
 

 

 

 

DEVELOPMENT OF  

SENSITIVITY ANALYSIS AND OPTIMIZATION 

FOR MICROWAVE CIRCUITS AND ANTENNAS IN 

THE FREQUENCY DOMAIN 

 

 

 

 

 

 



 

 

 

 

 



 

 

DEVELOPMENT OF 

SENSITIVITY ANALYSIS AND OPTIMIZATION 

FOR MICROWAVE CIRCUITS AND ANTENNAS IN 

THE FREQUENCY DOMAIN 

 

By 

Jiang Zhu, B. Sc. (Eng.) 

 

 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree 

Master of Applied Science 

 

 

McMaster University 

© Copyright by Jiang Zhu, June 2006 



 ii

 

MASTER OF APPLIED SCIENCE (2006)                      McMASTER UNIVERSITY 

(Electrical and Computer Engineering)                                              Hamilton, Ontario 

 

 

TITLE: Development of Sensitivity Analysis and Optimization for 

Microwave Circuits and Antennas in the Frequency Domain 

 

 

AUTHOR: Jiang Zhu 

B.Sc. (Eng) (Electrical Engineering, Zhejiang University) 

 

SUPERVISORS: Natalia Nikolova, Associate Professor, 

Department of Electrical and Computer Engineering 

Dipl.Eng. (Technical University of Varna) 

Ph.D. (University of Electro-Communication) 

P.Eng. (Province of Ontario) 

Senior Member, IEEE 

 

                                 J.W. Bandler, Professor Emeritus, 

Department of Electrical and Computer Engineering 

B.Sc.(Eng), Ph.D., D.Sc.(Eng) (University of London) 

D.I.C. (Imperial College) 

P.Eng. (Province of Ontario) 

C.Eng., FIEE (United Kingdom) 

Fellow, IEEE 

Fellow, Royal Society of Canada 

Fellow, Engineering Institute of Canada 

Fellow, Canadian Academy of Engineering 

 

NUMBER OF PAGES: xviii, 137 



 iii

 
 
 
ABSTRACT 
 

This thesis contributes to the development of adjoint variable methods 

(AVM) and space mapping (SM) technology for computer-aided electromagnetics 

(EM)-based modeling and design of microwave circuits and antennas. 

The AVM is known as an efficient approach to design sensitivity analysis 

for problems of high complexity. We propose a general self-adjoint approach to 

the sensitivity analysis of network parameters for an Method of Moments (MoM) 

solver. It requires neither an adjoint problem nor analytical system matrix 

derivatives. For the first time, we suggest practical and fast sensitivity solutions 

realized entirely outside the EM solver, which simplifies the implementation. We 

discuss: (1) features of commercial EM solvers which allow the user to compute 

network parameters and their sensitivities through a single full-wave simulation; 

(2) the accuracy of the computed derivatives; (3) the overhead of the sensitivity 

computation.  Our approach is demonstrated by FEKO, which employs an MoM 

solver.  

One motivation for sensitivity analysis is gradient-based optimization. The 

sensitivity evaluation providing the Jacobian is a bottleneck of optimization with 

full-wave simulators. We propose an approach, which employs the self-adjoint 
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sensitivity analysis of network parameters and Broyden’s update for practical EM 

design optimization. The Broyden’s update is carried out at the system matrix 

level, so that the computational overhead of the Jacobian is negligible while the 

accuracy is acceptable for optimization. To improve the robustness of the 

Broyden update in the sensitivity analysis, we propose a switching criterion 

between the Broyden and the finite-difference estimation of the system matrix 

derivatives.  

In the second part, we apply for the first time a space mapping technique 

to antenna design. We exploit a coarse mesh MoM solver as the coarse model and 

align it with the fine mesh MoM solution through space mapping. Two SM plans 

are employed: I. implicit SM and output SM, and II. input SM and output SM. A 

novel local meshing method is proposed to avoid inconsistencies in the coarse 

model. The proposed techniques are implemented through the new user-friendly 

SMF system. In a double annular ring antenna example, the S-parameter is 

optimized. The finite ground size effect for the MoM is efficiently solved by SM 

Plan I and the design specification is satisfied after only three iterations. In a 

patch antenna example, we optimize the impedance through both plans. 

Comparisons are made. Coarseness in the coarse model and its effect on the SM 

performance is also discussed.  
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CHAPTER 1  
 

INTRODUCTION 
 

1.1 MOTIVATION 

The computer-aided engineering for high-frequency structures 

(microwave and millimeter-wave circuits and antennas) originated in the early 

1950s with the advent of first-generation computers. Since then, the design and 

modeling of microwave circuits applying optimization techniques have been 

extensively researched [1]-[3].  

 As computing resources became more powerful and widely available, the 

computational electromagnetics (CEM) emerged and spurred a variety of 

numerical algorithms for full-wave EM analysis, including the method of 

moments (MoM), the finite element method (FEM), the finite difference-time 

domain method (FDTD), the transmission line method (TLM), etc. They solve 

Maxwell’s equations for structures of arbitrary geometrical shapes and offer 

superior accuracy and complete field representation—as long as the theoretical 

model includes all EM field interactions. Ansoft HFSS [4], ADS Momentum [5], 
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Sonnet em [6], XFDTD [7], FEKO [8] and MEFiSTo-3D [9] are some common 

commercial full-wave analysis solvers.  

However, these algorithms are extremely demanding in terms of computer 

memory and time. Even today, full-wave analysis appears prohibitively slow for 

the purposes of modeling and design of a complete microwave circuit. The 

problem of efficient sensitivity estimation and optimization with full-wave EM 

analysis remains a challenge [10]. 

1.2 OUTLINE OF THESIS 

In this thesis, we approach solving this problem from two sides:  

1) Self-adjoint sensitivity analysis (SASA) method for fast sensitivity 

computation and its application to EM optimization; 

2) The space mapping (SM) technique for microwave circuit 

optimization. 

We first review some relevant concepts from the method of moments [11]-

[13], which is the primary numerical analysis method throughout this research. 

We formulate a general self-adjoint approach to the sensitivity analysis of 

network parameters, which requires neither an adjoint problem nor analytical 

system matrix derivatives [14]-[16]. Then, we propose an approach for EM design 

optimization, which employs the self-adjoint sensitivity analysis of network 

parameters and Broyden’s update [17]. After that, we apply the SM techniques to 

antenna design. A practical SM design framework is formalized, especially 
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suitable for antennas as well as planar microwave circuit design [18][19]. We 

conclude by suggesting a combined application of the SM technique and the 

SASA method. This thesis is grouped into two parts.  

Chapters 3 to 4 in Part I describe the self-adjoint sensitivity analysis 

(SASA) method and its application to EM design optimization.  

Chapter 3 presents the self-adjoint formulas for network-parameter 

sensitivity calculation in the MoM. It requires neither an adjoint problem nor 

analytical system matrix derivatives. The derivative of the system matrix is 

obtained by the finite-difference method, so this approach is also referred to as the 

FD-SASA. We outline the features of the commercial EM solvers, which enable 

independent network-parameter sensitivity analysis. We implement our technique 

in FEKO, which employs MoM. Numerical examples, the patch antenna and the 

microstrip bandstop filter, demonstrate our approach, followed by a discussion of 

the MoM matrix symmetry versus convergence of the solution.  Then, the 

computational overhead associated with the sensitivity analysis is discussed and 

recommendations are given for further reduction of the computational cost 

whenever software changes are possible.    

In Chapter 4, we study EM optimization using sensitivity analysis in the 

frequency domain. We investigate the feasibility of the Broyden update in the 

computation of the system matrix derivatives [20][21] for use with our self-

adjoint formula during optimization. We refer to this approach as the Broyden-

update self-adjoint sensitivity analysis (B-SASA). It is applicable to sensitivity 



CHAPTER 1 INTRODUCTION 
 

 4

analysis for optimization purposes due to the iterative nature of Broyden’s 

formula. This improvement is significant compared with the FD-SASA which is 

proposed in Chapter 3. The B-SASA method may offer inaccurate gradient 

information under certain conditions. We develop a set of criteria for switching 

back and forth throughout the optimization process between the robust but more 

time-demanding FD-SASA and the B-SASA. This hybrid approach (B/FD-SASA) 

guarantees good accuracy of gradient information with minimal computational 

time.  

Chapter 5 in Part II presents the antenna design optimization exploiting 

SM techniques.  

In Chapter 5, we apply space mapping technique (see [1]-[3], [22]-[25]) to 

antenna design. We exploit a coarse-mesh MoM solver as the coarse model and 

align it with the fine-mesh MoM solution through SM. We employ two space 

mapping plans. The first plan includes implicit SM and output SM. The second 

plan includes input SM and output SM. A novel local meshing method avoids 

inconsistencies in the coarse model. The proposed techniques are implemented 

through the SMF (Space Mapping Framework) system. In a double annular ring 

antenna example, the S-parameter is optimized. The finite ground size effect for 

the MoM is effectively solved by space mapping plan I and the design 

specification is satisfied after only three iterations. In a patch antenna example, 

we optimize the impedance with both plans. Comparisons are made. Coarseness 
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in the coarse model and its effect on the space mapping performance are 

discussed.  

The thesis is concluded with suggestions for further research. For 

convenience, a bibliography is given at the end of thesis. 

1.3 CONTRIBUTIONS 

The author contributed substantially to the following original 

developments presented in this thesis: 

I. Development of a self-adjoint sensitivity analysis algorithm for the 

method of moments. 

II. Implementation of the self-adjoint sensitivity analysis algorithm with 

the commercial EM software FEKO. 

III. Development of a mixed self-adjoint sensitivity analysis algorithm 

(B/FD-SASA) for frequency domain EM optimization using 

sensitivity analysis. 

IV. Development and implementation of a CAD algorithm for antenna 

design utilizing space mapping. 

V. Development of a coarse-mesh surrogate model optimization 

algorithm for the method of moments.  
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VI. Contribution to developing the FEKO driver of the SMF system 

which automatically executes FEKO, updates parameters and extracts 

responses in Mablab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1 INTRODUCTION 

 7

REFERENCES 

[1] A.S. Mohamed, Recent Trends in CAD Tools for Microwave Circuit 
Design Exploiting Space Mapping Technology, PhD Thesis, Department 
of Electrical and Computer Engineering, McMaster University, 2005. 

 
[2] Q. Cheng, Advances in Space Mapping Technology Exploiting Implicit 

Space Mapping and Output Space Mapping, PhD Thesis, Department of 
Electrical and Computer Engineering, McMaster University, 2004. 

 
[3] M.H. Bakr, Advances in Space Mapping Optimization of Microwave 

Circuits, PhD Thesis, Department of Electrical and Computer 
Engineering, McMaster University, 2000. 

 
[4] Ansoft HFSS, Ansoft Corporation, 225 West Station Square Drive, Suite 

200, Pittsburgh, PA 15219, USA. 
 
[5] Agilent ADS, Agilent Technologies, 1400 Fountaingrove Parkway, Santa 

Rosa, CA 95403-1799, USA. 
 
[6] em, Sonnet Software, Inc. 100 Elwood Davis Road, North Syracuse, NY 

13212, USA. 
 
[7] XFDTD, Remcom Inc., 315 South Allen Street, Suite 222, State College, 

PA 16801, USA. 
 
[8] FEKO, Suite 4.2, June 2004, EM Software & Systems-S.A. (Pty) Ltd, 32 

Techno lane, Technopark, Stellenbosch, 7600, South Africa.  
 
[9] MEFiSTo-3D, Faustus Scientific Corporation, 1256 Beach Drive, 

Victoria, BC, V8S 2N3, Canada. 
 
[10] N.K. Nikolova, J.W. Bandler and M.H. Bakr, “Adjoint techniques for 

sensitivity analysis in high-frequency structure CAD,” IEEE Trans. 
Microwave Theory Tech., vol. 52, Jan. 2004, pp. 403-419. 

 
[11] D.G. Swanson, Jr. and W.J.R. Hoefer, Microwave Circuit Modeling Using 

Electromagnetic Filed Simulation, Artech House, 2003. 
 
[12] I.D. Robertson and S. Lucyszyn, RFIC and MMIC design and technology, 

IEE Circuits, Device and System, Series 13, 2001.   
 



CHAPTER 1 INTRODUCTION 
 

 8

[13] L. Daniel, Simulation and Modeling Techniques for Signal Integrity and 
Electromagnetic Interference on High Frequency Electronic Systems, PhD 
Thesis, Electrical Engineering and Computer Science, University of 
California at Berkeley.  

 
[14] N.K. Nikolova, J. Zhu, D. Li, M.H. Bakr and J.W. Bandler, “Sensitivity 

analysis of network parameters with electromagnetic frequency-domain 
simulators,” IEEE Trans. Microwave Theory Tech., vol. 54, Feb. 2006, pp. 
670-681. 

 
[15] N.K. Nikolova, J. Zhu, D. Li and M.H. Bakr, “Extracting the derivatives 

of network parameters from frequency-domain electromagnetic 
solutions,” the XXVIIIth General Assembly of the International Union of 
Radio Science, CDROM, Oct. 2005. 

 
[16] J. Zhu, N.K. Nikolova and J. W. Bandler, “Self-adjoint sensitivity analysis 

of high-frequency structures with FEKO,” the 22nd International Review 
of Progress in Applied Computational Electromagnetics Society (ACES 
2006), Miami, Florida, pp. 877-880. 

 
[17] D. Li, J. Zhu, N.K. Nikolova, M.H. Bakr and J.W. Bandler, “EM 

optimization using sensitivity analysis in the frequency domain,” 
submitted to IEEE Trans. Antennas Propagat., Special Issue on Synthesis 
and Optimization Techniques in Electromagnetics and Antenna System 
Design, Jan. 2007.  

 
[18] J. Zhu, J.W. Bandler, N.K. Nikolova and S. Koziel, “Antenna optimization 

through space mapping,” submitted to IEEE Trans. Antennas Propagat., 
Special Issue on Synthesis and Optimization Techniques in 
Electromagnetics and Antenna System Design, Jan. 2007. 

 
[19] J. Zhu, J.W. Bandler, N.K. Nikolova and S. Koziel, “Antenna design 

through space mapping optimization,” IEEE MTT-S Int. Microwave 
Symp., San Francisco, California, 2006. 

 
[20] N.K Nikolova, R. Safian, E.A. Soliman, M.H. Bakr and J.W. Bandler, 

“Accelerated gradient based optimization using adjoint sensitivities,” 
IEEE Trans. Antenna Propagat. vol. 52, Aug. 2004, pp. 2147-2157. 

 
[21] J.W. Bandler, S.H. Chen, S. Daijavad and K. Madsen, “Efficient 

optimization with integrated gradient approximations,” IEEE Trans. 
Microwave Theory Tech., vol. 36, Feb. 1988, pp. 444-455. 

 



CHAPTER 1 INTRODUCTION 

 9

[22] J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. 
Madsen and J. Søndergaard, “Trends in space mapping technology for 
engineering optimization,” 3rd Annual McMaster Optimization 
Conference: Theory and Applications, MOPTA03, Hamilton, ON, Aug. 
2003. 

 
[23] J.W. Bandler, Q. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. 

Madsen and J. Søndergaard, “Space mapping: the state of the art,” in 
SBMO MTT-S International Microwave and Optoelectronics Conference 
(IMOC 2003), Parana, Brazil, Sep. 2003, vol. 2, pp. 951-956. 

 
[24] J.W. Bandler, Q. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. 

Madsen and J. Søndergaard, “Space mapping: the state of the art,” IEEE 
Trans. Microwave Theory and Tech., vol. 52, Jan. 2004, pp. 337-361. 

 
[25] J.W. Bandler, Q.S. Cheng, D.M. Hailu, A.S. Mohamed, M.H. Bakr, K. 

Madsen and F. Pedersen, “Recent trends in space mapping technology,” in 
Proc. 2004 Asia-Pacific Microwave Conf. APMC04 New Delhi, India, 
Dec. 2004. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 1 INTRODUCTION 
 

 10

 
 
 
 



 
11

 

CHAPTER 2  
 

SOME RELEVANT FEATURES OF 

THE METHOD OF MOMENTS 
 

2.1 BRIEF INTRODUCTION TO THE METHOD OF 

MOMENTS 

The need for full-wave EM solvers is obvious. The major advantage of 

numerical techniques is that they can be applied to a structure of arbitrary shape 

and provide excellent accuracy.  

The method of moments (MoM) is probably the most popular full-wave 

approach to the analysis of planar structures. Many of the well known commercial 

software packages exploit this method. Some notable packages are Agilent 

Momentum from Agilent Technologies [1], Sonnet em from Sonnet Software Inc. 

[2], Ansoft Ensemble from Ansoft Corporation [3], and FEKO from EMSS [4]. 

The method of moments is the primary numerical method used in this research on 

the self-adjoint sensitivity analysis [5]-[8] and space mapping for antenna 

optimization [9][10].  
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The method of moments was created to numerically solve systems of 

integral-differential equations. The simplest MoM employs pulse expansion 

functions and Dirac testing function (collocation). Harrington [11] has extended 

this concept by describing it in terms such that it is essentially identical to the 

general method of projective approximation, including collocation as a special 

case [12][13].  

In a narrower sense, MoM is the method of choice for solving problems 

stated in the form of an electric field integral equation (EFIE) or a magnetic field 

integral equation (MFIE): 

1EFIE :   eL− =J E  (2.1)

1MFIE :   mL− =J H  (2.2)

E and H are the field vectors, and J is the source function (current density). In 

most of the cases, these integral equations are formulated in the frequency domain 

although time domain applications exist. Instead of the fields E and H, we may 

also formulate the problem in terms of scalar and vector potentials.  

In the above sense, the MoM is an integral equation method for the 

frequency-domain analysis. Table 2.1 and Table 2.2 give the basic features of the 

integral methods versus the differential-methods and the frequency-domain 

methods versus the time domain methods, respectively [14].  

In the MoM, only the surfaces of the objects are discretized. The linear 

system resulting from the discretization is much smaller compared to the FDTD 

and the FEM system matrices. The system is unfortunately very dense, because 
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every surface element interacts with every other surface element. This method is 

ideal for open field environment simulations and can handle very efficiently 

antenna application.  

2.2 CPU TIME COST VERSUS MESH DENSITY [15] 

The CPU time for a MoM simulation can be expressed as 

2 3CPU time =  +  +  + A BN CN DN  (2.2)

where N is the number of unknowns. A, B, C and D are constants independent of 

N. A accounts for the simulation set-up time. The meshing of the structure leads to 

the linear term BN. The filling of the system matrix is responsible for the 

quadratic term, and solving the matrix equation for the cubic term. The values of 

A, B, C and D depend on the problem at hand. 

The quadratic and cubic terms dominate. For small to medium size 

problems, as the constant C is much larger than D, the solution time is dominated 

by the matrix fill. For large scale problems, the matrix solving time with its cubic 

term will eventually dominate the CPU-time cost. Thus, for medium to large scale 

problems, the time saving by using coarse-mesh coarse models will be significant. 

 

 

 

 

 



CHAPTER 2 SOME RELEVANT FEATURES OF THE METHOD OF MOMENTS 
 
 

 14

TABLE 2.1 

DIFFERENTIAL EQUATION METHODS VS. 

 INTEGRAL EQUATION METHODS [14] 

Differential Methods Integral Methods 

discretize entire domain discretize only active region 

lead to huge but sparse linear 
systems 
 

lead to relatively small but dense 
linear systems 

good for inhomogeneous materials problems with inhomogeneous 
materials; good for layered materials 
 

problems with open boundary 
conditions 

good for open boundary conditions 

 

 

TABLE 2.2 

TIME DOMAIN VS FREQUENCY DOMAIN [14] 

Time Domain Methods Frequency Domain Methods 

can handle non-linearities problems with non-linearities 

run a long simulation exciting all 
significant modes and then take a 
Fourier Transform.  
 

solve for specific frequency points 

can produce insightful animations can exploit new techniques for fast 
calculation of the dominant 
eigenvalues 
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2.3 MESH REFINEMENT [16] 

The accuracy of any simulation is dependent on the quality of the 

approximations being made. In the method of moments, the surface currents are 

approximated by a set of currents over a number of surface triangles. 

Frequency domain models (including the finite element method and the 

method of moments) should be checked for mesh convergence. This is done by 

varying the size of the mesh element from one simulation to the next, and keeping 

all other model parameters the same. The results of these two simulations can 

then be compared. If there is a significant difference in the results, the surfaces 

are not adequately discretized and a finer mesh is needed.  

The most common way to do a mesh convergence test is to reduce the 

global size of the mesh element. However, global refinement results in additional 

resource requirement throughout the model. This is a very safe way of checking 

convergence, but experienced users will be able to make a very good guess about 

where refinement might be necessary. In these cases, it would be far more 

efficient to refine the mesh locally, rather than globally.  

2.4 MODELING OF DIELECTRIC MATERIALS [17][18] 

Today’s EM problems are very complex in general. It is vital to take into 

account the effects of lossy dielectric and magnetic materials into account, such 

as antenna radomes, dielectric substrates, biological tissue, etc. The traditional 

Special Green’s Functions technique, which only models the metallic surface, 
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cannot fulfill such requirements. Techniques based on the volume or surface 

equivalent principles within the MoM aim at solving such problems.  

I.  The Special Green’s Function technique. 

 A Green’s function describes the response in space to a point excitation or 

source. The simplest form of a Green’s function is the free space Green’s 

function. It is possible to use a Special Green’s Function to incorporate features of 

the propagation space into the model. Only the surface of metallic meshes has to 

be modeled. This means that the properties of the remainder of the structure are 

modeled implicitly, which is very computer resource efficient but is limited to a 

few special cases, such as the layered dielectrics.  

 II.  The Surface Equivalent Principle (SEP) technique. 

The MoM for metallic structures solves for the electric currents on the 

surface of all metallic objects in order to determine the electromagnetic 

observables, e.g., current densities at the port.  When using the SEP, the surfaces 

of a dielectric are discretised for both the electric and the magnetic currents on the 

surface. All sides of a dielectric have to be modeled, making a closed solid. This 

means that there are now two basis functions for each triangle pair which 

correlates to a memory requirement of four times what it would be if the same 

structure was metallic.  

One can imagine that for a planar structure with a finite ground, the 

Special Green’s Function technique provides an efficient but less accurate 

solution, since an infinite ground plane is assumed. In contrast, since the SEP 



CHAPTER 2 SOME RELEVANT FEATURES OF THE METHOD OF MOMENTS 

 17

model takes the finite ground effects into account by modeling all metallic and 

dielectric surfaces, its solution is accurate but more time-consuming.  

In the double annular ring antenna example in Section 5.5.1, we use the 

Special Green’s Function as the coarse model and the SEP as the fine model. 

Then we optimize its S-parameter in an efficient way by exploiting the space 

mapping technique.  
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CHAPTER 3  
 

SELF-ADJOINT SENSITIVITY 

ANALYSIS IN THE METHOD OF 

MOMENTS 
 

3.1 INTRODUCTION 

The goal of frequency domain sensitivity analysis is to evaluate the 

gradient of the response of a system to variations of its design parameters [1]. In 

high-frequency structure analysis, the design parameters typically describe the 

structure’s geometry and the electromagnetic properties of the media involved.  

The computation of the gradient is often carried out using finite 

differences where the structure is analyzed an additional time for each 

independent variable. It should be obvious that this approach is viable only when 

the requirements of an analysis in terms of CPU times and computer memory are 

reasonably small [2].   

The adjoint-variable method is known to be the most efficient approach to 

design sensitivity analysis for problems of high complexity where the number of 
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state variables is much greater than the number of the required response 

derivatives [3]-[5]. General adjoint-based methodologies have been available for 

some time in control theory [3], and techniques complementary to the finite-

element method (FEM) have been developed in structural [4],[5] and electrical 

[6]-[11] engineering. However, feasible implementations remain a challenge. The 

reason lies mainly in the complexity of these techniques.  

Recently, a simpler and more versatile approach has been adopted [1] 

[12]-[13] for analyses with the MoM and the frequency-domain transmission-line 

method. The effort to formulate analytically the system matrix derivative—which 

is an essential component of the sensitivity formula—was abandoned as 

impractical for a general-purpose sensitivity solver. Instead, approximations of 

the system-matrix derivatives are employed using either finite differences [1] or 

discrete step-wise changes [12], [13] as dictated by the nature of the discretization 

grid. Neither the accuracy nor the computational speed is sacrificed.  

All of the above approaches require the analysis of an adjoint problem 

whose excitation is response dependent. Not only does this mean one additional 

full-wave simulation but it also requires modification of the EM analysis engine 

due to the specifics of the adjoint-problem excitation. Notably, Akel et al. [8] has 

pointed out that in the case of the FEM with tetrahedral edge elements, the 

sensitivity of the S-matrix can be derived without an adjoint simulation.  

Here, we formulate a general self-adjoint approach to the sensitivity 

analysis of network parameters [14]-[16]. It requires neither an adjoint problem 
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nor analytical system matrix derivatives. We focus on the linear problem in the 

method of moments, which is at the core of a number of commercial high-

frequency simulators. Thus, for the first time, we suggest practical and fast 

sensitivity solutions realized entirely outside the framework of the EM solver. 

These standalone algorithms can be incorporated in an automated design to 

perform optimization, modeling, or tolerance analysis of high-frequency 

structures with any commercial solver, which exports the system matrix and the 

solution vector. 

In the next section, we state the adjoint-based sensitivity formula and the 

definition of a self-adjoint problem. We then introduce the self-adjoint formulas 

for network-parameter sensitivity calculations. We outline the features of the 

commercial EM solvers, which enable independent network-parameter sensitivity 

analysis. Numerical validation and comparisons are presented in Section 3.5. 

Section 3.6 discusses the computational overhead associated with the sensitivity 

analysis. We give recommendations for further reduction of the computational 

cost whenever software changes are possible, and conclude with a summary. 

3.2 FREQUENCY DOMAIN ADJOINT VARIABLE 

METHOD [14] 
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3.2.1 Sensitivities of Linear Complex Systems [14] 

A time-harmonic EM problem involving linear materials can be cast in a 

linear system of complex equations by the use of a variety of numerical 

techniques: 

=Ax b  (3.1)

The system matrix M M×∈^A  is a function of the shape and material parameters, 

some of which comprise the vector of designable parameters 1N×∈\p , i.e., A(p). 

Thus, the vector of state variables  1M ×∈^x  is a function of p, x(p). The right-

hand side b results from the EM excitation and/or the inhomogeneous boundary 

conditions. Typically, in a problem of finding the sensitivities of network 

parameters, b is independent of p, because the waveguide structures launching the 

incident waves (the ports) serve as a reference and are not a subject to design 

changes: ∇ = 0pb . 

For the purposes of optimization, the system performance is evaluated 

through a scalar real-valued objective function ( , )F x p . In tolerance analysis or 

model generation, we may consider a set of responses, some of which are 

complex. We first consider a single, possibly complex, function F, and we refer to 

it as the response. It is computed from the solution x  of (3.1) for a given design. 

Through x, F is an implicit function of p. It may also have an explicit 

dependence on p. Explicit dependence on a shape parameter ip  ( / 0e
iF p∂ ∂ ≠ ) 

arises when F depends on the field/current solution at points whose coordinates in 
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space are affected by a change in ip . An example is the explicit dependence of an 

antenna gain on the position/shape of the wires [1] carrying the radiating currents. 

Explicit dependence with respect to a material parameter arises when F depends 

on the field/current solution at points whose constitutive parameters are affected 

by its change. An example is the stored energy in a volume of changing 

permittivity. The network parameters, however, are computed from the solution at 

the ports, whose shape and materials do not change. Thus, when F is a network 

parameter, e F∇ = 0p . 

The derivatives of a complex response R IF F jF= +  ( 1j = − ) with 

respect to the design parameters 1[ ]T
Np p= "p  can be efficiently calculated 

using the adjoint-variable sensitivity formula [11][13]: 

ˆ ,  1, 2, ,
e

T

i i i i

F F i N
p p p p

⎛ ⎞∂ ∂ ∂ ∂= + ⋅ − ⋅ =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
…b Ax x . (3.2)

In a compact gradient notation, (3.2) becomes 

( )ˆe TF F∇ = ∇ + ⋅∇ −p p px b Ax  (3.3)

We refer to F∇ p  as the response sensitivity. The adjoint-variable vector 

x̂  is the solution to 

ˆ ( )T TF =⋅ = ∇x x xA x  (3.4)

where F∇x  is a row of the derivatives of F with respect to the state variables ix , 

1, ,i M= … , evaluated at the current solution =x x . In the case of complex 

systems, it involves the real Rx  and the imaginary Ix  parts of the state variables. 
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As detailed in [13], the complex-response analysis (3.2)-(3.4) is valid if F 

is an analytic function of the state variables x, in which case, the Cauchy-

Riemann conditions [17] are fulfilled. A convenient form of the adjoint excitation 

ˆ ( )TF= ∇xb  is 

1 1

ˆ ( ) ( )R
R R R R

T
R I R I T T

M M

F F F Fj j F F
x x x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= + + = ∇ = ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
" x xb  (3.5)

3.2.2 Sensitivity Expression for Linear-network Parameters [14] 

For a network parameter sensitivity, the gradients ∇ pb  and e F∇ p  in (3.3) 

vanish, which leads to the sensitivity expression 

( )ˆTF∇ = − ⋅∇p px Ax . (3.6)

We emphasize that in (3.6) x  is fixed, and only A is differentiated, as in (3.2). 

The sensitivity formula (3.6) uses three quantities: the solution x  of the 

original problem (3.1), the set of system matrix derivatives / ip∂ ∂A , 1, ,i N= … , 

and the solution x̂  to the adjoint problem (3.4). The first one is available from the 

EM simulation. Also, we assume that the system matrix derivatives have been 

already computed, e.g., using finite differences [1] or Broyden’s update [18][19]. 

We next show that in the case of the network parameters, the adjoint solution x̂  is 

equal to x  multiplied by a complex factor κ . Thus, the solution of (3.4) is 

unnecessary. We employ the above adjoint-variable theory to determine κ  for 

different network parameters. For that, we also need to know the dependence of 
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the particular network parameter on the distributed field/current solution. We 

discuss this dependence below. 

3.3 NETWORK PARAMETER SENSITIVITIES WITH 

CURRENT SOLUTIONS 

3.3.1 Sensitivities of S-parameters 

The S-parameters in the MoM depend on the current density solutions 

produced by the MoM solvers through simple linear relations. More specifically, 

the current solution at the ports is needed.  

We implement our technique through FEKO® [20]. FEKO is primarily an 

antenna CAD software. It uses the EFIE for metallic objects, and the EFIE with 

specialized Green’s functions for planar layered (printed) circuits. For dielectric 

objects, it uses a coupled field integral equation (PMCHW) technique. It also 

employs a fast multipole method (MLFMM) for large problems (does not support 

specialized Green’s functions).     

Consider the calculation of the S-parameters of a network of system 

impedance 0Z  by FEKO: 

0 ,2 k j
kj kj e

j

Z I
S

V
δ= − , , 1, ,j k K= … . (3.7)

Here, e
jV  is the jth port voltage source (usually set equal to 1) of internal 

impedance 0Z , and ,k jI  is the resulting current at the kth port when the jth port is 
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excited (the rest of the ports are loaded with 0Z ). The right-hand side of (3.1) 

corresponding to e
jV  is bj. 

If the structure consists of thin wires discretized into segments, the 

currents ,k jI  are the elements of the solution vector jx  obtained with j=b b . 

Then, each partial derivative 

0

,

2kj
e

k j j

S Z
I V

∂
= −

∂
, , 1, ,j k K= …  (3.8)

gives the only nonzero element of the respective adjoint excitation vector  ̂kjb . Its 

position corresponds exactly to the position of the only nonzero element e
kV  of 

the original excitation at the kth port kb . This is because ,k jI  is computed at the 

very same segment where e
kV  is applied when the kth port is excited. Thus, 

0
 

2ˆ kj ke e
jk

Z
V V

= −b b , , 1, ,j k K= …  (3.9)

If the structure and in particular its ports involve planar or curved metallic 

surfaces, FEKO applies triangular surface elements accordingly, and computes 

the surface current distribution [20]. In this case, each of the port currents is 

obtained from the current densities at the edge of its port: 

, ,
k

i i
k j k j k

i
I J l

∈
= ∆∑

S
, , 1, ,j k K= …  (3.10)

where k denotes the port where the current is computed, and j denotes the port 

being excited. ,
i
k jJ  is the component of the surface current density normal to the 
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edge of the ith element of port k whose length is i
kl∆ . The current densities ,

i
k jJ , 

ki ∈S , are elements of the solution vector jx , where kS  is the set of their 

indices. 

We compute the elements of the adjoint excitation vector ˆkjb  as the 

derivatives of kjS  with respect to ,
i
k jJ , ki ∈S : 

0
,( ) ( )

,

2ˆ[ ] kj
kj i k ij j

ek i

S Zb l
J V

∂
= = − ⋅∆

∂
, ki ∈S . (3.11)

All elements, for which ki ∉S , are zero. 

On the other hand, the excitation vector kb , corresponding to the kth port 

excitation of the original problem, also has nonzero elements, whose indices are 

those in kS . Moreover, to ensure uniform excitation across the port, these 

excitation elements are equal to the applied excitation voltage e
kV , scaled by the 

edge element i
kl∆  [21]: 

[ ] e i
k i k kb V l= ⋅∆ , ki ∈S . (3.12)

Comparing (3.11) and (3.12), we conclude that the adjoint vectors  ̂kjb  relate to 

the original excitation ( )kb  as in (3.9). 

If the MoM matrix fulfills the symmetry condition T=A A , the adjoint 

solution vectors ˆkjx , , 1, ,j k K= … , obtained from the adjoint excitations ˆ kjb  

relate to the original solution vectors kx  , 1, ,k K= … , as 
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ˆkj kj kκ= ⋅x x , 0
( ) ( )
2

kj k j
e e

Z
V V

κ = − . (3.13)

However, the matrices arising in the large variety of MoM techniques are 

not always symmetric when a non-uniform unstructured mesh is used, which is 

the usual case. It would seem that in the case of an asymmetric MoM matrix, the 

solution of the adjoint problem is unavoidable. On the other hand, a linear EM 

problem is intrinsically reciprocal, and in the limit of an infinitely fine mesh, the 

MoM techniques tend to produce nearly symmetrical system matrices. In Section 

3.7, we show an important result: if the mesh is fine enough to achieve a solution 

convergence error below 10 %, then the asymmetry of the system matrix is 

negligibly small as far as the sensitivity calculation is concerned. Consequently, 

the self-adjoint sensitivity analysis using (3.13) is adequate with a convergent 

MoM solution. Its sensitivities are practically indistinguishable from those 

produced by solving the adjoint problem. 

To summarize the above theory, we state the sensitivity formula for the 

self-adjoint S-parameter problem: 

( )( )T
kj kj k jS κ∇ = − ⋅∇p px Ax , , 1, ,j k K= …  (3.14)

Here, kjκ  is a constant, which depends on the powers incident upon the jth and 

kth ports, as per (3.13). 

3.3.2 Input Impedance Sensitivities 

The S-parameters relate to all other types of network parameters through 
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known analytical formulas [22]. Thus, the S-parameter sensitivities can be 

converted to any other type of network-parameter sensitivities using chain 

differentiation. 

On the other hand, the MoM is well suited for the computation of the input 

impedance inZ  of one-port structures, e.g., antennas. Input-impedance 

sensitivities have been already considered in [1], [18] and [19]. There, however, 

the self-adjoint nature of the problem has not been recognized. As a result, the 

implementation uses in-house MoM codes, which are modified to carry out the 

adjoint-problem solution. 

 Below, we give the coefficient κ  in the self-adjoint sensitivity expression 

for inZ  computed with the MoM. Making use of the MoM port representation 

explained previously, the relation between the adjoint and the original excitation 

vectors is obtained as 

2ˆ
inI −= − ⋅b b  (3.15)

regardless of whether the port consists of a single or multiple wire segments or 

metallic triangles. Thus, the self-adjoint sensitivity formula for inZ  is the same as 

(3.14) after replacing kjS  with inZ  and kjκ  with 2
inI −− . Here, inI  is the complex 

current at the port known already from the system analysis. 

3.4 GENERAL PROCEDURE  

Assume that the basic steps in the EM structure analysis have already been 
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carried out. These include:  

(1) A geometrical model of the structure has been built through the 

graphic  user interface of the simulator; 

(2) A mesh has been generated; 

(3) The system matrix A has been assembled; 

(4) The system equations have been solved for all K port excitations, 

and the original solution vectors kx , 1, ,k K= … , of the nominal 

structure have been found with sufficient accuracy. 

The self-adjoint sensitivity analysis is then carried out with the following 

steps: 

Step 1 Parameterization: identify design parameters ip ,  1, ,i = …  N; 

Step 2 Generation of matrix derivatives; 

Step 3 Sensitivity computations: use (3.14) with the proper constant κ . 

To get the derivative of the system matrix at Step 2, we perturb the 

structure slightly for each ip , (with about 1 % of the nominal ip  value) while 

keeping the other parameters at their nominal values. We re-generate the system 

matrix ( )i
i ip+ ∆ ⋅A = A p u , where iu  is a 1N ×  vector whose elements are all 

zero except the ith one, 1iu = . We compute the N derivatives of the system 

matrix via finite differences: 

i

i i ip p p
∂ ∆ −≈ =
∂ ∆ ∆

A A A A , 1, ,i N= …  (3.16)
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Note that (3.16) is applicable only if A and iA  are of the same size, i.e., 

the two respective meshes contain the same number of nodes and elements. 

Moreover, the numbering of these nodes and elements must correspond to the 

same locations (within the prescribed perturbation) in the original and perturbed 

structures. 

3.5 SOFTWARE REQUIREMENTS AND    

IMPLEMENTATION IN FEKO  

3.5.1 Software Requirements 

           The above steps show that the EM simulator must have certain features, 

which enable the self-adjoint sensitivity analysis.  

(1) It must be able to export the system matrix so that the user can 

compute the system matrix derivatives with (3.16).  

(2) It must allow some control over the mesh generation, so that (3.16) 

is physically meaningful.  

(3) It must export the field/current solution vector so that we can 

compute the sensitivities with (3.14).  

The second and third features are available with practically all commercial 

EM simulators. The first feature deserves more attention. In the MoM, the matrix 

is dense, and writing to the disk may be time consuming. Also, only a few of the 

commercial simulators give access to the generated system matrices. This is the 
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reason why our numerical experiments are carried out with FEKO.  This solver is 

based on the MoM, and it has the option to export the system matrix to a file 

stored to the disk. It also exports the solution vector with the computed current 

distribution.  

3.5.2 Implementation in FEKO 

A. Data Extraction 

FEKO provides a PS Card, which allows us to export the system matrix 

and the solution (current vector I ). They are stored in *.mat file and *.str file, 

respectively. The *.mat is a binary file, written on the Intel platform. It has a 

Fortran block structure using the double complex data type. We can read such 

data through MatLab. Special care must be taken: 

1) Before we access the matrix, 19 4×  bytes offsets must be skipped 

immediately after opening the binary files. 

2) Each record is 8 bytes longer than the actual data (4 bytes before and 4 bytes 

after the data). So for instance for a matrix with 21 21×  elements the length 

of the file is not 21 21  16  7056× × = bytes (16 for double complex), but 

rather 

      21  8                for each record
  21  21  16    for the actual matrix
  7224 bytes.

×
+ × ×
=

 

B. Mesh Control 



CHAPTER 3 SELF-ADJOINT SENSITIVITY … METHOD OF MOMENTS 

 37

   FEKO defines its mesh by setting the maximum mesh edge size for each 

geometrical part. We could assign a different maximum mesh edge size for each 

part. Within each part, the size of the mesh edge is the same. For example, let the 

design parameter be the length of the microstrip line shown in Fig. 1. At the ith 

iteration, the length is iL  and at the (i + 1)th iteration, the length increases to 1iL + . 

We usually define the maximum size along the y-axis at the ith iteration as 

,    1, 2 , , 
i

i
y

LL i n
N

∆ = = …  (3.17)

where n is the maximum iteration number and N is the number of mesh edges 

along the y-axis. 

  In this definition, the number of mesh edges along the y-axis remains N, 

regardless of the value of iL , see Fig. 3.1.  

1i iL L L+ = + ∆

i

i
y

LL
N

∆ =

iL

1

1
i

i
y

LL
N+

+∆ =

 

Fig. 3.1. Demonstration of mesh control in FEKO. 

3.6 VALIDATION 
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We compute the network-parameter sensitivities with our self-adjoint 

formula and compare the results with those obtained by a forward finite-

difference approximation applied directly at the level of the response. This second 

approach requires a full-wave simulation for each designable parameter. In all 

plots, our results are marked with SASA (for self-adjoint sensitivity analysis), 

while the results obtained through direct finite differencing are marked with FD. 

Our self-adjoint results are compared with the response derivatives obtained with 

the finite-difference approximation, which uses 1 % parameter perturbation. 

3.6.1 Input Impedance Sensitivities of a Microstrip-Fed Patch Antenna 

The microstrip-fed patch antenna [18] is printed on a substrate of relative 

dielectric constant 2.32rε =  and height 1.59h =  mm. The design parameters are 

its width W and length L shown in Fig. 3.2. The figure shows also the mesh of the 

metal layer. We compute the sensitivities of the antenna input impedance inZ . 

Our derivatives with respect to the antenna length L ( 45 55L≤ ≤  mm) for a width 

85W =  mm and a frequency of 2.0 GHz are plotted together with the finite-

difference results in Fig. 3.3. 
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Fig. 3.2. Microstrip-fed patch antenna with design parameters [   ]TL W=p . The 
view shows the actual mesh. 
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Fig. 3.3. Derivatives of inZ  with respect to the length L of the patch antenna at 
2.0f =  GHz. The width is at 85W =  mm. 

3.6.2 S-Parameter Sensitivities of the Bandstop Filter 

This simple microstrip filter (Fig. 3.4) is printed on a substrate of 

2.33rε =  and 1.57h =  mm. It is analyzed at 4.0f =  GHz. The design 

parameters are the width W and length L of the open-end stub. We compute the 

sensitivities of the S-parameter magnitudes and phases.  

Note that the derivative of the phase φ  of a complex response 

| | j
R IF e F jFφ = +  is obtained from the derivatives of its real and imaginary parts: 

2| | I R
R I

F FF F F
p p p
φ − ⎛ ⎞∂ ∂ ∂= ⋅ −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3.18)
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Fig. 3.5 and Fig. 3.6 show the derivatives of 11| |S  and 21| |S  with respect 

to the stub length L when 4.6W =  mm. 

 

L

port 1

port 2

92
 m

m

4.6 mm

 

 

Fig. 3.4. Microstrip bandstop filter with design parameters [   ]TL W=p . The view 
shows the actual mesh. 
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Fig. 3.5. Derivatives of the S-parameter magnitudes of the bandstop filter with 
respect to the stub length L at 4.0f =  GHz. The width is 4.6W =  mm. 

0.01 0.0125 0.015 0.0175 0.02 0.0225 0.025
-500

0

500

1000

1500

2000

2500

L (m)

de
riv

at
iv

e 
(r

ad
 ⋅ m

-1
)

phase S11 (FD)

phase S11 (SASA)

phase S21 (FD)

phase S21 (SASA)

Derivatives of:

 
Fig. 3.6. Derivatives of the S-parameter phases of the bandstop filter with respect 
to the stub length L at 4.0f =  GHz. The width is 4.6W =  mm. 



CHAPTER 3 SELF-ADJOINT SENSITIVITY … METHOD OF MOMENTS 

 43

3.6.3 S-Parameter Sensitivities of the HTS Filter 

We consider the high-temperature superconducting (HTS) bandpass filter 

of [23][24] (see the inset of Fig. 3.7). This filter is printed on a substrate with 

relative dielectric constant 23.425rε = , height 0.508 mmh =  and substrate 

dielectric loss tangent of 53 10−× . Design variables are the lengths of the coupled 

lines and the separations between them, namely, 1 2 3 1 2 3[      ]TS S S L L L=p . The 

length of the input and output lines is 0 1.27 mmL = . The lines are of width 

0.1778 mmW = . The filter is analyzed at 4.0 GHzf = . The derivatives of the 

system matrix are derived with 1 % perturbations. We compute the self-adjoint 

sensitivities of the S21 magnitude and phase, and compare it with the finite-

difference approach with the same perturbations. Fig. 3.8 shows the derivatives of 

21S  with respect to the spacing between the first coupled lines 1S  

( 10.5 0.75 mmS≤ ≤ ) when 2 3 1 2 3[    ]TS S L L L =[2.3764  2.6634   4.7523  4.8590   

4.7490]T . Fig. 3.9 shows the derivatives of the respective phase. Good agreement 

is observed between the self-adjoint derivatives and the respective finite-

difference estimates. 
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Fig. 3.7. The demonstration of the HTS filter [23]. 
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Fig. 3.8. Derivatives of 21S with respect to 1S  at f=4.0 GHz for the HTS filter. 
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Fig. 3.9. Derivatives of 21( )Sϕ  with respect to 1S  at f=4.0 GHz for the HTS filter 
in radians per meter.  

 

3.7 DISCUSSION: MOM MATRIX SYMMETRY VERSUS 

CONVERGENCE OF SOLUTION 

The self-adjoint sensitivities calculated with the MoM solver disregard the 

asymmetry of the system matrix as discussed in Section 3.3.1. In Table 3.1, we 

give quantitative assessment of this asymmetry in the two examples considered 

above in terms of three measures: 

(a) maximum measure 

max
1
1

max ij ji

i M ijj M

A A
a

A≤ ≤
≤ ≤

−
=  (3.19)
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(b) 1A  measure 

1

1 2
1 1

2 M M
ij ji

i j i ij

A A
a

AM

−

= = +

−
= ∑ ∑A  (3.20)

 
(c) 2A  measure 

2
1

2 2
1 1

1 2
M M

ij ji

i j i ij

A A
a

AM

−

= = +

−
= ∑ ∑A  (3.21)

 
  

TABLE 3.1 

ASYMMETRY MEASURES OF MOM MATRICES IN VALIDATION EXAMPLES 

 patch antenna bandstop filter 

asymmetry 
measure maxa  263 10.38 

asymmetry 
measure 1aA  0.3287 0.2333 

asymmetry 
measure 2aA  0.0012 0.0194 

 

 

The excellent agreement between the self-adjoint sensitivities and the 

finite-difference sensitivities shown in Figs 3.3, 3.5 and 3.6 asserts that the 

asymmetry measures summarized in Table 3.1 are minor as far as the sensitivity 

calculations are concerned. We need, however, a robust criterion, which can 

assure the accuracy of the sensitivity result without the need to check against a 

reference. 
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We carry out the following experiment. We analyze the folded dipole 

shown in Fig. 3.10. The radius of the wire is 410a λ−=  and the spacing between 

the two wires is 310s λ−= . The length L varies from 0.2λ  to 1.2λ . The response 

is the antenna input impedance inZ . We force the maximum segment size on one 

of the two parallel wires to be 5 times larger than that on the other wire. This 

leads to very different segment lengths along the two parallel wires [see Fig. 

3.10]. Since the two wires are very close, the MoM matrix is quite asymmetric. 

We emphasize that this is an abnormal (not recommended) segmentation allowing 

us to investigate a worst-case scenario. Normally, the user sets a global maximum 

segment length, which is applied to the entire structure, the result being a 

relatively uniform segmentation or mesh. 

We next perform mesh refinement starting from a coarse mesh of 32 

segments. Each iteration of the mesh refinement involves: 1) a decrease of the 

mesh elements by a certain factor, and 2) full-wave analysis with the current 

mesh. We decrease the maximum element size by approximately 50 % for each of 

the two parallel wires of the folded dipole. The ratio of 5 between them is 

preserved. The mesh refinement continues until a convergence error less than 1 % 

is achieved. The convergence error at the kth iteration is defined as 

( ) ( 1)
( )

( )
100

k k
in ink

k
in

Z Z
E

Z

−−
= ⋅ % (3.22)
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L s
 

Fig. 3.10. The folded dipole and one of its coarse nonuniform segmentations in 
FEKO (32 segments). The radius of the wire is 410a λ−=  and the spacing 
between the wires is 310s λ−= . L is a design parameter, 0.2 1.2Lλ λ≤ ≤ . The 
arrow in the center of the lower wire indicates the feed point. 

 

TABLE 3.2 

CONVERGENCE ERROR AND MATRIX ASYMMETRY MEASURES IN THE MESH 

REFINEMENT FOR THE FOLDED DIPOLE 

iteration 1 2 3 4 5 6 

segments 32 68 140 272 548 1088 

E, % N/A 25.99 9.665 1.918 1.097 0.8928 

2aA  66.03 88.21 11.72 1.435 0.1101 0.0074 

1aA  286.8 421.0 86.16 16.32 2.347 0.4261 

maxa  19887 91119 34588 11274 2425 1682 

 
 

Here, ( )k
inZ  and ( 1)k

inZ −  are the complex input impedances computed at the kth and 

( 1)k − st analyses. Convergence is achieved with a mesh of 1088 segments. 

At each of the above analyses, we compute the matrix asymmetry 

measures, which are summarized in Table 3.2. We see that as soon as 

convergence is achieved, the asymmetry measures 2aA  and 1aA  become 



CHAPTER 3 SELF-ADJOINT SENSITIVITY … METHOD OF MOMENTS 

 49

comparable to those in the validation examples [see Table 3.1]. 

At every iteration of the mesh refinement, we also compute the derivative 

/inZ L∂ ∂  (at 0.5L λ= ) with our self-adjoint approach, i.e., ignoring the system 

matrix asymmetry. We compare the self-adjoint result for each mesh with its 

respective reference sensitivity. The reference sensitivity is computed with our 

original adjoint technique, which solves the adjoint problem, i.e., it fully accounts 

for the asymmetry of the system matrix. We define the asymmetry error in the 

computed response derivative D as 

| | 100
| |D

D De
D
−= ⋅  % (3.23)

where D  is the reference derivative. 

In Fig. 3.11, we plot the asymmetry derivative error De  for /inZ L∂ ∂  and 

the matrix asymmetry measure 2aA  versus the convergence error E of the MoM 

solution [see (3.22)]. First, we see that 2aA  increases as the convergence error E 

increases with a slope, which is very similar to that of De  (unlike 1aA  and maxa ). 

Apparently, 2aA  is the matrix asymmetry measure, which can serve as a criterion 

for an accurate self-adjoint sensitivity calculation. As long as its value is below 2 

%, we can expect eD to be well below 1 %. Second, we conclude that as soon as 

an acceptable convergence is achieved in the response calculation ( 10E ≤  %), we 

can have confidence in the self-adjoint response sensitivity calculation since its 

asymmetry error De  is well below E, typically by two orders of magnitude. 
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Fig. 3.11. The matrix asymmetry measure and the error of the computed 
derivative /inZ L∂ ∂  (at 0.5L λ= ) as a function of the convergence error of the 
analysis in the folded-dipole example. 

 

In summary, if the MoM solution is setup properly and it yields network 

parameters of acceptable accuracy, it can be used to compute accurate network-

parameter sensitivities with the self-adjoint approach. This approach is robust and 

insensitive to the asymmetry of the MoM system matrix. 

For completeness, we note that our methodology is applicable when the 

MoM matrix is fully computed and is made accessible. The nature of the linear-

system solver (direct or iterative) is unimportant in the self-adjoint analysis since 

an adjoint solution is not needed. However, MoM techniques based on fast 
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multipole expansions never fully compute the matrix and are thus not well suited 

for adjoint-based sensitivity analysis. For them, specialized adjoint-based 

algorithms need to be developed and, at this stage, applications with commercial 

solvers do not seem feasible. Response sensitivities with finite differences, 

however, are an option. 

3.8 COMPUTATIONAL OVERHEAD OF THE SELF-

ADJOINT SENSITIVITY ANALYSIS 

The computational overhead associated with the self-adjoint sensitivity 

analysis is due to two types of calculations: 1) the system matrix derivatives, 

/ ip∂ ∂A , 1, ,i N= … , and 2) the row-matrix-column multiplications involved in 

the sensitivity formula (3.14). Compared to the full-wave analysis, the sensitivity 

formula (3.14) requires insignificant CPU time, which is often neglected. We 

denote the time required to compute one derivative with the sensitivity formula as 

SFT . In comparison, the calculation of the N system matrix derivatives is much 

more time consuming. Whether it employs finite differences or analytical 

expressions, it is roughly equivalent to N matrix fills. A matrix fill, especially in 

the MoM, can be time-consuming. We denote the time for one matrix fill as MFT . 

Thus, the overhead time required by the self-adjoint sensitivity analysis is 

SASA MF SFT N T N T= ⋅ + ⋅  (3.24)

On the other hand, if we employ forward finite differences directly at the 
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level of the response in order to compute the N derivatives of the network 

parameters, we need N additional full analyses, each involving a matrix fill and a 

linear system solution. Thus, the overhead of the finite-difference sensitivity 

analysis is 

FD MF LST N T N T= ⋅ + ⋅  (3.25)

where TLS is the time required to solve (3.1). 

The time cost comparison between the finite difference approach (FD), the 

adjoint variable method (AVM) and the self-adjoint sensitivity analysis (SASA) is 

given in Table 3.3.  

 

TABLE 3.3 

COMPARISON OF SENSITIVITY COMPUTATION OVERHEAD 

 FD AVM [1] SASA 

Matrix fills 
   

Solving system 
equations 

  
0 

Total    

 

 

 

 

MFN T× MFN T× MFN T×

LSN T× 1 LST×

( )MF LSN T T× + MF LSN T T× + MFN T×
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We can define a time-saving factor as the ratio ST = TFD / TSASA, which is a 

measure of the CPU savings offered by our sensitivity analysis approach: 

MF LS
T

MF SF

T TS
T T

+=
+

 (3.27)

Since TSF is negligible in comparison with TMF, 

1 LS
T

MF

TS
T

≈ +  (3.28)

Evidently, the larger the ratio /LS MFR T T= , the larger our time savings. 

Notice that 1TS ≥ , i.e., our approach would never perform worse than the finite-

difference approach. R depends on the size of the problem—it grows as the 

number of unknowns M increases. This dependence is stronger in the MoM. 

Fig. 3.12 shows the ratios /LS MFR T T=  of the FEKO solvers. The FEKO 

data is generated with a seven-element Yagi-Uda antenna [1][25] analyzed with 

increasingly finer segmentations whereby the number of unknowns increases 

from 240 to 11220. The plotted ratios are only representative since they depend 

on the type of the mesh (segments or triangles in FEKO) and on the type of the 

linear-system solver (direct or iterative). The trend of the ratio increasing with the 

size of the problem is general. We also emphasize that we record the CPU time 

only. With large matrices, a computer may run out of memory (RAM), in which 

case, part of the data is swapped to the disk. This causes a significant increase of 

TLS and R, which is machine and hard-drive dependent. This is not taken into 

account. 
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In Table 3.4, we show the actual CPU time spent for response sensitivity 

calculations with our self-adjoint approach and the finite-difference 

approximation using the FEKO solver. We consider the case of one design 

parameter ( 1N = ), i.e., a single derivative is computed. The size of the system M 

varies. The increase of the time-saving factor TS  as the number of unknowns 

increases corresponds closely to the ratio curves /LS MFR T T=  plotted in Fig. 3.12 

in accordance with (3.28). The analyzed structures are the same as those used to 

investigate the /LS MFT T  ratios. 

We also carry out a time comparison between our approach and the finite-

difference approach when the size of the system M is fixed but the number of 

design parameters N varies. The MoM results are summarized in Table 3.5. As 

predicted by (3.28), the time savings are practically independent of the number of 

design parameters. 
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Fig. 3.12. The ratio between the time required to solve the linear system and the 
time required to assemble the system matrix in and FEKO (MoM). 

 

 

TABLE 3.4 

FEKO COMPUTATIONAL OVERHEAD OF SENSITIVITY ANALYSIS WITH SELF-

ADJOINT METHOD AND WITH FINITE DIFFERENCES (N = 1) 

M 240 480 960 1920 3840 7860 10680 

TSASA (s) 0.265 0.922 3.469 13.797 53.593 209.7 398.3 

TFD (s) 0.281 1.032 4.187 19.031 92.374 509.2 1188 

ST 1.060 1.119 1.207 1.379 1.724 2.429 2.983 
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TABLE 3.5 

FEKO COMPUTATIONAL OVERHEAD OF SENSITIVITY ANALYSIS WITH SELF-

ADJOINT METHOD AND WITH FINITE DIFFERENCES (M = 10680) 

N 1 3 5 7 9 11 

TSASA (s) 398.34 1193.7 1988.0 2782.3 3576.4 4371.3 

TFD (s) 1188.3 3560.0 5925.8 8292.1 10660 13024 

ST 2.9831 2.9823 2.9808 2.9803 2.9807 2.9794 
 
 

3.9 CONCLUDING REMARKS 

We re-iterate that in optimization, the Broyden update is a far more efficient 

alternative to the computation of the system matrix derivatives [18][19][26]. With 

it, TS  becomes roughly proportional to ( ) /MF LS SFT T T+ , which is normally a 

very large ratio. The application of this algorithm in optimization is to be 

discussed in the following chapter. 
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CHAPTER 4 
 

EM OPTIMIZATION USING 

SENSITIVITY ANALYSIS IN THE 

FREQUENCY DOMAIN  
 

4.1 INTRODUCTION 

The previous implementation of the self-adjoint sensitivity analysis 

(SASA) technique provides us with accurate sensitivities in an efficient way. 

Sensitivities can be used for gradient-based optimization algorithms based on 

quasi-Newton, sequential quadratic programming (SQP) and trust-region 

methods, which need the objective function Jacobian and/or Hessian in addition 

to the objective function itself. These optimization methods search for a local 

optimal point. A gradient-based algorithm is expected to converge much faster, 

i.e., with fewer system analyses, than non-gradient optimization algorithms. Its 

drawback is that a global minimum is not guaranteed, and failure to converge is a 

possibility. Naturally, the solution provided by a gradient-based local 

optimization algorithm depends on the quality of the initial design. For a realistic 
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3D EM-based design problem with an acceptable starting point, gradient-based 

optimization is to be preferred [1].   

The efficiency of a successful gradient-based optimization process 

depends mainly on two factors: (1) the number of the iterations required to 

achieve convergence, and (2) the number of simulation calls per iteration. The 

first factor depends largely on the nature of the algorithm, on the proper 

formulation of the objective or cost function, and the accuracy of the response 

Jacobians and/or Hessian. The second factor depends mostly on the method used 

to compute the Jacobians and/or Hessian, which are necessary to determine the 

search direction and the step in the design parameter space.  

The sensitivity analysis, which provides the Jacobians through response-

level approximations, is very time consuming. Our self-adjoint sensitivity 

analysis method [2]-[5] discussed in the last chapter, produces the response and 

its Jacobian with a single full-wave analysis when the objective function depends 

on the network parameters, e.g., the S-parameters and the input impedance. The 

major overhead of the sensitivity computation with this technique is due to the 

computation of the system matrix derivatives, whose overhead is equivalent to N 

matrix fills. N is the number of design parameters. A fast approach to the 

derivatives of the system matrix becomes necessary.  

In this chapter, we firstly review the previous work related to the 

evaluation of the derivatives of the system matrix. Then, we propose a hybrid 

approach (B/FD-SASA) which employs both the finite-difference self-adjoint 
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sensitivity analysis (FD-SASA) method and Broyden-update self-adjoint 

sensitivity analysis (B-SASA) method. The latter is especially suitable for 

gradient-based EM optimization [1].  We develop a set of criteria for switching 

back and forth throughout the optimization process between the robust but more 

time-demanding FD-SASA and the B-SASA. This hybrid technique guarantees 

good accuracy of the gradient information with minimal computational time.  

We implement our technique in the MoM through FEKO. We demonstrate 

our approach through the optimization of a double annular ring antenna. We 

compare its optimization performance with FD-SASA.  

4.2 THE DERIVATIVES OF THE SYSTEM MATRIX [6] 

In the self-adjoint sensitivity analysis, it is necessary to evaluate the 

derivatives of the system matrix with respect to all the design variables 

1 2[    ]T
np p p= …p : 

,     1,  2, ,  
i

i n
p

∂ =
∂

…A . (4.1)

There are several ways to obtain the derivatives of the system matrix [6][7]. 

Method 1: The analytical derivatives of the system matrix A with respect 

to the design variables—if available—lead to exact response sensitivities. 

However, the analytical form of system matrix is hard to be determined in the 

general case.  
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Method 2: Forward finite differences give the simplest procedure. The 

sensitivities are calculated by: 

( ) ( ) ,   1, 2  i i

i i

p i n
p p

∂ + ∆ −= =
∂ ∆

…A A p e A p  (4.2)

where 

0

th row1

0

i i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

#
e . (4.3)

  

The self-adjoint sensitivity analysis using finite differences to evaluate the 

derivatives of the system matrix is referred to as FD-SASA. It provides accurate 

sensitivity and therefore is often used as a reference [2]-[5].  

Method 3: The boundary-layer concept (BLC). The BLC in sensitivity 

analysis was first proposed by Amari [8]. It can be applied with solvers which 

allow non-uniform discretization and/or unstructured grids, e.g., the FEM and the 

MoM [7]. The idea is to perturb a certain geometrical parameter (the design 

parameter ip ) of a structure by respective deformations of as few grid elements 

as possible. This makes most of the system matrix coefficients insensitive to the 

perturbation. Consequently, the matrix derivative 
ip

∂
∂

A  is mostly sparse and 

only few nonzero coefficients need to be calculated. This is in contrast with 

Method 2, where full remeshing is applied to the perturbed structure, which 
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results in a full 
ip

∂
∂

A  matrix. In this method, we must have full control over the 

meshing.  

Method 4: The Broyden update is discussed in Section 4.3.  

4.3 SENSITIVITY ANALYSIS IN THE METHOD OF 

MOMENTS EXPLOITING THE BROYDEN UPDATE 

Since in the FD-SASA the derivatives of the system matrix are computed 

with a finite-difference approximation, it requires at least N matrix fills. To 

eliminate this overhead, here, we compute the system matrix derivative applying 

Broyden’s formula [9] to the elements of A 

( )

( )( ) ( ) ( )
( 1) ( )

( )
( ) ( )

( ) ( )
, 1, ,

k

kk k k
jk k

jj k
ik T k

i i

h
p

h i N
p p

+
⎛ ⎞∂+ − − ⎜ ⎟∂⎛ ⎞ ⎛ ⎞∂ ∂ ⎝ ⎠= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑
…

AA p h A p
A A

h h
. 

(4.4

) 

 

( )( )kA p  is the system matrix at the kth iteration, when the design parameter space 

is ( )kp , and ( )kh  is the increment vector in the design parameter space between 

the kth and (k+1)st iteration. The resulting sensitivity-analysis algorithm is 

referred to as B-SASA. With it, the derivatives of the system matrix in the first 

optimization iteration are obtained using a forward finite-difference 

approximation. They are updated iteratively thereafter. The iterative update 

requires negligible computational resources compared to a matrix fill. 
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4.4 MIXED SELF-ADJOINT SENSITIVITY ANALYSIS 

METHOD AND SWITCHING CRITERIA 

The derivatives of the Broyden update are less accurate than those in the 

FD-SASA [7]. The inaccuracy tends to be significant when the increment of the 

design parameters is very small, e.g., near a local minimum, as catastrophic 

cancellation occurs. We propose two criteria to switch from B-SASA to FD-

SASA:  

1) ( ) ( 2)( ) ( )k kG G −>p p , or  

2) ( )k d≤h .  

Here G is the objective function and d is the minimum edge length of the 

mesh elements. The algorithm checks the criteria at each iteration. After a switch 

from B-SASA to FD-SASA occurs, only one optimization iteration is performed 

with the FD-SASA, after which the algorithm returns to B-SASA. This B/FD-

SASA method is simple and guarantees acceptable accuracy of the system matrix 

derivatives even for small increments in the design-parameter space. 

4.5 EXAMPLE: THE OPTIMIZATION OF A DOUBLE 

ANNULAR RING ANTENNA 

We perform gradient-based optimization using the response Jacobian 

provided by: (1) the proposed hybrid B/FD SASA approach, (2) the FD-SASA. 

We compare the performance of the optimization algorithm with the three 
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sensitivity-analysis approaches in terms of the number of iterations and the 

overall CPU time. 

We consider the stacked probe-fed printed annular ring antenna of [10], 

which is shown in Fig. 4.1. The simulations are performed with FEKO [11]. The 

antenna is printed on a printed circuit board (PCB) with 1 2.2rε = , 1 6.096d =  mm 

for the lower substrate, and 2 1.07rε = , 2 8.0d = mm for the upper substrate. The 

dielectric loss tangent is 0.001 for both layers. The radius of the feed pin is 

0 0.325r = mm. The design variables are the outer and inner radius of each ring 

and the feed position, namely, 1 2 1 2[     ]T
pa a b b ρ=p . The design specification is 

11 10 dB   for 1.75 GHz 2.15 GHzS f≤ − ≤ ≤ . 

Our technique requires the system matrix size fixed between iterations, 

regardless of the variation in the design parameters. It is realized by local meshing 

[12]. As shown in Fig. 4.2, the number of mesh edges along the five loops (thick 

lines) is topologically fixed at 13, 19, 25, 32 and 39, respectively. 
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Fig. 4.1. Geometry of a stacked probe-fed printed double annular ring antenna 
[10]. 

 

 

Fig. 4.2. Demonstration of local meshing of the stacked probe-fed printed double 
ring antenna. 
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We use Madsen’s minimax optimization algorithm [13], which employs a 

trust region (TR). We supply the Jacobian calculated by our B/FD-SASA and FD-

SASA techniques to the TR-minimax optimization algorithm. The initial trust-

region size is set to 0 00.05r = ⋅ p . The starting point is (0)
1 2 1 2=[    a a b bp  

]=[30  30  20  10  10]pρ  (in mm). The algorithm switches to FD-SASA three 

times at the 4th, 9th and 10th iterations. The optimal designs for both approaches 

are reached within 11 iterations. The optimal designs emerge as * (11)
B/FD-SASA =p  

[33.139  28.836  18.592  9.9592  8.8593] (in mm) and * (11)
FD-SASA =p  [33.088  28.992  

18.437  9.849  8.5712] (in mm). 

Figs. 4.3 and 4.4 show the parameters step size and the objective function, 

respectively, versus iterations. Fig. 4.5 shows the responses at the initial design 

and the optimal designs obtained with the Jacobians being provided by the B/FD-

SASA and the FD-SASA. It is clear that both designs are practically identical. 

The overall time cost for the optimization with the B/FD-SASA is 2115 s versus 

4358 s for the FD-SASA optimization. Again, significant time saving is observed. 
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Fig. 4.3. Parameter step size vs. optimization iterations using TR-minimax in the 
double annular ring example. 
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Fig. 4.4. Objective function vs. optimization iterations using TR-minimax in the 
double annular ring example.  
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Fig. 4.5. Responses at the initial design and the optimal designs in the double 
annular ring example. 
 

4.6 CONCLUDING REMARKS 

The proposed hybrid technique of B/FD-SASA solves the EM 

optimization problem with a derivative approximation at the system matrix level. 

It significantly reduces the CPU time cost of the sensitivity computation. The time 

savings depend on the optimization algorithms, as well as on the numerical size of 

the problem. For electrically large 3-D problems with many design parameters, 

the time savings may be significant. 
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CHAPTER 5  
 

ANTENNA DESIGN THROUGH 

SPACE MAPPING OPTIMIZATION 
 

5.1 INTRODUCTION 

The method of moments (MoM) is one of the most popular numerical 

techniques for antenna and microwave device analysis. An accurate MoM 

simulation is CPU intensive. This cost may be prohibitive for complex design 

problems. Alternatively, a coarse mesh MoM simulation is fast but poor in 

accuracy. 

The space mapping (SM) technique takes advantage of the efficiency of a 

coarse mesh MoM simulation and the accuracy of the fine mesh simulation. SM 

aligns coarse models with fine models [1]-[8]. Here, the fine model is the fine 

mesh MoM solution. The coarse model is the coarse mesh solution. 

For the first time, we apply the SM technique to antenna design. Both fine 

and coarse models are defined within FEKO [9]. We propose a new meshing 

method. The topology of the mesh is preserved throughout the optimization which 
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makes the coarse-model response in the design parameter space smooth and 

consistent. 

In the parameter extraction (PE) process, we implement implicit/input SM 

and output SM sequentially [10]. In a preliminary PE, we roughly align the coarse 

model with the fine model through implicit/input SM. Then output SM aims at 

locally matching the surrogate with the fine model. 

The novel SMF (Space Mapping Framework) system [11] implements our 

approach. SMF is a prototype GUI (Graphical User Interface) oriented software 

package that implements a number of SM optimization algorithms. The system 

aims at making SM accessible to engineers inexperienced in space mapping. It 

provides sockets to popular simulators (including FEKO, Sonnet em and ADS) 

that allow automatic fine/coarse model data acquisition and, consequently, fully 

automatic space mapping optimization. SMF also provides interfaces for SM 

modeling and statistical analysis. 

Two examples are given to demonstrate our approach. We consider a 

double annular ring antenna and a patch antenna. In the first example, we exploit 

the CPU-intensive surface equivalence principle (SEP) as a fine model and the 

special Green’s function with a coarse mesh as a coarse model. The S-parameter 

response is optimized in three iterations. In the second example, we optimize 

impedance at a single frequency using two SM plans. The comparisons show a 

larger time saving in SM plan I. At last, we discuss the coarseness in the coarse 

model and its effect on the SM performance.  
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5.2 COARSE MODEL AND FINE MODEL 

As we discussed in Section 2.3, the mesh convergence needs to be 

checked to get an accurate simulation result. This is done by refining the mesh 

from one simulation to the next, and keeping all model parameters the same. If 

the results are significantly different, the antenna surfaces are not adequately 

discretized and we need to refine the mesh [12]. 

The coarse-mesh coarse model does not need to achieve mesh 

convergence. Consequently, if the mesh topology and number of mesh elements 

vary due to the variation of geometrical design parameters during optimization, 

inconsistent results are obtained. To overcome this problem, we force the mesh 

number and topology to remain unchanged during optimization. This is done by 

local meshing in FEKO. 

In the fine model, where mesh convergence is satisfied, we use global 

meshing. We define the mesh density by the number of meshes per wavelength.  
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5.3 SPACE MAPPING-BASED SURROGATE MODELS [7][8] 

5.3.1 Mathematical Formulations 

We are concerned with a class of optimization algorithms that exploit 

surrogate models [13]. Let :  m
f fX R→R  denote the response vector of the so-

called fine model of a given object, where n
fX R⊆ . Our goal is to solve 

arg min ( ( ))
f f

f f f
X

U∗

∈
=

x
x R x  (5.1)

where U  is a suitable objective function. 

  SM assumes the existence of a less accurate but much faster coarse 

model. Let : m
c c pX X R× →R  denote the response vectors of the coarse model, 

where Xc⊆Rn is the design variable domain (we assume here that Xc⊆Xf) and 

Xp⊆Rq is the domain of auxiliary (preassigned) coarse model parameters. Typical 

preassigned parameters px  are the dielectric constant and the height of a 

dielectric layer. By c
∗x  we denote the optimal solution of the coarse model, i.e., 

(0)arg min ( ( ))
c

c c p
X

U ,∗

∈
�

x
x R x x  (5.2)

where (0)
px denotes the initial preassigned parameter values. 

We consider the fine model to be expensive to compute and solving (5.1) 

by direct optimization to be impractical. Instead, we use surrogate models, i.e., 

models that are not as accurate as the fine model but are computationally cheap, 
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hence suitable for iterative optimization. We consider an optimization algorithm 

that generates a sequence of points ( ) ,  1, 2, ,i
ff X i∈ = …x  so that 

( 1) ( )arg min ( ( ))
c

i i
sf

X
U+

∈
=

x
x R x . (5.3)

Here, ( ) :i m
s cX R→R  is the surrogate model at iteration i, which uses the coarse 

model and the fine model data. 

In this work, we use a surrogate model based on input SM [13], implicit 

SM [2] and output SM [3]. The surrogate model at iteration i is defined as 

( ) ( ) ( ) ( ) ( )( ) ( , )i i i i i
s c p= +R x R B x + c x ∆R  (5.4)

where 

( ) ( ) ( ) ( )

( , , )
( , , ) arg min ( , , )

p

i i i i
p pε=

B c x
B c x B c x  (5.5)

and  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( , )i i i i i i i
c pf f−f∆R = R x R B x + c x  (5.6)

The matrices B(i)∈Mn×n, c(i)∈Mn×1, and the vector ( )i
px  are obtained using 

parameter extraction applied to the matching condition ε(i). Vector ∆R(i)∈Mm×1 is 

calculated using formula (5.6) after having determined B(i), c(i) and xp
(i). A general 

form of the matching condition is 

( ) ( ) ( ) ( )
0

( , , ) || ( ) ( , ) ||ii k k k
p k f f c f f pk

wε
=

= − ⋅ + ⋅ +∑B c x R x R B x c G x x  (5.7)

In our examples we use w1=1 and  wk=0, k=2,…,i (i.e., we only use the last 

iteration point to match the models).  
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Both implicit, input and output SM aim at reducing the misalignment 

between the fine model and the current surrogate, however, implicit and input SM 

exploit the physics-based similarity of the models, while the output SM ensures 

perfect local alignment between the models at the current iteration point. As 

follows from equations (5.4)-(5.7), we implement implicit/input SM and output 

SM sequentially. This is illustrated in Fig. 5.1. 

 

responses

surrogate

design 
parameters responsesfine 

model

space 
mapping

output
mapping

coarse 
model

space 
mapping

implicit/input
mapping

cR sRfx

fx fR

px
∆Rpreassigned 

parameters  

Fig. 5.1. Demonstration of our approach to implicit, input and output SM. 

5.3.2 Algorithm 

Having defined the family of surrogate models we can define the 

optimization algorithm. It is, in fact, an implementation of the generic surrogate 

model-based optimization algorithm (5.3): 
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Step 1 Choose a proper coarse-mesh coarse model as well as 

preassigned parameters. Set 0i = . 

Step 2 Solve (5.2) to find the surrogate optimal solution c
∗x  and let 

(0)
cf
∗=x x . 

Step 3 Evaluate the fine model to find ( )( )i
f fR x . 

Step 4 Update the surrogate model ( )i
sR according to (5.4)-(5.6). 

Step 5 Solve (5.3) and obtain ( 1)i
f

+x . 

Step 6 If the termination condition is satisfied (convergence 

achieved or the design specification satisfied.), stop; 

otherwise, set i = i+1 and go to Step 3. 

5.4 SMF: SPACE MAPPING FRAMEWORK [11] 

5.4.1 Brief Introduction to SMF 

SMF [11] is designed to make space mapping accessible to engineers not 

experienced in this technology. It is a GUI based Matlab system that can perform 

space mapping based constrained optimization, modeling and statistical analysis. 

It implements existing SM approaches, including input, output, implicit and 

frequency SM. It contains drivers for commercial simulators (Sonnet em, 

MEFiSTo, ADS, FEKO) that allow linking of the fine/coarse model to the 

algorithm and to make the optimization process fully automatic. 
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5.4.2 SMF Design Flow 

In this thesis, we only focus on one aspect of SMF, a module for 

automatic space mapping optimization. We have used it to solve the example 

antenna design problems considered in Chapter VI. 

Fig. 5.2 shows a block diagram of the optimization module in SMF. 

Optimization is performed in several steps. First, the user enters problem 

arguments, including starting point, frequency sweep, optimization type and 

specifications. Next, the user sets up space mapping itself, i.e., the kind of space 

mapping to be used (e.g., input, output, implicit), specifies the termination 

condition, parameter extraction options, and optional constrains.  

The next step is to link the fine and coarse models to SMF by setting up 

the data that will be used to create model drivers. Using the user-provided data 

(e.g., simulator input files and design variable identification data), SMF creates 

drivers that are later used to evaluate fine/coarse models for any necessary design 

variable values. Model evaluation is accomplished by generating the simulator 

input file corresponding to the required design, running the simulator and 

acquiring the results.  
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                                                     Fine model evals: 5

  

Fig. 5.2. Flowchart of the optimization module in the SMF system [11]. 
 

Parameter extraction, surrogate model optimization and optional trust 

region specific options are set in the next step using auxiliary interfaces.  

Having done the setup, the user runs the execution interface, which 

allows the execution of the space mapping optimization algorithm and 

visualization of the results. The latter includes model responses, specification 

error plots as well as convergence plots. 
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5.5 EXAMPLES 

5.5.1 Double Annular Ring Antenna 

We consider the stacked probe-fed printed annular ring antenna of [14], 

which is shown in Fig. 4.1. The antenna is printed on a PCB with 1 2.2rε = , 

1 6.096d = mm for the lower substrate and 2 1.07rε = , 2 8.0d = mm for the upper 

substrate. The dielectric loss tangent is 0.001 for both layers.  

Note that in this example, finite ground is used. The finite ground size is 

100 100× mm. The radius of the feed pin is 0 0.325r = mm. Design variables are 

the outer and inner radius of each ring and the feed position, namely, 

1 2 1 2[     ]T
pa a b b ρ . The design specification is 

11 10 dB   for 1.75 GHz 2.15 GHzS ω≤ − ≤ ≤ . 

In an MoM solver like FEKO, special Green’s functions are usually 

implemented to model multi-layer substrates, where the ground and the substrate 

are assumed infinite in extent. It is computer-resource efficient, since only the 

finite metallic surfaces are discretized. However, in many microwave and RF 

applications, the infinite ground plane assumption is not acceptable for accurate 

simulations. The ground size has a strong effect on the performance of microstrip 

antennas [15][16]. 

The surface equivalence principle (SEP) addresses this problem. The 

surface of a dielectric is discretized and both the electric and magnetic surface 
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currents are computed. All sides of a dielectric have to be meshed, making a 

closed solid. In this approach, the memory requirement is four times what it 

would be if the same structure was metallic [17]. A detailed discussion can be 

found in Section 2.4. 

We choose the SEP model as the fine model and the special Green’s 

function, which does not consider the finite ground size effect, as the coarse 

model. To further reduce the simulation time in the coarse model, we apply a 

coarser mesh by local meshing. As shown in Fig. 5.3, the number of mesh edges 

along the three loops (thick lines) is topologically fixed at 5, 10 and 15, 

respectively, regardless of the variation in the design parameter values. The 

detailed fine and coarse models are summarized in Table 5.1. 

Here, we show how to set up and run the SM optimization for this problem 

using SMF. Fig. 5.4 shows the direct coarse model optimization interface, which 

was used to find the starting point for the SM optimization of the fine model. Fig. 

5.5 shows the setup of the starting point, the frequency sweep, the optimization 

type and specifications within SMF. Fig. 5.6 shows the space mapping options 

interface. Here, the user can set up the termination conditions of the algorithm in 

terms of maximum number of iterations or fine model evaluations, or in terms of 

tolerances in arguments/function values; then, the space mapping algorithm to be 

used (checkboxes A, B, C, D, E and F as well as implicit SM panel at the bottom 

left corner of the interface); at last, the parameter extraction options (e.g., the 

number of responses used while matching the models), as well as constraints for 
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the coarse/fine model, regular SM parameters and implicit parameters. In our 

example, we only use term D (output SM) and implicit SM. 

 

 

 

Fig. 5.3. Demonstration of local meshing of the annular ring in the coarse-mesh 
coarse model for a stacked probe-fed printed double ring antenna example. 
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TABLE 5.1 

FINE MODEL AND COARSE MODEL IN DOUBLE ANNULAR  

RING ANTENNA  

Model type Technique Meshing method Mesh 
number 

Frequency 
sweep time 

Coarse model
Special Green’s 

function + 
coarse mesh 

Local meshing 83 8.721 seconds

Fine model SEP Global meshing 
density = 20 2661* 1 hour and 18 

minutes* 

* Number of meshes and time cost in the fine model are measured at the initial  
point. 

 

Fig. 5.7 shows the setup of the FEKO driver (in our case both coarse and 

fine models are implemented in FEKO). The user has to provide the necessary 

information about the design variables, the FEKO input file as well as the type of 

response to be obtained from the model. This data will allow SMF to call the 

simulator for any required values of the design variables, acquire the simulation 

results, and prepare the model response in a required form. 

Fig. 5.8 shows the setup for parameter extraction, surrogate optimization 

and trust region options. 
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Fig. 5.4. Direct coarse model optimization interface in the SMF system. 

 

Fig. 5.5. SM arguments setup in the SMF system. 
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Fig. 5.6. Space mapping options setup in the SMF system. 

 

Fig. 5.7. FEKO driver setup in the SMF system. 
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Fig. 5.8. Auxiliary setup in the SMF system: parameter extraction, surrogate 
optimization and trust region options. 
 
 

SMF requires three iterations (four fine model simulations) to satisfy the 

specifications, although the coarse model initially exhibits a poor response (see 

Fig. 5.9). The total time taken is 5 hours 58 minutes (note that a single fine model 

simulation requires 1 hour 18 minutes). Fig. 5.10 depicts the fine and surrogate 

model responses at the final design. Good alignment is achieved through three 

PEs. Fig. 5.11 shows the reduction of the objective function versus the number of 

the iterations. Table 5.2 shows the initial and final design. 
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Fig. 5.9. Initial fine and surrogate responses corresponding to the coarse model 
optimal solution for the double annular ring antenna. 
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Fig. 5.10. Fine and surrogate responses for the double annular ring antenna 
example. 
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Fig. 5.11. Objective function value versus iteration number in the double annular 
ring antenna example. 
 
 

TABLE 5.2 

INITIAL AND FINAL DESIGN OF THE DOUBLE ANNULAR RING ANTENNA  

Design 
parameters 

Initial design 
(mm) 

Final design 
(mm) 

1a  9.2277 10.6735 

2a  8.7224 7.8088 

1b  30.7230 28.4621 

2b  34.1266 32.5043 

pρ  18.2107 19.6817 

 

Fig. 5.12 shows the execution interface SMF, which was used to obtain 

the above results. Plots in the interface correspond to the algorithm status after the 
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last iteration. The top left plot shows the fine model response and design 

specifications; the top right plot shows the specification error vs. iteration 

number; the bottom left and bottom right plots are convergence plots that show 

||x(i+1) – x(i)|| and ||Rf
(i+1 – Rf

 (i)|| vs. iteration number, respectively. The interface 

contains a number of controls including buttons to run/stop optimization, export 

graphs, create output files as well as browse through the previous iterations of the 

algorithm. 

 

Fig. 5.12. Execution interface of SMF after the optimization procedure has 
stopped. 

5.5.2 Patch Antenna 

This patch antenna is printed on a substrate with relative dielectric 

constant 2.32rε =  and height 1.59h = mm. The design parameters are the patch 
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length and width, i.e., [  ]T
f L W=x . The objective is to obtain 50 Ω  input 

impedance at 2 GHz. The objective function is 50inZ − . 

In the fine model, the global mesh density is 30 meshes per wavelength. In 

the coarse model, the mesh number and topology are fixed through local meshing. 

We choose three mesh edges along L  and seven along W . See Fig. 5.13. We use 

implicit SM and output SM. The selected preassigned SM parameter is rε=x . In 

the PE, we match the complex S11 instead of the input impedance. 

The initial design point is the coarse model optimal solution 

(0) [47.1285  100.470]f =x mm. SMF requires five iterations (six fine model 

simulations). Fig. 14 shows the reduction of the objective function versus the 

number of iterations. The final design is * (4) [46.7294  99.6875]f f= =x x  mm. 

Table 5.3 shows the optimization results for the design parameters, the objective 

function value, the preassigned parameter and the output SM parameter at each 

iteration. Computation time is 341 s, compared with 2816 s for direct fine model 

optimization. The SMF execution window is shown in Fig. 5.15.  
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L

W

 

(a) 

 

(b) 

Fig. 5.13. Demonstration of the coarse model and the fine model. (a) The coarse 
model with three mesh edges along L and seven mesh edges along W. (b) The 
fine model with global mesh density of 30 meshes per wavelength. 
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Fig. 5.14. Objective function value versus iteration number for the microstrip 
patch antenna example. 
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TABLE 5.3 

OPTIMIZATION RESULTS FOR THE PATCH ANTENNA EXAMPLE 

Iteration fx (mm) rε  ∆R  50inZ −  

0 
47.1285
100.470
⎡ ⎤
⎢ ⎥
⎣ ⎦

 2.3200 0.0000 27.941 

1 
46.77743
99.6922

⎡ ⎤
⎢ ⎥
⎣ ⎦

2.3621 0.0082 0.0461i−  2.5616 

2 
46.7268
99.6960
⎡ ⎤
⎢ ⎥
⎣ ⎦

 2.3589 0.0145 0.0056i+  0.35956 

3 
46.7294
99.6883
⎡ ⎤
⎢ ⎥
⎣ ⎦

 2.3590 0.0118 0.0054i+  22.4437 10−×  

4 
46.7294
99.6875
⎡ ⎤
⎢ ⎥
⎣ ⎦

 2.3589 0.0115 0.0059i+  21.1234 10−×  

 

Instead of implicit SM and output SM (SM plan I), an alternative way to 

solve this problem involves input SM and output SM (SM plan II). To save time 

cost in the parameter extraction, we only choose the variable c in the input 

mapping (refer to Fig. 5.1 and (5.6)). The coarse model mesh discretization is the 

same (100 meshes). The algorithm takes 5 iterations and 695 s to reach the 

specification error -38.93 10× . The SM performance is shown in Fig. 5.16. As 

expected, it takes more time than the first SM option, because in the input SM, we 
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require two input SM variables in the parameter extraction rather than one as in 

the implicit SM.  

 

 

 
Fig. 5.15. The SMF system execution window for the patch antenna example (SM 
plan I: implicit SM and output SM). 
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Fig. 5.16. The SMF execution window for the patch antenna example (SM plan 
II: input SM and output SM). 
 

 

Table 5.4 discusses the effect on the SM performance of the coarseness of 

the coarse model for the patch antenna. The algorithm does not converge for 24 

mesh elements (triangles). With an increase in the number of mesh elements, the 

function evaluation time increases while the SM iterations decrease. For SM plan 

I, we have the best SM performance in terms of total time cost for 100 mesh 

elements, which requires only 341 s. For SM plan II, we have the best SM for 48 

mesh elements, which requires 479 s. 
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TABLE 5.4 

THE EFFECT OF LOCAL MESHING ON SM PERFORMANCE 

FOR THE PATCH ANTENNA 

Local meshing in the coarse model SM Plan I SM Plan II 
Mesh number 

along 
L  W  

Total 
mesh 

number

Function 
evaluation 

time (s) 

Iteration 
number

Total 
time (s)

Iteration 
number 

Total 
time 
(s) 

2 5 24 0.109 Not convergent Not convergent 

3 7 48 0.219 6 364 9 479 

5 9 100 0.438 4 341 5 695 

9 20 400 4.063 4 1604 3 2659 

11 22 528 8.375 3 2695 3 3220 

Global meshing in the fine model Direct optimization 

Mesh 
density=30 1032* 33.313* 2816 s 

* The number of meshes and function evaluation time for the fine model 
is measured at the starting point [  ] [55 85]L W = mm 
 

5.6 CONCLUDING REMARKS 

We have presented an effective space-mapping technique for antenna 

optimization based on a coarse model, which exploits a coarse non-convergent 

mesh of fixed topology. Both coarse and fine models are implemented by the 

same MoM solver. A separate coarse model is not required. In the double annular 

ring example, the SMF system provides an efficient way to address the finite 
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ground size problem. We solve the optimal impedance of a patch antenna problem 

using two SM plans. The coarseness in the coarse model and its effect on the 

space mapping performance are discussed. Although we demonstrate our 

approach through antenna design, it is applicable to other planar structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 ANTENNA DESIGN THROUGH SPACE MAPPING OPTMIZATION 
 

 104

REFERENCES 

[1] J.W. Bandler, R.M. Bienacki, S.H. Chen, P.A. Grobelny and R.H. 
Hemmers, “Space mapping technique for electromagnetic optimization,” 
IEEE Trans. Microwave Theory Tech., vol. 42, Dec. 1994, pp. 2536-2544. 

 
[2] J.W. Bandler, Q.S. Cheng, N.K. Nikolova and M. A. Ismail, “Implicit 

space mapping optimization exploiting preassigned parameters,” IEEE 
Trans. Microwave Theory Tech., vol. 52, Jan. 2004, pp. 378-385. 

 
[3] J.W. Bandler, Q.S. Cheng, D. Gebre-Mariam, K. Madsen, F. Pedersen and 

J. Søndergaard, “EM-based surrogate modeling and design exploiting 
implicit, frequency and output space mappings,” in IEEE MTT-S IMS 
Dig., June. 2003, pp.1003-1006. 

 
[4] M.H. Bakr, J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. 

Zhang, “Neural space-mapping optimization for EM-based design,” IEEE 
Trans. Microwave Theory Tech., vol. 48, Dec. 2000, pp. 2307-2315. 

 
[5] M.A. Ismail, D. Smith, A. Panariello, Y. Wang and M. Yu, “EM-based 

design of large-scale dielectric-resonator filters and multiplexers by space 
mapping,” IEEE Trans. Microwave Theory Tech., vol. 52, Jan. 2004, pp. 
386-392. 

 
[6] K.-L. Wu, Y.-J. Zhao, J. Wang, and M.K.K Cheng, “An effective dynamic 

coarse model for optimization design of LTCC RF circuits with aggressive 
space mapping,” IEEE Trans. Microwave Theory Tech., vol. 52, Jan. 
2004, pp. 393-402. 

 
[7]    J. Zhu, J.W. Bandler, N.K. Nikolova and S. Koziel, “Antenna design 

through space mapping optimization,” IEEE MTT-S Int. Microwave 
Symp., San Francisco, California, 2006. 

 
[8] J. Zhu, J.W. Bandler, N.K. Nikolova and S. Koziel, “Antenna optimization 

through space mapping,” submitted to IEEE Trans. Antennas Propagat., 
Special Issue on Synthesis and Optimization Techniques in 
Electromagnetics and Antenna System Design, Jan. 2007. 

 
[9] FEKO® User’s Manual, Suite 4.2, June 2004, EM Software & Systems-

S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South 
Africa, http://www.feko.info. In the USA: EM Software & Systems 
(USA), Inc., 24 Research Drive, Hampton, VA 23666, USA, 
http://www.emssusa.com/. 



CHAPTER 5 ANTENNA DESIGN THROUGH SPACE MAPPING OPTMIZATION 

 105

 
[10] J.W. Bandler, A.S. Mohamed and M.H. Bakr, “TLM-based modeling and 

design exploiting space mapping,” IEEE Trans. Microwave Theory Tech., 
vol. 53, Sep. 2005, pp. 2801-2811. 

 
[11] SMF, Bandler Corporation, P.O. Box 8083, Dundas, ON, Canada L9H 

5E7, 2006. 
 
[12] “Mesh refinement,” FEKO Quarterly, December 2004. 
 
[13] S. Koziel, J.W. Bandler and K. Madsen, “Towards a rigorous formulation 

of the space mapping technique for engineering design,” Proc. ISCAS, 
Kobe, Japan, Jun. 2005, pp. 5605-5608. 

 
[14] D.M. Kotokoff, J.T. Aberle and R.B. Waterhouse, “Rigorous analysis of 

probe-fed printed annular ring antennas,” IEEE Trans. Antennas 
Propagat, vol. 47, Feb. 1999, pp. 384-388. 

 
[15] F. Tavakkol-Hamedani, L. Shafai and G.Z. Rafi, “The effects of substrate 

and ground plane size on the performance of finite rectangular microstrip 
antennas,” IEEE AP-S/URSI Int. Symp. on Antennas Propagat., Jun. 2002. 

 
[16] A.K. Bhattacharyya, “Effects of ground plane truncation on the impedance 

of a patch antenna,” IEE proceedings-H, vol. 138, Dec. 1991, pp. 560-564. 
 
[17] “Modeling of dielectric materials in FEKO,” FEKO Quarterly, March 

2005. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 5 ANTENNA DESIGN THROUGH SPACE MAPPING OPTMIZATION 
 

 106

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



107 
 

 

 

 

 

PART III 

CONCLUSIONS 

 

 

 

 

 

 

 

 



CONCLUSIONS 
 

 108

The thesis presents novel methods for the computer-aided design of 

microwave circuits and antennas exploiting adjoint-variable and space mapping 

(SM) technologies. These technologies are demonstrated by various examples.  

In Chapter 2, some relevant features of the method of moments (MoM) are 

reviewed. These features are related to further developments in this thesis, 

especially the developments of the self-adjoint sensitivity analysis and the coarse-

mesh surrogate model optimization technique. After a brief introduction to the 

MoM, the CPU time cost versus mesh density is discussed, followed by mesh 

refinement and mesh convergence. A discussion on the modeling of dielectric 

objects with the MoM is also given. 

In Part I (Chapters 3 and 4), we investigate the sensitivity analysis in the 

frequency domain. In Chapter 3, we propose the self-adjoint sensitivity analysis 

(SASA) method for network parameter sensitivity calculation in the MoM. It 

reduces the computational cost of the AVM by avoiding the adjoint analysis. 

Since the derivative of system matrix is obtained using finite differences, this 

technique is also referred to as finite-difference self-adjoint sensitivity analysis 

(FD-SASA). We propose a general procedure to implement the FD-SASA 

technique and demonstrate how it works with the commercial solver FEKO. The 

MoM matrix symmetry versus the convergence of the solution and the 

computational overhead associated with the sensitivity analysis are rigorously 

discussed at the end of this chapter.  
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In Chapter 4, the EM optimization using sensitivity analysis in the 

frequency domain is studied. The Broyden update is utilized in the iterative 

computation of the system matrix derivatives, which are then used in the self-

adjoint formula to obtain the response Jacobian. This SASA method is referred to 

as  B-SASA. It significantly reduces the computational overhead compared with 

the FD-SASA proposed in Chapter 3. Two criteria are used to switch back and 

forth throughout the optimization process between the robust but more time-

demanding FD-SASA and the B-SASA. Thus, we avoid the inaccuracy, which 

may accumulate in the B-SASA method, while in the same time fully exploit its 

computational efficiency. This hybrid approach (B/FD-SASA) guarantees good 

accuracy of the gradient information with minimal computational time. 

Chapter 5 in Part II presents the antenna design optimization exploiting 

space mapping techniques. We exploit a coarse-mesh MoM solver as the coarse 

model and align it with the fine-mesh MoM solution through space mapping. Two 

space mapping plans are employed: (1) implicit space mapping and output space 

mapping, (2) input space mapping and output space mapping. A novel local 

meshing method avoids inconsistencies in the coarse model. The proposed plans 

are implemented through SMF. Our approach is illustrated with the MoM-based 

design of a double annular ring antenna and a patch antenna. The SMF algorithms 

converge to a good design in spite of the poor initial behavior of the coarse-mesh 

MoM surrogate. 
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The Appendix shows the calculation of the S-parameters from the current 

solution of the MoM. It is needed in Chapter 3 in order to derive the S-parameter 

self-adjoint sensitivity analysis formulas.   

The following research topics should be addressed in future developments. 

(1) Exploiting the self-adjoint sensitivity analysis technique for the 

gradient-based SM optimization and modeling. 

(2) Investigating the multi-level MoM and model order reduction (MOR) 

techniques to build robust surrogate models. 

(3) Investigating further the properties of the coarse-mesh coarse models 

in MoM simulations. Focus should be on robust criteria to evaluate 

the suitability of the coarse models.  
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APPENDIX   
 

NETWORK PARAMETER 

CALCULATION IN FEKO 
 

In this section, we show how to calculate the two-port S-parameters based 

on the solution (current vector) available from FEKO. 

According to the network theory,  

1 11 12 1

2 21 22 2

U Z Z I
U Z Z I
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (A.1)

When Port 1 is excited, 

1 0 11 11 11 12 21V Z I Z I Z I− = +  (A.2)

 

0 21 21 11 22 21Z I Z I Z I− = +  (A.3)

when Port 2 is excited, 

2 0 22 21 12 22 22V Z I Z I Z I− = +  (A.4)

 

0 12 11 12 12 22Z I Z I Z I− = +  (A.5)
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Here, PQI  represents the induced current at port P due to the excitation at port Q. 

, 1, 2P Q = . They can be obtained from FEKO. 

 

Two-port Network
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Fig.A.1. Demonstration of a two-port network. 

 

From equations (A.2) - (A.5), we obtain: 

 



APPENDIX  NETWORK PARAMETER CALCULATION IN FEKO 

 113

1 22
11 0

12 21 11 22

V IZ Z
I I I I

= − −
−

 (A.6)

 

1 12
12

12 21 11 22

V IZ
I I I I

=
−

 (A.7)

 

2 21
21

12 21 11 22

V IZ
I I I I

=
−

 (A.8)

 

2 11
22 0

12 21 11 22

V IZ Z
I I I I

= − −
−

 (A.9)

We use the relationship between the Z- and the S-parameters as 

1 2
11 0 22 0 12 21

11 22 12 21

( )( )

     

VVZ Z Z Z Z Z Z
I I I I

∆ = + + − =
−  (A.10)

 

11 0 22 0 12 21
11

1 22 2 11 1 12 2 21
0

12 21 11 22 12 21 11 22 12 21 11 22 12 21 11 22

1 2

11 22 12 21

0 11

1

( )( + )

(2 )
     

2     1

Z Z Z Z Z ZS
Z

V I V I V I V IZ
I I I I I I I I I I I I I I I I

VV
I I I I

Z I
V

− −=
∆

+ ⋅ − ⋅
− − − −=

−

= − +

 (A.11)
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12 0 0 1212 21 11 22
12

1 2 2

11 22 12 21

2
2 2

Z V I
Z Z Z II I I IS VVZ V

I I I I

−−= = =
∆

−

 (A.12)

      

0 2 21

21 0 0 2112 21 11 22
21

1 2 1

11 22 12 21

2
2 2

Z V I
Z Z Z II I I IS VVZ V

I I I I

−−= = =
∆

−

 (A.13)

 

11 0 22 0 12 21
22

1 22 2 11 1 12 2 21
0

12 21 11 22 12 21 11 22 12 21 11 22 12 21 11 22

1 2

11 22 12 21

0 22

2

( )( )

(2 )
     

2     1

Z Z Z Z Z ZS
Z

V I V I V I V IZ
I I I I I I I I I I I I I I I I

VV
I I I I

Z I
V

+ − −=
∆

⋅ + − ⋅
− − − −=

−

= − +

 (A.14)

For N-port S-parameter calculation, we can obtain a more general 

expression in the same way:  

0

0

2
1   when 

2
,        when 

,PQ

Q
PQ

PQ

Q

Z I
P Q

V
S

Z I
P Q

V

−⎧
+ =⎪

⎪= ⎨−⎪ ≠⎪
⎩

 (A.15)
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