0.6667

s c c

c c c

x

x f x x

h f

= + ∆

= = − =

= − = −

R R R (3) (2) (2) 12.6667 0.6667 12f fx x h= + = − =
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(3) (3) *

( ) ( );  9.3333;

= 9.3333 9.3333 0
s c f f c

c c

x x x

f x x η

≈ =

− = − = <

R R

(3) (3)( )f c cx∆ = −R R R
* (3) (3) *

(2) (2)

min ( )

9.3333;   0

0;  exit

s c c

c c c

x

x f x x

h f

= + ∆

= = − =

= − =

R R R

 

Fig. B.5 The response residual ASM algorithm converges in two iterations. 
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stopping criterion is added in Step 2, which stops the algorithm when a very small 

prediction is obtained.  In Step 3, the parameter extraction uses the RRSM 

calibrated coarse model to match the fine model.  In Step 5, we change the 

surrogate or update B according to the original stopping criterion.  

We use this new algorithm to solve the same multiple cheese-cutting 

problem as in Fig. B.4 again.  In 2 iterations (3 fine model evaluations), we obtain 

the optimal solution xf = 12 as shown in Fig. B.5.   

B.2.3 Implicit SM 

Implicit SM (ISM) may not converge for certain preassigned parameters if 

the mismatch of the coarse model and fine model is not compensated.  We 

demonstrate this using the multiple cheese-cutting problem.  Here we choose 

coarse model height x as a preassigned parameter, initially unity.  We set the fine 

model parameters f1 = f2 = 4, fine model heights x1 = x2 = x3 = 1 and coarse mode 

parameter c = 2.  We obtain the convergence curve and solution xf =12.2808 as in 

Fig. B.6.  It shows that the algoritm does not converge to the optimal solution. 

We investigate the optimality condition for ISM.  We assume that the 

least-squares solution is used for the parameter extraction and minimax for coarse 

(surrogate) optimization.  We consider general coarse model responses Rc = 

[ 1...c cnR R ]T and fine model responses Rf = [ 1...f fnR R ]T.  Applying optimality 

conditions, we obtain 
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 2 ( ) ci
fi ci T

i

RR R ∂
⋅ − =

∂∑ x
0  (B.9) 

 f c=x x  (B.10) 

 1 1 2 2c c ck kR s R s R s γ− = − = − =  (B.11) 

 for 1, ,ci ciR s i k nγ− < = + …  (B.12) 

where γ  is the minimax “equal-ripple” peak deviation, 1,...,c ckR R  are the active 

calibrated coarse model function values.  1,..., ns s  are specifications for 

corresponding response functions 1,...,c cnR R .  Equation (B.9) is a necessary 
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f -

 x
f* || 

iteration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

 
Fig. B.6 Parameter errors between the ISM algorithm and minimax direct 

optimization.  Here xf  = 12.2808  and  xf
* = 12. 
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condition for minimum in the parameter extraction.  Equation (B.10) is the 

condition enforced in each iteration.  Equation (B.11) and (B.12) are the minimax 

(equal ripple) optimality condition.  

We apply the conditions to the multiple cheese-cutting problem.  Let the 

specification for all the responses be 10, the coarse model parameter c of (B.1) be 

c0 and fine model parameters f1 and f2 of (B.2) be f0.  We assume fine model 

preassigned parameters x1 = x2 = x3 =  1.  Using (B.9)-(B.12), we obtain 

0 0 0

0

2 ( ) 4 [( ) ( )]( ) 0

( ) 10 10

c f c c f c

f c

c c

x x x x x c x x f x c

x x

x c x x x

⋅ ⋅ − ⋅ + ⋅ − ⋅ − − − =⎧
⎪

=⎨
⎪ − ⋅ − = − ⋅⎩

 

(B.13)

(B.14)

(B.15)

where (B.13) is from the derivative condition (B.9) and (B.15) is from the 

minimax optimality condition (B.11).   

From (B.15) we obtain 

0

20
2 c

x
x c

=
−

 (B.16)

Substituting (B.14) and (B.16) into (B.13), we have 

3 2 2 2 2
0 0 0 0 0 0 0 0 012 (120 8 14 ) (12 4 160 ) 4 80 0c c cx f c x c f c c x c f c− + + + + + − − =  (B.17)

We define 

3 2 2 2 2
0 0 0 0 0 0 0 0 0( ) 12 (120 8 14 ) (12 4 160 ) 4 80c c c cg x x f c x c f c c x c f c− + + + + + − −  

(B.18)

The root of equation (B.18) is the solution that ISM converges to.  If we 

choose [c0  f0] = [2 4],  the root is 12.2808, as shown in Fig. B.7.  It is consistent 
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with the experimental solution shown in Fig. B.6.  When we set [c0  f0] = [4 4],  the 

root of (B.18) is obtained as 12, which is the minimax solution of the fine model.   

This shows that ISM may not converge to the optimal solution if there is a 

misalignment (c0 ≠  f0) between the coarse and fine model responses. 

B.2.4 Response Residual SM Surrogate 

If we assume that the coarse model is aligned with the fine model 

directionally, i.e., the first-order derivatives match, a simple RRSM calibration will 

push the solution to the optimum.  We again use the multiple cheese-cutting 
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Fig. B.7 Case 1: c0 = 2, f0 = 4, the ISM solution is 12.2808fx =  vs. minimax 

solution xf = 12; case 2: c0 = 4, f0 = 4, the ISM solution is 12fx =  vs. 
minimax solution xf = 12. 
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problem as an example.  We assume that the coarse and fine model gradients are 

the same, e.g., x = x1= x2 = x3 = x0, and that the parameter extraction cannot get a 

better match by changing the preassigned parameters.  Letting the coarse model 

parameter c of (B.1) be c0 and the fine model parameters f1 and f2 of (B.2) be f0, we 

have the residual between the coarse and the fine models (noting xc = xf) as 

1 1 1 0 0

2 2 2 0 0 0 0 0 0 0

3 3 3 0 0 0 0 0 0 0

0

( ) ( ) ( )

( ) ( ) ( )

f c c c

f c c c

f c c c

R R R x x x x

R R R x f x x c x c f x

R R R x f x x c x c f x

∆ = − = ⋅ − ⋅ =

∆ = − = − ⋅ − − ⋅ = − ⋅

∆ = − = − ⋅ − − ⋅ = − ⋅

 (B.19)

The new surrogate becomes 

1 1 0

2 2 2 0 0 0 0 0 0 0

3 3 3 0 0 0 0 0 0 0

( ) ( ) ( )

( ) ( ) ( )

c c

s c c f c c

c f c c

R R x x
R R R x c x c f x x f x

R R R x c x c f x x f x

⎧ + ∆ = ⋅
⎪

= + ∆ = + ∆ = = − ⋅ + − ⋅ = − ⋅⎨
⎪ + ∆ = = − ⋅ + − ⋅ = − ⋅⎩

R R R  

 
(B.20)

Equation (B.20) has the same form as the fine model (B.2).  When we find the 

optimal solution of the surrogate, we obtain that of the fine model. 

B.2.5 Implicit SM and RRSM 

We demonstrate the response residual space mapping (RRSM) using this 

multiple cheese-cutting problem in Chapter 4.  We now show a variation of the  

problem.  The coarse model is the same as the previous coarse model.  For the 

fine model,  the heights of the cheese blocks are x1 =1, x2 = 0.6 and x3 = 0.6 and 

the lengths are the same: f1 = f2 = 0.  The algorithm will not converge to the fine 

model optimal solution using ASM or ISM.  With RRSM calibration, we are able 

to find the solution.  We show the two RRSM stepwise iterations in Fig. B.8.  And 
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the convergence is shown in Fig. B.9. 
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Fig. B.8 RRSM step-by-step iteration demonstration––different heights for the 

fine model. 
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Fig. B.9 Parameter errors between the RRSM algorithm and minimax direct 
optimization.  Here xf  = 12.5  and  xf

* = 12.5 in the final iteration 
(different heights for the fine model). 
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